Continental mollusks from the Olmos Formation (Upper Cretaceous), Coahuila, Mexico

Moluscos continentales de la Formación Olmos (Cretácico Superior), Coahuila, México

Naylet K. Centeno-González¹, Gerardo Zúñiga-Bermúdez¹, Emilio Estrada-Ruiz¹, Francisco J. Vega²*

¹Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, 11340, CDMX, Mexico.
²Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, CDMX, Mexico.
* Corresponding author: (F.J. Vega) vegver@unam.mx

ABSTRACT

We describe freshwater mollusks from the Olmos Formation, Campanian, Upper Cretaceous. The results were obtained from several specimens of mollusks, identified with two families of gastropods: Viviparidae (Viviparus sp.) and Physidae (Mesolanistes sp.), and three families of bivalves: Limidae (Pseudolimea sp.), Unionidae (Proparreysia sp., Unio sp., Unionelloides sp., Plesielliptio sp., and Ostreidae (Ostrea sp.). Based on this taxonomic recognition, along with the associated fossil flora, it was possible to get a preliminary of the environment where the mollusks lived. The interpretation of the paleoenvironment resemble freshwater bodies adjacent to an estuarine system. Furthermore, the mixing of specimens of brackish and freshwater environments is indicative of a transport of some of these mollusks. The general view of the paleoenvironment where the mollusks inhabited is that of a transitional freshwater-estuarine in the Olmos Formation during Campanian times.

Keywords: Mollusca, Campanian, Olmos Formation, NE Mexico.

RESUMEN

Se describen moluscos de agua dulce de la Formación Olmos (Campaniano) del Cretácico Superior. Como resultado se obtuvieron varios ejemplares de moluscos, identificando dos familias de gasterópodos: Viviparidae (Viviparus sp.) y Physidae (Mesolanistes sp.), y tres familias de bivalvos: Limidae (Pseudolimea sp.), Unionidae (Proparreysia sp., Unio sp., Unionelloides sp., Plesielliptio sp., y Ostreidae (Ostrea sp.). A partir de este reconocimiento taxonómico, así los restos de flora asociados, fue posible obtener una interpretación preliminar del ambiente donde vivieron estos moluscos. La interpretación del paleoambiente es semejante a los cuerpos de agua dulce adyacentes a un sistema estuarino. Además, la mezcla de ejemplares de ambientes salobres y de agua dulce sugiere que algunos moluscos sufrieron transporte en un ambiente transicional de agua dulce a estuarino en la Formación Olmos durante el Campaniano.

Palabras clave: Mollusca, Campanian, Formación Olmos, NE de México.
1. Introduction

Mollusks are cosmopolitan invertebrates. Bivalves and gastropods live mainly in marine and freshwater environments (Donovan and Hensley, 2003; Checa et al., 2009; Smitha and Mustak, 2017). In Mexico, the fossil record of bivalves and gastropods date from the Paleozoic (Quiroz-Barroso and Perrilliat, 1997), and the Mesozoic (Stanley et al., 1994). In particular, the fossil record of these mollusks is more frequent in Cretaceous deposits from Baja California, Nuevo León, Chihuahua, Coahuila, San Luis Potosí, Zacatecas, Querétaro, Jalisco, Michoacán, Guerrero, Puebla, and Chiapas (e.g. Vega and Perrilliat, 1990; Perrilliat et al., 2008; Vega et al., 2019). Despite the presence of Campanian continental mollusks in Coahuila, these are scarce in the Olmos Formation. The only formal report is that of the gastropod Tympanotonus cretaceus from the uppermost Olmos Formation (Perrilliat et al., 2008). *T. fuscatus* is a brackish gastropod, living nowadays in mangroves and lagoons along the West African coast (Dockery, 1993; Bandel and Kowalke, 1999; Reid et al., 2008). The Olmos Formation includes different sub-environments such as swamps, flood plains, interlocking rivers, and meandering rivers, derived from the epicontinental Cretaceous sea present in North America (Estrada-Ruiz et al., 2013). In addition, the formation has a great diversity of life forms, mainly composed of fossil plants similar to those found in tropical and paratropical rainforests (Estrada-Ruiz, 2009; Estrada-Ruiz et al., 2007, 2010, 2011; Centeno-González et al., 2019, 2021). Other organisms preserved in fine-grained sandstones of the Olmos Formation include fragments of Theropoda, Tyrannosauridae, Ankylosauria, Ceratopsidae, cf. Chasmosaurus sp., Hadrosauridae, tracks of turtles, crocodiles and small birds (Ojeda-Rivera et al., 1968; Silva-Bárcenas, 1969; Meyer et al., 2005; Torres-Rodriguez et al., 2010; Porras-Múzquiz and Lehman, 2011; Ramírez-Velasco et al., 2014; López-Conde et al., 2021).

We studied the freshwater mollusks from a coal-mine of the Olmos Formation in Coahuila, NE Mexico. Our principal aim was to contribute to the knowledge of the molluscan shells in the Upper Cretaceous of northern Mexico. Some plants were found associated to the mollusks here described.

2. Geological setting

The Sabinas Basin includes mainly Upper Cretaceous strata subdivided in several lithostratigraphic units, among which the Olmos Formation includes of coal deposits extending to the north of Piedras Negras and the south of Monclova, between parallels 26° and 28° North and meridians 100° to 102° West (Weber, 1972) (Figure 1). The Campanian age of this formation is based on the presence of ammonites (Flores-Espinoza, 1989), along with the presence of the lower Maastrichtian bivalves *Exogyra costata* and *Pycnodonte mutabilis*, collected from the base of the overlying Escondido Formation in Piedras Negras, Coahuila. The age was corroborated by means of U–Pb zircon methods (Campanian 76.1 ± 1.2 Ma) (González-Partida et al., 2022).

The Olmos Formation has a composed thickness of approximately 540 meters (Flores-Espinoza, 1989). It is represented by coal and a minor proportion of gray shale, carbonaceous shale, siltstone, and fine-medium-grained sandstone with parallel lamination and cross-stratification (Corona-Esquível et al., 2006; Estrada-Ruiz, 2009). Initially, it was divided into five units (Robeck et al., 1956). Later, based on cores and stratigraphic and sedimentological studies from different quarries, the Olmos Formation was classified in two systems (Flores-Espinoza, 1989). The first and lower one is a delta plain, while the second and upper one consists of a river plain with river facies and flood plains (Flores-Espinoza, 1989). Later, Estrada-Ruiz (2009) described four depositional sub-environments: 1) Lithofacies A rich in coal, suggesting that they correspond to marshy areas with restricted circulation. 2) Lithofacies B composed of shales and sandstones, which might
Figure 1 Geographic location of Coahuila, Mexico, and sites where fossils were collected. A. Mexico, Coahuila is remarked in black. B. Coahuila, star = Tajo La Lulú, where most of the mollusks were collected.

represent floodplain environments and/or lagoons with open circulation. 3) Lithofacies C from fluvial environment, probably with intertwined rivers, as suggested by the geometry of the sand bars and canal fillings. 4) Lithofacies D with sandstones with cross-stratification, interpreted as channel infills and lateral bars deposited in a meandering river (Flores-Espinoza, 1989; Estrada-Ruiz, 2009), where dinosaurs and Tympanotonus cretaceus were reported.

3. Material and methods

A total of 44 samples with bivalves and gastropods were collected in sediments of the Olmos Formation in an open pit or coal mine known as Tajo La Lulú, with coordinates 27° 55’ 36.6” N and 101° 11’ 30.2” W (Figure 1). All the samples come from a layer overlying the coal mantle, from where leaf and fruit impressions have also been reported (Estrada Ruiz, 2009). The material is deposited in the Paleontological Collection of the Instituto Politécnico Nacional, Mexico City, under the acronym IPN-PAL. The fossils were cleaned with Dremel 290-01 electric hammer. For taxonomic recognition, the fossils were described according to their morphology. Later, we made a morphological comparison with similar fossil gastropods and bivalves (Lucas et al., 1995; Perrilliat et al., 2008; Taparila and Roberts, 2013). For a reliable identification, we used only complete specimens preserving ornamentation and other morphological features. The paleoenvironmental interpretation was based on the identified mollusks and comparison with close living representatives.

4. Results

Systematic Palaeontology

Class Gastropoda Cuvier, 1797
Order Caenogastropoda Cox, 1959
Superfamily Ampullaroidea Gray, 1842
Family Viviparidae Gray, 1847
Subfamily Viviparinae Gray, 1847
Genus Viviparus Montfort, 1810
Viviparus sp.
Figure 2A
RESULTS

Description. Small, pyramidal shell, only body and second whors preserved; shell smooth, suture between first and second whorl weakly marked.
Material. One specimen, IPN-PAL 207.
Measurements. Length = 26.2 mm, width = 22.3.
Observations. *Viviparus* was very abundant in Cretaceous and Paleocene deposits of North America, specially in the Parras Basin, with specimens preserved *in situ* in red layers (delta plain) of the Paleocene Las Encinas Formation (Perrilliat et al., 2008).

Order Basommatophora Schmidt, 1855
Superfamily Lymnaeoidea Rafinesque, 1815
Family Physidae Fitzinger, 1833
Genus *Mesolanistes* Yen, 1945
Mesolanistes sp.
Figure 2B-2D.

Description. Medium to large, dextral shell, involute, with four convex whors, the outer one being the most prominent; acute anterior, posterior almost flat; shell surface with longitudinal lines.
Measurements. IPN-PAL 208, length = 29.4 mm, width = 32.4 mm, height = 13.3 mm (Figure 2B); IPN-PAL 209, length = 59.8 mm, width = 31.7 mm, height = 18.6 mm (Figure 3B); IPN-PAL 210, width = 18.3 mm, length = 15.0 mm (Figure 2D).
Observations. *Mesolanistes* was reported in deposits of the Upper Cretaceous of Sonora and other lithostratigraphic units in North America. In the Cerro del Pueblo Formation (late Campanian) it is very abundant, both in river deposits (green layers) and in marshes and lakes (Lucas et al., 1995; Perrilliat et al., 2008).

Class Bivalvia Linnaeus, 1758
Order Pterioida Newell, 1965
Superfamily Limoidea Rafinesque, 1815
Family Limidae Rafinesque, 1815
Genus *Pseudolimea* Arkell, 1933
Pseudolimea sp.
Figure 2E.

Description. Triangular shell, ornamented by strong and scaly radial ribs quite numerous.
Material. A left valve, IPN-PAL 211.
Measurements. Length = 24.6 mm, width = 18.0 mm.
Observations. Given the poor preservation of the specimen, it is likely that it has been transported from the coastal area.

Order Unionoida Gray, 1854
Suborder Unionidina Gray, 1854
Superfamily Unionoidea Rafinesque, 1820
Family Unionidae Rafinesque, 1820
Genus *Proparreysia* Wanner, 1921
Proparreysia sp.
Figure 2F.

Description. Medium, elongated, convex semi-triangular shell; concentric growth lines, very fine, little marked; umbo weakly inclined.
Material. Left valve, IPN-PAL 212.
Measurements. Length = 39.0 mm, width = 41.6 mm, height = 15.2 mm.
Observations. The genus is represented by several species in the Kaiparowits Formation (Campanian) of Utah (Taparila and Roberts, 2013).

Genus *Unio* Philipsson, 1788
Unio sp.
Figure 2G, 2H.

Description. Elongated, large, suboval shell, moderately compressed laterally, weakly marked umbons and located in the anterior third of the shell, which has fine growth lines: strongly marked hinge, with teeth and pits evident in a specimen that preserves the left leaflet. Ligament marks preserved posterior to hinge.
Material. A left valve (IPN-PAL 213) and an articulated specimen (IPN-PAL 214).
Measurements. IPN-PAL 213, length = 30.7
mm, width = 50.0 mm (Figure 2G); IPN-PAL 214, length = 40.0 mm, width = 56.9 mm (Figure 2H).

Observations. *Unio* is common in Mesozoic and Cenozoic freshwater deposits around the world. Although there is similarity with the specimens reported by Lucas *et al.* (1995) for the Caballona de Sonora Group, the specimens of the Olmos Formation present a smoother and less compressed shell in ventro-dorsal view.

Genus Unionelloides Gu, 1962

(sensu Fang *et al.*, 2009)

Unionelloides? sp.

Figure 2I.

Description. Globose shell, surface covered by wide concentric growth lines; small umbons, inclined almost 180 degrees with respect to the dorsal portion; anterior region almost straight, posterior rounded; ventral margin rounded to triangular; small hinge.

Material. A left valve, IPN-PAL 215.

Measurements. Length = 39.3 mm, height = 43.3 mm, width = 18.4 mm.

Observations. Although the valve shows a certain degree of deformation, the characteristics seem to coincide with the genus.

Genus Plesielliptio Russell, 1934

Plesielliptio sp.

Figure 2J-2R

Description. Medium, slightly elongated, subtriangular shell; umbons located a third of the longitudinal distance from the anterior margin; ornamentation of fine concentric lines; hinge made up of pits and teeth inclined to transversal.

Material. Eight right valves and one left. IPN-PAL 215, IPN-PAL 216, IPN-PAL 217, IPN-PAL 218, IPN-PAL 219, IPN-PAL 220, IPN-PAL 221, IPN-PAL 222 (left valve) and IPN-PAL 223.

Measurements. IPN-PAL 215, length = 21.6 mm, width = 27.9 mm (Figure 2J); IPN-PAL 216, length = 25.5 mm, width = 40.1 mm (Figure 2K); IPN-PAL 217, length = 24.8 mm, width = 31.5 mm (Figure 2L); IPN-PAL 218, Length = 20.6 mm, width = 26.5 mm (Figure 2M); IPN-PAL 219, length = 7.6 mm, width = 8.8 mm (Figure 2N); IPN-PAL 220, length = 20.2 mm, width = 25.2 mm (Figure 2O); IPN-PAL 221, length = 21.7 mm, width = 27.5 mm (Figure 2P); IPN-PAL 222 (left leaflet), length = 22.2 mm, width = 27.5 mm (Figure 2Q); IPN-PAL 223, length = 10.7 mm, width = 11.9 mm (Figure 2R).

Observations. The specimens of the Olmos Formation are similar to *Plesielliptio sonoraensis* Kues, in Lucas *et al.*, 1995, but the preservation does not allow a certain specific allocation.

Suborder Ostreina Férrusac, 1822

Superfamily Ostreoidea Rafinesque, 1815

Family Osteidae Rafinesque, 1815

Subfamily Ostreinae Rafinesque, 1815

Genus Ostrea Linnaeus, 1758

Ostrea sp.

Figure 2S.

Description. Small, flattened right valve, with some concentric growth lines.

Material. A right valve, IPN-PAL 225.

Measurements. Length = 9.5 mm, width = 6.2 mm.

Observations. *Ostrea sensu stricto* is a common bivalve marine environments, so it is probable that the specimen has been transported to the freshwater deposits of the Olmos Formation.

5. Discussion

We found that almost all the specimens identified in the Tajo La Lulú from the Olmos Formation were related to freshwater organisms, such as *Viviparus, Mesolanistes, Unio, Unionelloides?, Proparreysia*, and *Plesielliptio*. Nevertheless, *Pseudolimea* and *Ostrea* have been recorded inhabiting a range of environments, from shallow marine sediments such as estuaries to the deep sea (Mikkelsen and Bieler, 2008). The amount of these brackish specimens was scarce compared to Unionidae. In addition the poor preservation of *Pseudolimea* and *Ostrea*...
Figure 3 Some specimens of the flora recorded in the Olmos Formation; A. Palm leaf; B. Fern; C. Conifer leaf; D. Angiosperm leaf and aquatic fern *Salvinia* sp.; E. Aquatic fern *Marsilea mascogos* Estrada-Ruíz *et al.* 2018; F, G. Two fruits, a complete capsule and other incomplete fruit of angiosperm.
Cretaceous mollusks from NE Mexico

environment with a bottom free of vegetation (Teng-Chien, 1950). This feature may indicate a minimum transport due to the usually fragile shells of Unionidae (Kotzian and Simões, 2006). This portion of the Olmos Formation represents freshwater systems allowing the unionid community establishment.

For the gastropods we found *Viviparus*, a relatively abundant genus in the Cretaceous and Paleocene deposits of North America (Perrilliat et al., 2008). Both Recent and fossil species of *Viviparus* inhabit numerous freshwater low-energy environments, founding in part buried in the mud or silt of lakes, ponds, or slower portions of streams where there is some vegetation and muddy substrate (Pace, 1973; Van Damme, 1984; Glöer and Meier-Brook, 1998). Regarding *Mesolanistes*, it has been reported from river, marshes, ponds and lake deposits adjacent to the marine environment of the Upper Cretaceous of Sonora, Coahuila, and in other lithostratigraphic units from North America (e.g., Yen, 1945; Lucas et al., 1995; Perrilliat et al., 2008). In future studies, this assemblage from the Olmos Formation could be compared with the landscape to that described in the Cerro del Pueblo Formation (Upper Campanian), from where *Mesolanistes* and *Viviparus* were also recorded (Lucas et al., 1995; Perrilliat et al., 2008). The Cerro del Pueblo Formation (upper Campanian) in the Parras Basin (south of the Olmos Formation outcrops) contains more diverse paleoenvironments that changed in time affected by high-frequency changes in relative sea level and coastal storm events (Eberth et al., 2004). The geographic location of the tajo La Lulú is further south of the rest of the fossiliferous outcrops in the Sabinas-Múzquiz Basin, from where different specimens of plants have been recorded (e.g. Estrada-Ruiz et al., 2018; Centeno-González et al., 2021, 2019, Figure 3). In most localities, no samples of mollusks have been found, except by a few and fragmentary specimens. These northern localities contain a high concentration of leaves and fruits related to paratropical or tropical environments, such as palms, conifers, and paratropical angiosperms (e.g., Weber, 1972, 1973, 1975, 1978; Serlin et al., 1980; Cevallos-Ferriz, 1992; Estrada-Ruiz et al., 2007, 2010, 2011; Sainz-Resendiz et al., 2015; Centeno-González et al., 2019, 2021). In addition, aquatic plants have been recorded, including ferns such as *Salvinia* sp. and *Marsilea mascogos*, linking them to stagnant freshwater bodies (Estrada-Ruiz et al., 2018). In the Tajo La Lulú, we collected fragmented and poorly preserved samples of leaves, organic matter, and a leaf that resembled a conifer (Figure 3). This suggests that this area corresponded to a transitional zone, where freshwater bodies and estuaries or marshes coexisted.

6. Conclusions

The record of freshwater bivalves and gastropods in the Olmos Formation help understand the paleoenvironments of this region during the Late Cretaceous. The identification of the two freshwater gastropods *Viviparus* sp. and *Mesolanistes* sp., allow us to assume the presence of freshwater low-energy environments, such as swamps, ponds, and streams. This is supported by the relative abundance of Unionidae (*Proparreysia* sp., *Unio* sp., *Unionelloides* sp., and *Plesielliptio* sp.), a freshwater family that was present in fluvial, lacustrine, and estuarine environments of Cretaceous assemblages of North America. Presence of some specimens with articulated valves indicate minimum transport of this community. Additionally, we recorded Limidae (*Pseudolimea* sp.) and Ostreidae (*Ostrea* sp.), both related to marine or marshes o estuarine environments. Nevertheless, the record of these specimens was scarce and with poor preservation of the valves, indicate a possible transport derived by a storm event from the coastal or mangrove area to the freshwater deposits of the Olmos Formation. Other features are related to the record of plants present in different localities of the Olmos Formation, including the plants recollected along with the mollusk assemblage.
Contributions of authors

(1) Conceptualization: Centeno-González, N.K.; (2) analysis of data: Zúñiga-Bermúdez, G.; (3) methodologic development: Estrada-Ruiz, E.; (4) identification and description of specimens: Vega, FJ.

Financing

This research was funded by Secretaría de Investigación y Posgrado – Instituto Politécnico Nacional (20230153) grant to E.E.R.

Acknowledgements

This paper would not have been possible without the observations made by the active searching of the mineworkers, Claudio Ayala, Ruth Zúñiga, Cuauhtémoc González†, Martín Galicia, Héctor Porras and Miguel Luna Fuentes. Our sincere gratitude to the three anonymous reviewers for their constructive comments to improve the original document.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

Cevallos-Ferriz, S.R.S., 1992, Tres maderas de gimnospermas cretácicas del norte de México: Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, 63, 111–137.

Douglas, J.A., Arkell, WJ., 1932, The stratigraphical distribution of the Corn

Flores-Espinoza, E., 1989, Stratigraphy and sedimentology of the Upper Cretaceous terrigenous rocks and coal of the Sabinas-Monclova area, northern Mexico: USA, University of Texas at Austin, Ph. Dissertation, 315 p.

Gray, J.E., 1854, A revision of the arrangement of the families of bivalve shells (Conchifera): Annals and Magazine of Natural History, 13(2), 408–418. https://doi.org/10.1080/03745485709496364

Philipsson, L.M., 1788, Dissertatio Historiconaturalis Sistens Nova Testacorum Genera, in Retzius, A. (ed.), Ad publicum examen defert Laurentius Münter Philipsson:
Berlingianis: Lunda, 28 p.
Russell, L.S., 1934, Reclassification of the fossil Unionidae (fresh-water mussels) of western Canada: Canadian Field Naturalist, 48, 1–4.
309–326.