Geoquímica y geocronología U-Pb de la cuarzodiorita de Sabanalarga y el gabro de Santa Fe, Colombia

Geochemistry and U-Pb geochronology of the Sabanalarga quartz-diorite and Santa Fe gabbro, Colombia

Juan Pablo **Zapata-Villada**^{1,*}, Wilmer **Giraldo**², Gabriel **Rodríguez**¹, Mauro Cesar **Geraldes**², Milton **Obando**¹

¹Servicio Geológico Colombiano, Calle 75, N° 79A-51, 50034, MDE, Antioquia, Colombia.

² Faculdade de Geologia ,Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524 – 4° e 2° andar/Bloco A Maracanã, 20.550-900, Rio de Janeiro, Brasil.

* Autor para correspondencia: (J. P. Zapata - Villada) *juanp.zapatav@gmail.com*

Cómo citar este artículo:

Zapata-Villada, J.P., Giraldo, W., Rodríguez, G., Geraldes, M.C., Obando, M., 2021, Geoquímica y geocronología U-Pb de la Cuarzodiorita de Sabanalarga y el Gabro de Santa Fe, Colombia: Boletín de la Sociedad Geológica Mexicana, 73 (1), A280520. http://dx.doi.org/10.18268/ BSGM2021v73n1a280520

Manuscrito recibido: 24 de Julio de 2019 Manuscrito corregido: 28 de Abril de 2020 Manuscrito aceptado: 29 de Abril de 2020

La revisión por pares es responsabilidad de la Universidad Nacional Autónoma de México.

Este es un artículo Open Access bajo la licencia CC Y-NC-SA (https://creativecommons.org/licenses/by-nc-sa/4.0/)

RESUMEN

Durante el Cretáceo Superior, el margen noroccidental de Suramérica se caracterizó por presentar un ambiente tectónico complejo, representado por la acreción de múltiples terrenos y la generación de varios eventos magmáticos. La cuarzodiorita de Sabanalarga y el Gabro de Santa Fe, anteriormente descritos como una única unidad denominada "Batolito de Sabanalarga", presentaban múltiples diferencias entre sí y hoy son considerados dos plutones independientes, exponiendo dos de los eventos magmáticos del cretáceo superior. Ambos plutones emplazados en cortezas de diferente afinidad; el Gabro de Santa Fe emplazado en corteza tipo Plateau y arco de islas, mientras que la cuarzodiorita de Sabanalarga es emplazada en corteza continental del Complejo Cajamarca. Los análisis químicos de roca total realizados, presentaron anomalías de Nb-Ti, patrones de HFSE y REE en los diagramas multielementales característicos de rocas generadas en ambientes de subducción. El gabro de Santa Fe presenta características adakiticas no presentes en la cuarzodiorita de Sabanalarga. El bajo contenido Zr y relaciones (La/Yb)n vs Sr/Y < 10sugieren que el magma del Gabro de Santa Fe fue formado en ambiente oceánico, contrario a la cuarzodiorita de Sabanalarga con alto Zr y relaciones (La/Yb)n vs Sr/Y > 10 que sugieren para este magma un origen en un ambiente continental. Se realizaron análisis U-Pb LA-ICP-Ms para ambos intrusivos: el Gabro de Santa Fe presentó edades entre 78.4 y 81.8 Ma y la cuarzodiorita de Sabanalarga edades entre 71.5 y 76.7 Ma. A la luz de los nuevos datos geoquímicos y geocronológicos se sugiere en este trabajo que el Gabro de Santa Fe y la cuarzodiorita de Sabanalarga son dos cuerpos diferentes sin relación temporal y cuya relación espacial es todavía debatible. Para el ambiente de formación de estos plutones se sugiere un modelo de doble subducción tipo Molucca.

Palabras clave: geoquímica, U-Pb, gabro de Santa Fe, cuarzodiorita de Sabanalarga.

ABSTRACT

During the Upper Cretaceous the northwestern margin of South America was characterized by a complex tectonic environment represented by the accretion of multiple terranes and the generation of varied magmatic events. The Sabanalarga quartz-diorite and the Santa Fe Gabbro previously described as a single body called Sabanalarga Batholith, present multiple differences among themselves and today are considered two independent plutons, representing two of the upper Cretaceous magmatics events. Both plutons intrude crusts of different affinity; The Santa Fe Gabbro intrudes a Plateau-type and island arc crust while the Sabanalarga quartz-diorite intrude into continental crust. The carried total rock chemical analysis showed anomalies of Nb-Ti, patterns of HFSE and REE in the multielemental diagrams indicatives of rocks generated in subduction environments. The Santa Fe Gabbro presents adakitic characteristics that are not present in the Sabanalarga quartz-diorite. The low Zr content and relations (La / Yb) n vs Sr / $\Upsilon < 10$ suggest that the Santa Fe Gabbro magma was formed in an oceanic environment, contrary to the Sabanalarga quartz-diorite with high Zr and relationships (La / Yb) n vs Sr / Y> 10 who suggest an origin in a continental environment for this magma. U-Pb LA ICPMs were analyzed for both intrusives: Santa Fe Gabbro showed ages between 78.4 and 81.8 Ma and Sabanalarga quartz-diorite ages between 71.5 and 76.7 Ma. Due to the new geochemical and geochronological data, it is suggested that Santa Fe Gabbro and Sabanalarga quartz-diorite are two different bodies with no temporal relationship and whose spatial relationship is still debatable. Is suggested for the geological setting of formation for these plutons a double subduction model type Molucca.

Keywords: geochemistry, U-Pb, Santa Fe de gabbro, Sabanalarga quartz-diorite. RESUMEN

1. Introducción

La esquina noroccidental de Suramérica presenta una geología compleja; misma que se caracteriza por la interacción de las placas Suraméricana, Norteamericana, Nazca, Cocos y Caribe. Dicha interacción entre placas ha generado un mosaico de terrenos alóctonos altamente deformados (Jones *et al.*, 1982) y acrecionados a la margen suramericana desde el Paleozoico hasta el Cenozoico (Restrepo y Toussaint, 1988); los cuales están denominados como Bloque Norandino (Suter *et al.*, 2008).

Según Gómez et al., (2015), los terrenos que comprenden este bloque son, de occidente a Caribe, Arquía, Quebradagrande, oriente, Anacona, Tahamí y Chibcha (Figura 1). El terreno Caribe presenta afinidad oceánica; mientras que los que están al oriente (Anacona, Tahamí y Chibcha), presentan afinidad continental. El límite entre estos dos dominios geodinámicos está marcado por el sistema de fallas Cauca-Romeral y los terrenos Arquía y Quebradagrande. Este límite es considerado como un mosaico de presuntos terrenos de afinidades oceánicas o continentales (Restrepo et al., 2009), cuyas relaciones espaciotemporales están todavía en discusión (Restrepo et al., 2009; Villagómez et al., 2011; Mora-Bohórquez et al., 2017).

A su vez, las unidades ígneas presentes en la zona de transición entre estos dos dominios fueron agrupadas en el denominado Batolito de Sabanalarga (Hall *et al.*, 1972; Rodríguez y Zapata, 1995). Esta unidad fue definida como un batolito alargado con dirección norte-sur, con una extensión de aproximadamente 410 Km², y constituido por 3 facies (máfica-ultramáfica, intermedia y félsica) (González y Londoño, 2002), con edades ⁴⁰Ar/³⁹Ar (Hornblenda y Biotita) de aproximadamente 95 Ma (Gonzales *et al.*, 1976; González y Londoño, 1998).

Respectivamente, el Batolito de Sabanalarga se encuentra dividido de norte a sur por la Falla Sabanalarga (Hall, 1972; Rodríguez *et al.*, 2012a; Correa *et al.*,2018), Falla Romeral (Mejía y González, 1983) o Cauca-Almaguer (Nivia y Gómez, 2005). Nivia y Gómez (2005) separan esta unidad en dos: Gabro de Santa Fe y Cuarzodiorita de Sabanalarga. Al occidente de la Falla Sabanalarga, el Gabro de Santa Fe intruye las rocas de afinidad oceánica asociadas al terreno Caribe y presenta grandes xenolitos de la Granulita de Pantanillo (Cardona, 2010; Rodríguez et al., 2012b). Al oriente de la Falla Sabanalarga, la Cuarzodiorita de Sabanalarga intruye las rocas metamórficas de afinidad continental del terreno Tahamí. Este trabajo busca comprender la evolución de los cuerpos graníticos del occidente antioqueño durante el cretácico medio y tardío, a través de la definición de las relaciones entre las distintas unidades definidas como Gabro de Santa Fe y Cuazodiorita de Sabanalarga, sus unidades adyacentes y el sistema de fallas Cauca-Romeral, utilizando cartografía detallada, geoquímica y geocronología U-Pb (LA-ICP-MS).

2. Metodología

La presente investigación se desarrolló en dos grupos de trabajo, enmarcado cada uno en proyectos diferentes, pero con objetivos similares. El primero de estos fue una tesis de maestría realizada en la Universidad del Estado de Rio de Janeiro (UERJ) (Giraldo, W., 2017); auspiciada con el apoyo financiero del CAPES y el logístico de la Universidad Nacional de Colombia, Sede Medellín. El segundo grupo correspondió a la cartografía y muestreo de la plancha 130-Santa Fe de Antioquia a escala 1:50.000 (Correa *et al.*, 2018), realizado por Grupo de Estudios Geológicos Especiales del Servicio Geológico Colombiano (SGC), Medellín.

El equipo de la UERJ realizó 40 análisis petrográficos de secciones delgadas preparadas en el Laboratorio Geológico de Preparación de Muestras (LGPA/UERJ) y 3 muestras adicionales del profesor Jorge Julián Restrepo. El grupo del SGC, analizó 39 muestras preparadas en el los laboratorios del SGC.

A 13 de estas muestras, se les realizaron análisis geoquímicos en el laboratorio del SGC sede Bogotá, con un espectrómetro de fluorescencia

Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021 /

de Rayos X Panalytical AXIOS Mineral. La cuantificación de los óxidos mayores se hizo en muestra fundida con metaborato y tetraborato de litio; mientras que la cuantificación de elementos menores fue en muestra prensada. Para el análisis de elementos traza, se usó un espectrómetro de masas con plasma inductivamente acoplado, ICP-MS, Perkin Elmer NEXION. Los diagramas petrográficos y geoquímicos se obtuvieron usando el software GCDkit de Janoušek *et al.*, (2006).

Por su parte, el equipo UERJ colectó 14 muestras enfocadas a análisis geocronológicos 8 de éstas son discutidas en el presente trabajo. Fue utilizado el método UPb LA-ICP-MS en circones concentrados en el laboratorio geológico de preparación de muestras LGPA-UERJ, utilizando separación hidrodinámica y magnética. Los circones se seleccionaron manualmente con lupa binocular. De los montajes de granos de circón se adquirieron imágenes de catodoluminiscencia (CL) por medio de microscopio electrónico de barrido. Los análisis isotópicos de las muestras se llevaron a cabo en el Laboratorio multiusuario de medio ambiente y materiales MultiLab-UERJ, con el equipo Neptune plus - Laser Ablation Inductive ly Coupled Plasma Multi Colector Mass Spectrometry (LA-ICP-MS). Los mismos se realizaron con un diámetro de laser variable entre 20 y 30 µm, a una frecuencia de 8 Hz y energía variable entre el 35 y 40%. El flujo de helio utilizado para el transporte de las muestras http://dx.doi.org/10.18268/BSGM2021v73n1a280520

fue de 0.750 l/m, y el flujo de argón utilizado por el ICP-MS fue de 0.800 l/m. Se emplearon los patrones Zircon 91500 (Wiedenbeck *et al.*, 2004) y GJ-1 (Jackson *et al.*, 2014). Los blancos, patrones y tratamiento de los datos siguieron las recomendaciones de Chamale *et al.*, (2012) con la ayuda del sosoftware Isoplot V4.15 (Ludwig, 2012).

Por otro lado, el equipo SGC analizó 5 muestras por el mismo método U-Pb LA-ICP-MS en circones concentrados en el laboratorio químico del Servicio Geológico Colombiano sede Medellín, utilizando separación hidrodinámica y magnética. Los circones se seleccionaron manualmente con lupa binocular en el Laboratorio de Petrografía de la sede Medellín.

De los montajes de granos de circón se adquirieron imágenes de catodoluminiscencia (CL) por medio de luminoscopios. Los análisis isotópicos de las muestras se llevaron a cabo en el Laboratorio Geológico Geocronología del Servicio de Colombiano, siguiendo los procedimientos descritos en Peña-Urueña et al., (2018). Estos se realizaron en un equipo de ablación Photon Machines con un láser Excimer de 193 nm, acoplado a un espectrómetro de masas tipo Element 2. Los isótopos utilizados para la integración manual fueron 238U, 206Pb y 204Pb. Como patrones de referencia se usaron: Plešovice (Sláma et al., 2008), FC-1 (Coyner et al., 2004), Zircon 91500 (Wiedenbeck et al., 2004) y Mount Dromedary (Renne et al., 1998). Los puntos analizados en los circones fueron de 30 micrones de diámetro. La reducción de datos se realizó Iolite v2.5® en IGORPro6.3.6.4® (Paton et al., 2010). La corrección por plomo común se realizó de acuerdo con el modelo de evolución según Stacey y Kramers (1975). Los resultados finales corresponden a la media de los datos obtenidos luego de aplicar una discriminación de datos a 2 desviaciones estándar. Los cálculos de las edades y los gráficos geocronológicos se hicieron con el programa Isoplot V4.15 (Ludwig, 2012).

3. Geología Regional

Las rocas agrupadas bajo la denominación "Batolito de Sabanalarga" se localizan en la zona de confluencia de 4 terrenos geológicos (Caribe, Arquía, Quebradagrande y Tahamí (Gómez *et al.*, 2015)), y del sistema de fallas Cauca-Romeral (SFCR), sistema de fallas que se extiende a lo largo de 2000 km desde el norte de Antioquia hasta el sur en Ecuador (Figura 1A; Villagómez, 2010). A continuación, se describen las principales características de cada uno de estos elementos geológicos para determinar las posibles relaciones de los mismos con el Batolito de Sabanalarga.

El sistema de fallas Cauca-Romeral es un sistema complejo, pues está compuesto por múltiples estructuras con dirección predominante norte-sur. Este sistema es enmarcado al occidente por la falla Cauca-Oeste y al oriente por la falla San Jerónimo. A la altura del municipio de Liborina (6°40'N) y en dirección norte, sus estructuras aparentan unirse en una sola, denominada Falla de Sabanalarga. Giraldo (2017) identificó que las estructuras componentes del sistema Cauca-Romeral en realidad no se unen y continúan al norte como al menos dos paralelas, separadas por cientos de metros. Estas últimas corresponden a las continuaciones al norte de Liborina de las fallas Cauca-Oeste y San Jerónimo. Al interior del sistema Cauca-Romeral se presentan múltiples bloques tectónicos como los terrenos Arquía y Quebradagrande, los cuales presentan orígenes e historias evolutivas aun en discusión. Cabe destacar que el sistema Cauca-Romeral limita al occidente con el terreno Caribe y al oriente con el terreno Tahamí.

3.1. TERRENO CARIBE

En el terreno Caribe (Gómez *et al.*, 2015) se encuentran agrupadas las rocas del Plateau Caribe (Kerr *et al.*, 1997a; Cediel *et al.*, 2003) las cuales fueron acrecionadas al noroccidente de la placa suramericana y al occidente del SFCR, constituyendo la base de la Cordillera Occidental de Colombia (Figura 1B). Están compuestas por rocas volcánicas básicas, de edades Jurásico- Cretácico (Rodríguez y Arango., 2013; Toussaint y Restrepo, 1978); y están intruidas por cuerpos de afinidad adakitica con edades U-Pb que indican una edad máxima Turoniano- Aptiano (Rodríguez y Arango., 2013; Weber *et al.*, 2015; Zapata-Villada *et al.*, 2017). Sobrepuestas por unidades volcano-

5

clásticas (Zapata-Villada et al., 2017; Buchs et al., 2018; Pardo-Trujillo et al., 2020) y sedimentarias con registros de amonites con edades bioestratigráficas Campaniano- Maastrichtiano (Castro y Feininger, 1965; Etayo et al., 1980; Geoestudios, 2005; Pardo-Trujillo et al., 2020) y basados en correlaciones composicionales, estas unidades volcánicas han sido correlacionadas al Sur con la Formación Volcánica (Barrero, 1979; Kerr et al., 1997a; Villagómez et al., 2010), con rocas del terreno Alao en Ecuador (Litherland et al., 1994), y al Norte con fragmentos del Caribe como Bonaire, Aruba e Hispañola (Wright and Wyld, 2011).

3.2. TERRENO QUEBRADAGRANDE

Constituido por el Complejo Quebradagrande (Botero, 1963; Maya y González, 1995), está compuesto por gabros, dioritas, flujos de basaltos y andesitas tan como se muestra en la figura 1b. El Complejo Quebradagrande presenta edades bioestratigráficas Albiano-Aptiano y edades U-Pb entre 114-84 Ma (Maya y Gonzales, 1995; Villagómez et al., 2011; Cochrane et al., 2014; Zapata et al., 2018). Las rocas volcánicas del Complejo Quebradagrande han sido correlacionadas a rocas del Terreno Alao al norte en Ecuador (Cochrane et al., 2014) y asociadas a un ambiente de cuenca de retroarco con un magmatismo que se extiende entre ca. 114 Ma hasta 80 Ma (Villagómez, 2010, Spikings et al., 2015; Jaramillo *et al.*, 2017).

3.3. TERRENO ARQUÍA

Definido como Grupo Arquía (Restrepo y Toussaint, 1975), esta unidad agrupa metagabros, anfibolitas granatíferas, esquistos anfibólicos, esquistos de cuarzo-micáceos, cuarcitas, eclogitas, esquistos de glaucofana-lawsonita y rocas ultramáficas serpentinizadas (Bustamante *et al.*, 2011; Maya y González, 1995; Toussaint y Restrepo, 1978), limitados por la Falla Silvia-Pijao al Este y Cauca-Almaguer al Oeste, (Moreno-Sánchez y Pardo-Trujillo, 2003).

El terreno Arquía (Gómez *et al.*, 2005) está conformado por fajas tectónicas extremadamente deformadas con relaciones estratigráficas y tectónicas complejas (Figura 1C). El ambiente de formación de las rocas del complejo Arquía ha sido asociado a un N-MORB (Villagómez *et al.*, 2011; Rodríguez y Arango, 2013) con edades de enfriamiento 40 Ar/ 39 Ar y K/Ar de 127 Ma,110 Ma y 117-107 Ma (Toussaint y Restrepo., 1978, Villagómez, 2010).

3.4. TERRENO TAHAMÍ

El Terreno Tahamí (Gómez *et al.*, 2015) agrupa principalmente las rocas de los terrenos Tahamí (Restrepo y Toussaint,, 1988) y Panzenú (Restrepo *et al.*, 2009). Está expuesto entre las Fallas San Jerónimo (al Oeste) y Otú- Pericos (al Este) (Figura 1B), y se compone por esquistos, anfibolitas y gneises de edades metamórficas Permo- Triásicas y Jurásicas (Gómez *et al.*, 2007; Blanco- Quintero *et al.*, 2014; Correa *et al.*, 2017b, Rodríguez *et al.*, 2016) de grado metamórfico medio a alto (Ordoñez-Carmona y Pimentel, 2002).

El terreno Tahamí fue intruido por cuerpos calco-alcalinos desde el Jurásico hasta el Cretácico (Bustamante *et al.*, 2016; Rodríguez *et al.*, 2016; Ibañez-Mejía *et al.*, 2007), un ejemplo de estos es el Batolito Antioqueño (Ordoñez-Carmona, 2008; Leal-Mejía, 2011; Duque-Trujillo *et al.*, 2019). Sobre este terreno reposan las rocas siliciclásticas de la Formación Abejorral con edades máximas de depositación de 120 Ma (Zapata, 2015, Zapata *et al.*, 2018).

4. Geología del área de estudio

El "Batolito de Sabanalarga" (Álvarez y González, 1978; González, 2002; Rodríguez *et al.*, 2012a), está compuesto por una serie de plutones que afloran al Este y al Oeste del sistema de fallas Cauca-Romeral, representado en esta latitud por la Falla Sabanalarga (Hall *et al.*, 1972; Rodríguez *et al.*, 2012a; Correa *et al.*, 2018), Falla Romeral (Mejía y González, 1983) o Cauca-Almaguer (Nivia y Gómez, 2005), y representa un problema cronoestratigráfico para la sutura o límite de terrenos acrecionados a la margen continental (limites terreno Calima y Tahami; Restrepo y Toussaint., 1988 ó Arquía, Quebradagrande y Tahamí; Gómez *et al.*, 2015). En este trabajo se considerará la Falla Sabanalarga como límite entre los plutones orientales y occidentales que componen el batolito de Sabanalarga definido por Hall *et al.*,(1972). La existencia como un único batolito implica la acreción de terrenos oceánicos y continentales en el Cretáceo antes de 100 Ma (edades U-Pb de La Tonalita de Buriticá). Suprimiendo la existencia del gran Arco del caribe (White *et al.*, 1999; Pindell *et al.*, 2005), desarrollado sobre corteza Plateau antes de colisionar con la Margen Continental (White *et al.*,1999; Nivia, 2001; Vallejo *et al.*, 2006).

El problema estratigráfico ha sido parcialmente resuelto con base en petrografía, relaciones de campo y nuevos datos de geocronología U-Pb (Nivia y Gómez, 2005; Weber *et al.*, 2015; Giraldo, 2017; Zapata-Villada, 2017; Correa *et al.*,2018) considerando la unidad como al menos dos cuerpos plutónicos contemporáneos, denominados "Cuarzodiorita de Sabanalarga" y el "Gabro de Santa Fe" (Figura 1C).

4.1. CUARZODIORITA DE SABANALARGA

La Cuarzodiorita de Sabanalarga, incluida por varios autores (González et al., 1976; Álvarez y González, 1978; González, 2002; Rodríguez et al., 2012a) dentro del "Batolito de Sabanalarga" fue descrita inicialmente como Plutón de Sabanalarga (Hall et al., 1972; Álvarez et al., 1975; Mejía et al.,1983), y aflora como un cuerpo elongado de dirección norte-sur de aproximadamente 260 Km² de composición tonalítica, cuyo cuerpo principal se encuentra el este y noreste de Sabanalarga (Figura 2). Sin embargo, después fue incluida por varios investigadores (González et al., 1976; Álvarez y González, 1978; González, 2002; Rodríguez et al., 2012a) dentro del "Batolito de Sabanalarga", cuerpo descrito como intrusivo a ambos lados de la Falla Sabanalarga alcanzando un área de 460 km^2 .

Entendiendo que la definición inicial del cuerpo fue al este de la Falla Sabanalarga, es decir, al este de la falla más occidental del sistema Cauca– Almaguer (Figura 2), y debido a las diferencias petrológicas (contenido de ferromagnesianos con radicales hidroxilos, e.g. anfiboles y biotita) (Nivia y Gómez, 2005) y geocronológicas (Weber *et al.*, 2015; Zapata-Villada *et al.*, 2017; Giraldo, 2017), denominamos "Cuarzodiorita de Sabanalarga" siguiendo la propuesta de Nivia y Gómez, (2005) y Correa *et al.*, (2018) al cuerpo intrusivo localizado al este de la Falla Sabanalarga.

De esta manera, cabe mencionar que la Cuarzodiorita de Sabanalarga está compuesta principalmente por cuarzodioritas-tonalitas (Figura 3A y 3B), intruye secuencias metamórficas pelíticas en facies esquisto verde compuestas por esquistos de cuarzo-moscovita-grafito, cuarzo-tre-

Figura 2 Mapa Geológico del área de estudio (En este trabajo).

mollita-epidota-clorita asociadas al Complejo Cajamarca (Figura 3C), y al oeste se encuentra en contacto fallado con bloques de pillow lavas deformados asociadas al Complejo Quebradagrande (Correa *et al.*, 2018). Para la Cuarzodiorita de Sabanalarga se tienen dos edades de 97 ± 10 Ma K-Ar en biotita en (Gonzales *et al.*, 1976) y 98.2±3.5 Ma Ar-Ar en hornblenda (Gonzalez y Londoño, 1998).

4.2. GABRO DE SANTA FE

Está compuesto por gabros, hornblenditas y en menor proporción, tonalitas y cuarzodioritas (Figura 3E y 3F) y corresponde al cuerpo localizado al oeste de la Falla Sabanalarga (Hall *et al.*, 1972). El Gabro de Santa Fe intruye basaltos de la Formación Barroso al oeste (Figura 3G) y al este es limitado por la Falla Sabanalarga (Weber *et al.*, 2015) y por milonitas asociadas (Correa *et al.*, 2018); además, presenta abundantes xenolitos de la Granulita de Pantanillo (Figura 3G), interpretadas como asociados a raíces de arco magmático engrosado (Toro-Toro *et al.*, 2020).

El Gabro de Santa Fe carece de ferromagnesianos y tiene radicales hidroxilos dentro de su estructura cristalina (Nivia y Gómez, 2005). Correa *et al.*, 2018 nombran esta unidad como Tonalita de Santa Fe en base a análisis petrográficos; sin embargo, en este trabajo se observa que hay dos facies presentes: una máfica (gabroica) predominante y una intermedia (tonalitica).

El Gabro de Santa Fe presenta edades de 98 \pm 9.1 Ma por el método Sm- Nd (Weber *et al.*, 2011) y de 123.8 \pm 3.9 Ma por K-Ar en hornblenda (Rodríguez *et al.*, 2012a). Adicionalmente, se reportan edades U-Pb para cuerpos asociados como el Gabro de Altamira de 87.67 \pm 0.9 Ma (Zapata-Villada *et al.*, 2017) y la Tonalita de Buriticá de 101.7 \pm 0.2 Ma (Weber *et al.*, 2015).

5. Resultados

5.1. PETROGRAFÍA Y RELACIONES DE CAMPO

La Cuarzodiorita de Sabanalarga presenta una composición tonalítica, con variaciones a cuarzo-

diorita y gabro. Intruye Esquistos de cuarzo-moscovita-grafito y Esquistos de cuarzo- tremollita-epidota del Complejo Cajamarca (terreno Tahamí), mostrados en abundantes xenolitos (Figura 3C); además, presenta enclaves de gabros (Figura 3C). Asimismo, la Cuazodiorita de Sabanalarga se observa en contacto fallado con bloques de basaltos que conservan estructuras pillow lavas, metasedimentos de bajo grado y rocas ultramaficas en la Qda. La sucia y Liborina.

Para esta unidad se analizaron 14 secciones delgadas, que presentan textura subidiomórfica, compuesta por cuarzo, plagioclasas, hornblenda y biotita. Como minerales accesorios se observan zircón y apatito; generalmente como inclusiones en biotita (Figura 3D). Como minerales de alteración, es común observar clorita y epidota.

El Gabro de Santa Fe está compuesto por dioritas hornblendicas, microdioritas, gabros y tonalitas hornblendicas (Figura 3E y 3F); y está rodeado por abundantes xenolitos de anfibolitas de la Granulita de Pantanillo (Rodríguez et al., 2012b) y basaltos de la Fm. Barroso (Figura 3G). Para el análisis de esta otra unidad se consideraron 40 secciones delgadas que caen entre el campo de gabros (facie máfica) y tonalitas (facie intermedia) (Figura 3E); asi cuatro muestras correspondientes a tonalitas para el Stock de Buriticá (Figura 3E). En general, las muestras revisadas presentan textura hipidiomórfica con presencia de plagioclasa, hornblenda, ± piroxeno y cuarzo, como accesorio, y sausurita y calcita, como minerales de alteración (Figura 3H). La Tonalita de Buriticá está compuesta principalmente por cuarzo y plagioclasa (Giraldo, 2017).

La Cuarzodiorita de Sabanalarga y el Gabro de Santa Fe se encuentran separados por la Falla Sabanalarga o La Falla Cauca Oeste del sistema de fallas Cauca-Romeral. Al interior de este sistema se identificó una franja de mesomilonitas; mismas que están asociadas a secuencias vulcano-sedimentarias marinas. Algunos segmentos de estas fajas se encuentran cubiertos por segmentos de secuencias sedimentarias basculadas, compuestas por lutitas, areniscas y carbones, posiblemente asociadas a la Formación Amagá (Figura 2).

/ Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021

Figura 3 A. Clasificación petrográfica de la Cuarzodiorita de Sabanalarga. B. Muestra macro de una cuarzo-diorita. C. Izq: Xenolitos de esquistos de qz-msk-graf en Cuarzodiorita, Der: Gabarros de Gabros en Cuarzodioritas. D. Microfotografías correspondientes a la Cuarzodiorita de Sabanalarga. E. Clasificación petrográfica muestras Gabro de Santa Fe. F. Aspecto macroscópico del Gabro de Santa Fe. G. Izq: Contacto intrusivo del Gabro de Santa Fe en Basaltos de la Fm. Barroso, Der: Xenolitos de anfibolitas correspondientes a la Granulita de Pantanillo. H, Microfotografías del Gabro de Santa Fe.

5.2. GEOQUÍMICA

De este trabajo y de otros anteriores (Weber *et al*, 2015; Geoestudios, 2005; ver Tabla 1), se analizaron elementos mayores y trazas de 12 muestras distribuidas entre monzogranitos, tonalitas, cuarzodioritas y gabros de la unidad Cuarzodiorita de Sabanalarga y dioritas, tonalitas y microgabros, correspondientes al Gabro de Santa Fe. Las muestras se encuentran relativamente frescas con valores "Loss on ignition" LOI <2.8 para la Cuarzodiorita de Sabanalarga y LOI <1.8 para el Gabro de Santa Fe.

Para las muestras de la Cuarzodiorita de Sabanalarga, el contenido de SiO₂ varía entre 59.5 y 46.7%; el contenido de Al_2O_3 varía entre 5.41- 16.9 % y el de MgO, entre 2.6-15.4 %. De la misma manera, registra valores de Sr=78.6-504 ppm Y=12-25 ppm y razones Sr/Y=6.5-

Figura 4 A Diagramas de discriminación tectónica B) TAS (Middlemost, 1985); b) AFM (Irvine & Baragar, 1971); C) SiO₂ vs K₂O (Peccerillo y Taylor, 1976).

9

Tabla 1. Elementos mayores y trazas para las muestras de la Cuarzodiorita de Sabanalarga y el Gabro de Santa Fe.

	Cua	rzodiorita d	e Sabanalar	rga						Gabro de	Santa Fe		
Muestra	MGO-238	ARO-247	JPZ-174	LMC-353	VR192R	AN1836	TCR727A	GR5448	DAN70	VR422R	JA146	JGT116B	GR145R
SiO ₂	59.5	58.17	56.96	46.75	43.11	48.49	48.67	49.45	51.46	52.35	53.12	56.57	63.82
TiO₂	0.84	0.74	0.92	0.7	1.22	0.93	0.64	0.79	0.23	0.67	0.67	0.49	0.54
Al ₂ O ₃	16.98	17.65	17.49	5.41	17.75	16.34	12.22	16.92	15.36	17.63	12.45	13.84	15.11
Fe ₂ O ₃	6.86	6.56	7.97	11.55	14.85	12.87	13.2	12.43	9.86	9.88	9.4	8.64	6.37
MgO	2.6	2.58	3.29	15.41	7	6.38	9.76	5.67	9.31	4.52	9.01	5.94	2.35
CaO	6.1	6.43	7.36	16.2	12.41	11.36	12.63	10.71	10.33	9.18	9.58	9.6	5.23
Na ₂ O	3.42	3.59	3.47	0.56	1.61	1.83	0.86	1.7	1.58	2.81	2.28	1.88	3.38
K2O	2.86	2.23	1.55	0.14	0.29	0.2	0.23	0.46	0.07	0.39	0.66	0.94	1.38
P ₂ O ₅	0.23	0.25	0.25	0.08	0.4	0.35	0.09	0.13	0.03	0.15	0.26	0.12	0.11
MnO	0.13	0.13	0.15	0.2	0.25	0.25	0.21	0.18	0.18	0.18	0.16	0.18	0.11
LOI	0.45	1.55	0.57	2.84	0.9	0.89	1.4	1.52	1.39	2.2	1.1	1.83	1.5
Sum	99.97	99.88	99.99	99.99	99.8	99.89	100	100	99.8	100	98.69	100	99.9
Li	33.13	15.81	27.36	11.75			1.13						
Ве	2.55	2.34	1.68	0.44			0.31						
Sc	25.29	22.86	31.93	116.76	36	39	80.28	40	38	24	33	47	19
Со	22.56	20.65	24.32	120.35	45.8	32	58.47		49	29	39	29	15.5
Ni	8.45	8.99	8.62	113.49	18	40	83.22	10	100	20	90	40	5
Cu	29.33	12.45	12.29	280.79		130	38.45		30		20	70	
Zn	94.9	95.52	103.66	69.2		100	92.83		90		70	70	
Ga	19.68	23.39	24.03	7.37	18.4	17	13.29	15	15	17.1	15	15	15
As	3.34	1.67	1.2	2.22			0.44				46	4.2	22.6
Rb	116.47	57.08	42.67	2.03	5.6	4	2.31	9	2	8.4	16	13	22.6
sr v	305.32	502	504.51	78.69	445.1	364	151.52	327	185	377.4	384	324	227.3
1 (c	25	20	1 25	12	19.8	10.4	/	0.9	5.0	15.9	15	0.2	20.6
Ba	656 75	866.9	803.04	46.16	96.5	133	76 5	167	50	169.7	375	332	922.3
la	12 65	13.85	12 01	5 94	6.1	3.61	4 95	4 26	1 25	59	7 14	7 98	7 1
Ce	23.29	24.49	21.29	10.63	17	8.72	8.56	9.28	2.72	14.1	15.2	16.5	16.1
Pr	3.62	3.73	3.24	1.22	2.67	1.32	0.7	1.39	0.4	2.19	2.32	2.29	2.35
Nd	17.39	15.21	15.13	5.99	13.3	6.14	3.82	6.47	1.92	10.5	10.3	8.86	10.9
Sm	4.09	3.75	3.95	1.98	3.4	1.6	1.21	1.6	0.57	2.4	2.56	2.02	2.8
Eu	1.36	1.44	1.53	0.68	1.28	0.773	0.52	0.55	0.336	0.89	0.922	0.78	0.87
Gd	4.39	4.09	4.31	2.35	3.63	1.75	1.38	1.74	0.64	2.52	2.3	1.84	3.24
ТЬ	0.76	0.61	0.69	0.42	0.6	0.31	0.25	0.27	0.14	0.42	0.4	0.33	0.56
Dy	4.48	3.7	3.99	2.62	3.47	1.84	1.45	1.61	0.92	2.6	2.35	2	3.16
Но	0.96	0.76	0.83	0.53	0.65	0.36	0.28	0.32	0.19	0.52	0.44	0.41	0.7
Er	2.93	2.36	2.51	1.52	1.91	1.07	0.85	0.95	0.57	1.58	1.3	1.22	2.02
Тт	0.43	0.34	0.35	0.2	0.3	0.157	0.12	0.14	0.087	0.27	0.194	0.184	0.36
Yb	2.81	2.33	2.29	1.23	1.88	1.04	0.73	0.92	0.6	1.63	1.21	1.24	1.93
Lu	0.43	0.37	0.35	0.16	0.28	0.164	0.11	0.15	0.102	0.26	0.187	0.19	0.3
Th	3.49	2.65	1.79	0.41	0.1	0.28	0.18	0.14	0.15	0.5	0.77	1.56	0.9
U	1.67	0.95	0.69	0.2		0.08	0.07	0.17	0.04	0.1	0.23	0.33	0.5
V	185	163	217	343	410	309	351	415	149	252	245	301	133
Żr	150	107	100	33	20.4	17	20	28	13	37	28	25	87.5
Nb	5	4	4	3	2.9	1.5		3	0.7	2.6	1.7	1.3	3.2
Hj	0.00	1.42	1 4 4	0.07	0.8	0.6	1.24	1	0.4	1.3	1	1	3.1
EU/Eu*	0.99	1.13	1.14	0.97	1.12	1.42	1.24	1.01	1./1	1.11	1.1/	1.24	0.89
LaN/SmN	3 1 01	3.90	3.5	1.85	1.1	1 20	4.52	1.64	1.39	1 51	1 72	2 / 2	2.40
Sum_REE	79.58	77.03	72.47	35.49	56.47	28.85	24.93	29.65	10.45	45.78	46.82	45.84	52.39

Tabla 1. (Continuación) Elementos mayores y trazas para las muestras de la Cuarzodiorita de Sabanalarga y el Gabro de Santa Fe.

Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021 /

Muestra	GR146R	TCR715	TCR732	MR152R	JA74	TCR437	JPZ159A	VR301R	AN18344	AN18342	VR290R	JGT-	LMC-	TCR-	TCR
SiO ₂	63.99	65.98	66.76	68.03	68.19	69.91	70	70.32	70.44	70.81	70.82	71.21	385B 74.79	50.33	54.14
TiO ₂	0.54	0.32	0.53	0.3	0.42	0.36	0.31	0.39	0.33	0.34	0.35	0.32	0.23	0.63	0.38
AI_2O_3	15.01	15.04	15.63	15.67	15.13	14.24	14.79	13.97	13.9	13.64	13.8	14.06	14.5	16.81	14.7
Fe ₂ O ₃	6.57	4.14	4.66	3.58	4.4	3.29	4.82	4.32	4.58	3.95	3.84	4.43	0.78	9.1	11.1
MgO	2.31	2.72	1.5	1.37	1.39	1.07	0.73	1.01	1.13	1.12	0.94	1.14	0.51	8.05	6.3
CaO	5.41	5.59	5.14	3.88	5.56	3.24	4.76	3.86	4.85	5.09	3.65	4.64	4.91	10.36	9.7
Na ₂ O	3.25	3.14	3.66		3.37	3.76	3.36	3.29	3.13	3.53	3.48	3.25	3.39	2.14	1.2
K ₂ O	1.47	0.95	0.86	2	0.35	1.54	0.16	1.59	0.21	0.43	1.99	0.19	0.3	0.28	0.2
P2O5	0.12	0.1	0.15	0.19	0.16	0.11	0.08	0.12	0.07	0.08	0.11	0.13	0.08	0.177	0.0
MnO	0.1	0.07	0.09	0.12	0.08	0.1	0.07	0.07	0.06	0.07	0.08	0.06	0.02	0.172	0.15
LOI	1.1	1.8	1.02	1	0.75	2.3	1.01	0.9	0.93	1.28	0.8	0.95	0.56	1.84	1.7
Sum	99.9	99.9	100	96.1	99.81	99.9	100.1	99.8	99.65	100.3	99.9	100.4	100.1	99.95	99.
Li		9.51	1.63			2.63	3.21						1.52	2.608	1.71
Be		1.62	1.34			1.34	0.72						1.86	0.517	0.22
Sc	19	22.97	18.74	5	13	7.74	16.49	11	16	16	10	15	6.76	30.620	35.0
Со	15.3	22.3	17.88	5.6	9	15.59	17.12	6.6	8	7	8.4	9	18.02	33.698	43.7
Ni	66	20.36	5.43	5		8.61	3.94	6			5		4.02	89.5913	58.5
Cu		40.96	6.91		10	8.15	16.6		10	60		30	3.18	9.717	44.0
Zn		51.76	43.64		40	52.44	46.32			50			10.81	61.965	67.0
Ga	14.4	17.11	15.59	14.1	16	18.88	15.93	12.4	13	12	13.1	14	12.55	13.082	12.
As		0.87	0.82			0.82	0.42						0.88		
Rb	18.9	15.8	10.89	42	6	51.4	3.52	16.9	5	6	37.5	4	3.66	4.993	2.8
Sr	268.9	732.38	352.66	523.4	354	282.45	191.5	221.3	136	145	203.2	137	362.91	369.347	145.
Y	20.3	6	15	12.8	9.9	15.65	4	20.9	17.6	16.6	20.2	15	14	13	3
Cs	0.2	0.4	0.06	0.7	0.1	0.27	0.12				0.4			0.087	
Ba	1011	1360.02	754.56	1861.1	198	441.96	137.32	1644.3	137	174	1220.1	147	355.89	323.897	118
La	6.6	8.15	10.66	20.9	6.31	10.63	7.14	9	6.06	5.89	8	6.02	9.81	11.070	4.9
Ce	16.6	13.7	19.35	40.3	12.4	20.45	9.7	20.8	12.8	12.2	18.6	12.4	16.27	20.228	8.5
Pr	2.41	1.54	2.65	4.49	1.71	2.73	0.82	2.88	1.65	1.56	2.66	1.62	2.5	2.793	0.4
Nd	10.4	6.62	11.93	16.9	6.76	11.8	3.61	12.6	6.84	6.6	11	6.74	10.68	12.340	2.4
Sm	2.6	1.57	2.86	2.8	1.52	2.39	0.81	3	1.76	1.7	2.8	1.78	2.35	2.844	0.7
Eu	0.75	0.97	1.14	0.75	0.637	1.1	0.65	0.79	0.609	0.555	0.81	0.593	0.78	1.150	0.3
Gd	3.17	1.43	2.9	2.09	1.36	2.32	0.95	3.43	2.03	2.02	3.39	1.92	2.21	2.831	0.7
Tb	0.55	0.2	0.46	0.35	0.25	0.4	0.13	0.62	0.4	0.4	0.57	0.38	0.36	0.444	0.1
Dy	3.31	1.04	2.63	2.07	1.58	2.21	0.78	3.55	2.65	2.6	3.44	2.58	1.97	2.530	0.9
Но	0.64	0.2	0.54	0.42	0.32	0.47	0.16	0.72	0.56	0.55	0.71	0.55	0.43	0.535	0.2
Er	2.11	0.55	1.58	1.33	0.94	1.42	0.48	2.07	1.74	1.72	2.21	1.65	1.35	1.586	0.6
Tm	0.31	0.07	0.23	0.23	0.142	0.21	0.06	0.35	0.268	0.268	0.35	0.26	0.21	0.224	0.0
Yb	2.02	0.47	1.48	1.36	0.97	1.39	0.45	2.32	1.85	1.78	2.31	1.75	1.45	1.483	0.5
Lu	0.32	0.06	0.23	0.26	0.153	0.22	0.07	0.35	0.287	0.282	0.37	0.281	0.24	0.231	0.1
Th	1	1.41	1.73	5.2	1.73	2.17	0.22	1.6	0.99	0.94	1.8	0.94	6.86	1.609	0.1
U	0.5	0.68	0.36	0.8	0.37	0.3	0.15	0.7	0.26	0.25	0.6	0.23	0.86	0.897	0.4
V	131	96	103	56	89	40.7	35	61	55	59	58	59	28	248	2.
Zr	84.7	54	81	79.5	96	94.2	54	108.9	80	76	111.4	81	57	38	1
Nb	3.3	2	4	3.7	2.9	5.9	2	4.3	5.1	4.7	4.4	4.6	4	2	
Hf	2.8			2.5	2.2			3.5	2.1	2	3.6	2			
Eu/Eu*	0.8	1.99	1.22	0.95	1.36	1.44	2.28	0.76	0.99	0.92	0.81	0.99	1.05	1.25	1.
LaN/YbN	2.18	11.56	4.8	10.25	4.34	5.1	10.58	2.59	2.18	2.21	2.31	2.29	4.51	4.97	5.
LaN/SmN	1.56	3.19	2.29	4.59	2.55	2.74	5.42	1.85	2.12	2.13	1.76	2.08	2.57	2.39	4.
Sum_REE	51.79	36.57	58.64	94.25	35.05	57.74	25.81	62.48	39.5	38.12	57.22	38.52	50.61	60.3	21.

Geoquímica y geocronología U-Pb de la Cuarzodiorita de Sabanalarga y el Gabro de Santa Fe, Colombia

25.1 y La/Yb=4.4-5.9. En el diagrama TAS (Middlemost, 1994) las muestras caen en el campo de los gabros y dioritas (Figura 4A), en el diagrama AFM (Irvine and Baragar, 1971) las muestras caen en el campo de las series calco-alcalinas y una muestra (LMC-353) corresponde a las series toleíticas (Figura 4B). En el diagrama de SiO₂ vs K₂O (Peccerillo y Taylor, 1976) las muestras varían de las series toleíticas, series calco- alcalinas hasta las series altas en K₂O (Figura 4C).

Para las muestras del Gabro de Santa Fe, el contenido de SiO₂ varía entre 74.7-48.6 %; el de Al₂O₃, varía entre 0.78 a 13.2 %; el de MgO, varía entre 0.5-9.76 %, Na_oO= 0.86-3.76 %; y el de K₂O, varía entre 0.2 hasta 1.4 %; presentando valores de Sr=151-732 ppm, Y=7-20.9 ppm y razones Sr/Y =9-122 y La/Yb=2.08-7.6 afines con algunas características adakíticas (Kay and Kay, 2002). En el diagrama TAS (Middlemost, 1994), las muestras caen en el campo de los gabros, gabro-dioritas, dioritas y granitos (Figura 4A); en el diagrama AFM (Irvine y Baragar, 1971), las muestras se distribuyen en dos grupos bien definidos en la figura 4b entre muestras de las series calco-alcalinas (muestras intermedias) y las series toleíticas (muestras máficas). Por último, en el diagrama de SiO₂ vs K₂O (Peccerillo y Taylor, 1976), las muestras se distribuyen igualmente entre dos grupos, entre las series toleíticas y las series calco-alcalinas (Figura 4C).

Lasmuestras de la Cuarzodiorita de Sabanalarga normalizadas al N-MORB (Sun y McDonough, 1989), presentan enriquecimiento en "Large Ion Lithophile elements" (LILE). En comparación con los "High Field Strength elements" HFSE y las tierras raras (REEs), con anomalías negativas de Ta, Nb-Ti y enriquecimientos en Cs, Ba y K (Figura 5A), características de magmas formados en una zona de subducción. Normalizadas al Condrito (Nakamura, 1974), las muestras presentan enriquecimiento en tierras raras livianas respecto a las tierras raras pesadas, con razones (La/Yb)_N= 3.0-3.96 y (La/Sm)_N=2.85-2.27 (Figura 5B).

Las muestras del Gabro de Santa Fe normalizadas al N-MORB (Sun y McDonough, 1989), presentan enriquecimiento en LILE respecto a HFSE y las REEs, con anomalías negativas de Nb-Ti, y anomalías positivas de Ba, Cs y K (Figura 5A), afínes a magmas formados en ambientes de subducción. Normalizados al Condrito (Nakamura, 1974), las muestras presentan enriquecimiento en HREE, respecto a LREEs, con valores (La/Yb)_N= 2.16-11.5, y (La/Sm)_N=1.35-5.42 (Figura 5B).

En el diagrama de clasificación Nb/Yb-Th/Yb (Pearce, 2008) se observa que tanto las muestras de la Cuarzodiorita de Sabanalarga y el Gabro de

Figura 5 A. Diagrama normalizado al N-MORB (Sun & McDonough, 1989). B. Diagrama normalizado al Condrito (Nakamura, 1974).

Santa Fe presentan enriquecimiento en Th y Nb (Figura 6A), característico de magmas sometidos a proceso de interacción con corteza en ambientes de subducción (Pearce, 2008). En el diagrama de Condie y Kroner (2013), se observa que las muestras correspondientes a la Cuarzodiorita de Sabanalarga presentan altos valores $(La/Yb)_N$ vs Sr/Y, correspondientes a arcos continentales; mientras que las muestras del Gabro de Santa Fe se dispersan entre arcos oceánicos y arcos continentales (Figura 6B).

Además, razones $(La/Yb)_N = 3-3.96 \text{ y Sr/Y} = 14-25 \text{ y un espesor cortical aproximado de 23-29.7 Km (Profeta$ *et al.* $, 2015) fueron calculados para la Cuarzodiorita de Sabanalarga. Igualmente razones <math>(La/Yb)_N = 2.18-11.56 \text{ y Sr/Y} = 11-122 \text{ y un espesor cortical de ca. 17-52 Km (Profeta$ *et al.*, 2015) fueron calculados para el Gabro de Santa Fe.

5.3. GEOCRONOLOGÍA

Los análisis geocronológicos fueron realizados siguiendo metodologías distintas por los grupos SGC y UERJ y su distribución espacial se puede observar en la figura 2.

En el SGC fueron analizadas 5 muestras; 2 de la Cuarzodiorita de Sabanalarga (muestras JPZ-178 y MGO-238), y 3 del Gabro de Santa Fe (muestras JPZ-121, JPZ-159A, TCR-815). El grupo de trabajo UERJ analizó 10 muestras; de las cuales, 4 corresponden a la Cuarzodiorita de Sabanalarga (WSS, W67TR, W65MT), 4 al Gabro de Santa Fe (WSF, W68SC, W64SA y WTrCa), 1 al Stock de Buriticá (WBR) (Anexo 1).

5.3.1. CUARZODIORITA DE SABANALARGA

En la muestra JPZ-178 (granodiorita) se analizaron 45 circones, subhedrales a euhedrales, prismáticos alargados e incoloros, con tamaños entre 70 y 100 µm. A pesar de la catodoluminiscencia (CL) no ser de buena resolución se observan texturas de zonación oscilatoria concéntrica, texturas de reabsorción magmáticas (Vavra *et al.*, 1999) y valores Th/U= 0.57-0.28 típicos de circones magmáticos (Rubatto, 2002). La edad media ponderada de cristalización de la muestra se calculó a partir de la relación 206 Pb/ 238 U 71.6 ± 1.2 Ma (MSWD=1.7, n= 26; Figura 7).

En la muestra MGO-238 (granodiorita), se analizaron 53 circones subhedrales a euhedrales, pris-

Figura 6 A. Diagrama de discriminación tectónica Nb/Yb vs Th/Yb (Pearce, 2008). B. Diagrama de discriminación (La/Yb)n vs Sr/Y (Condie & Kroner, 2013).

máticos alargados e incoloros, con tamaños entre 100 y 120 µm. En imágenes de CL se observan algunas texturas de zonación oscilatoria concéntrica y texturas de reabsorción típicas de circones magmáticos (Vavra et al., 1999). En el diagrama concordia Wetherill, se presentan dos poblaciones de datos: el primero alrededor de 75-80 Ma y el segundo entre 95-120 Ma (Figura 7). La edad media ponderada de cristalización se calculó 206 Pb/ 238 U de 71.5±2.4 Ma (MSWD de 2,4, n=8). En el diagrama Concordia (Figura 7), se observan edades heredadas del segundo grupo de datos de: $96,38 \pm 4,4, 103,68 \pm 5,2, 108,53 \pm 5,76$ y $112,30 \pm 7,73$ Ma, correspondientes posiblemente a edades heredadas de la roca caja. Para los circones analizados entre 75-80 Ma, se obtuvieron relaciones Th/U, entre 0.29 y 0.5 asociados a circones magmáticos (Rubatto, 2002). Mientras que para las herencias (> 90 Ma), se obtuvieron valores Th/U entre 0,07 y 0,043 afines con valores presentes en rocas metamórficas (Rubatto, 2002).

Las 4 muestras siguientes (WSS, W67TR, W65MT, W66HD), presentan circones ígneos euhedrales muy homogéneos y sin núcleos heredados, con tamaños entre 200 y 500 Micras (Figura 7). Los diagramas de concordia presentan dos poblaciones, una de ellas presenta elipses alargadas horizontalmente, asociados a errores mayores en la proporción ²⁰⁷Pb/²³⁵U. La segunda población presenta elipses alargados diagonalmente con errores mayores en la proporción ²⁰⁶Pb/²³⁸U. Los resultados de estas se describen a continuación:

En la muestra WSS (tonalita) se analizaron 18 granos de circón con tamaños entre 250 y 500 μ m y valores Th/U= 0.79-0.38, típicos de circones magmáticos (Rubatto, 2002), quince granos y permitieron calcular una edad de 76.2 ± 3.4 Ma (Figura 7).

Para la muestra W67TR (tonalita), se analizaron 32 granos de circón, con tamaños que varían desde 200 hasta 400 μ m, y valores Th/U= 0.69-0.36 típicos de circones magmáticos (Rubatto, 2002). No obstante, debido a altas concentraciones de 206Pb, solo se consideraron los datos de 12 granos, los cuales permitieron calcular una edad de 74.6 ± 7.6 Ma (Figura 7). En la muestra W65MT (cuarzodiorita), se analizaron dieciocho granos de circón con tamaños entre 200 y 300 µm y valores Th/U= 0.50-0.25 típicos de circones magmáticos (Rubatto, 2002). Esta muestra no presentó núcleos heredados o zircones metamórficos (Figura 7), por lo que permitió calcular una edad de 85, 4 ± 2.4 Ma. Incluso discordante, la edad presenta un error pequeño.

En la muestra W66HD (tonalita) se analizaron dieciocho granos de zircón, con tamaños entre 200 y 400 µm y valores Th/U= 0.64-0.29, típicos de circones magmáticos (Rubatto, 2002); mismos que permitieron calcular una edad de 76.7 \pm 2.4 Ma (Figura 7). Los granos en esta muestra se presentan en dos poblaciones con errores y edades similares.

5.3.2. GABRO DE SANTA FE

En la muestra JPZ-121 (tonalita hornblendica) fueron analizados 54 circones subhedrales a euhedrales, prismáticos cortos e incoloros, con tamaños entre 75 y 150 µm (Figura 8) y razones Th/U= 0.25-1.19, típicos de circones ígneos (Rubatto, 2002). El rango de dataciones obtenido varía entre 76 hasta 96 Ma en el diagrama Tera Wasserburg (Figura 8). Su edad fue calculada a partir de la relación 206 Pb/ 238 U en 79.71 ± 0.85 Ma (MSWD=1.09, n=18) (Figura 8).

Para la muestra JPZ-159A (tonalita), se analizaron 25 circones subhedrales a euhedrales, prismáticos e incoloros, y algunos rotos con tamaños entre 50 y 150 µm (Figura 8). En las imágenes de CL se observa zonación oscilatoria. Las edades varían entre 86.9 a 88.3 Ma y son concordantes en el diagrama Tera Wasserburg (Figura 8). La edad media ponderada fue calculada ²⁰⁶Pb/²³⁸U de 86.7±1.6 Ma (MSWD= 2.6, n= 23), con valores U/Th= 0.9-0.78; valores típicos de circones ígneos (Rubatto, 2002).

Para la muestra TCR-815 (microgabro), se analizaron 166 circones, subhedrales a anhedrales, rotos o como prismas cortos con tamaños entre 50 y 100 µm (Figura 8). En imágenes de CL los circones presentan zonación oscilatoria. El rango de la muestra varía de 76 a 89 Ma y son concordantes en el diagrama Tera Wasserburg (Figura 8). Finalmente, su edad fue calculada ²⁰⁶Pb/²³⁸U de 81.86±0.61 Ma (MSWD=1.18, n=92), y valores U/Th=0.3-1.21, valores típicos de circones ígneos (Rubatto, 2002).

Para la muestra WSF (diorita), fueron analizados 18 granos con tamaño variable entre 50 y 200 µm y valores Th/U= 0.61-0.31, típicos de circones magmáticos, (Figura 8). Esta muestra presentó circones ígneos euhedrales, con crecimiento oscilatorio, cristalizados sin núcleos heredados y una edad 206 Pb/ 238 U de 78.4±6.4 Ma (n=12) (Figura 8). La mayoría de los datos de este análisis fueron discordantes, debido principalmente a proporciones altas de 206Pb.

En la muestra W68SC (cuarzodiorita) fueron analizados 27 granos con tamaños entre 150 y 400 µm y valores Th/U= 0.93-0.54 típicos de circones magmáticos (Rubatto, 2002), (Figura 8), de los cuales fueron concordantes 18 disparos. Presentó circones ígneos euhedrales, con crecimiento oscilatorio, bien cristalizados y sin núcleos heredados y se calculó una edad 206 Pb/ 238 U de 79 ± 2.4 Ma (Figura 8). Todos los análisis presentan una alta concordancia con edades semejantes (Figura 8).

En la muestra W64SA (diorita), fueron analizados 18 granos de circón, con tamaños entre 150 y 300 µm y valores Th/U= 0.78-0.19, típicos de circones magmáticos (Rubatto, 2002; Figura 8). La muestra presentó circones ígneos euhedrales, con crecimiento oscilatorio, bien cristalizados (Vavra *et al.*, 1999) y sin núcleos heredados y una edad ²⁰⁶Pb/²³⁸U de 79 ± 14 Ma (Figura 8).

La muestra WTrCa (diorita) corresponde a una diorita con abundantes xenolitos de la Granulita de Pantanillo y cortada por diques asociadas al magmatismo terciario presente en la zona. En esta fueron analizados 19 circones con tamaños entre 100 y 300 μ m y valores Th/U= 0.82-0.29, típicos de circones magmáticos (Rubatto, 2002; Figura 8), ígneos euhedrales, con crecimiento oscilatorio, cristalizados y sin núcleos heredados y una edad ²⁰⁶Pb/²³⁸U de 81.4 ± 2 Ma.

5.3.2.1.STOCK DE BURITICÁ

La muestra WBR (tonalita) presentó una edad ²⁰⁶Pb/²³⁸U, concordante de 93.9± 3 Ma, con 18 granos analizados. Los granos son euhedrales, sin

núcleos heredados y tamaños entre 100 y 500 μ m y valores Th/U= 1.17-0.30 asociados a circones magmáticos (Rubatto, 2002; Figura 9). La edad obtenida fue menor, de la de 102 Ma reportada por Weber *et al.*, (2015); pero consistentemente mayor con las obtenidas en el Gabro de Santa Fe.

6. Discusión y conclusiones

Nuevos datos geoquímicos, geocronológicos y cartografía geológica detallada de los plutones que intruyen a ambos márgenes de la Falla Sabanalarga (Hall *et al.*, 1972; Rodríguez *et al.*, 2012a; Correa *et al.*, 2018), permitieron separar con mayores argumentos el denominado "Batolito de Sabanalarga" (González *et al.*, 1976; Álvarez y González, 1978; González, 2002; Rodríguez *et al.*, 2012a). En Cuarzodiorita de Sabanalarga y Gabro de Santa Fe, continuando la separación planteada por Nivia y Gómez (2005) hecha en base a diferencias petrográficas y relaciones de campo respecto a la definición original para el Plutón de Sabanalarga de Hall *et al.*, (1972); Álvarez *et al.*, (1975); Mejía *et al.*, (1983).

Asimismo, relaciones de campo evidenciadas durante la cartografía geológica permitieron identificar dos bloques tectónicos autónomos, intruidos por plutones de diferente composición y edad similar a ambos márgenes de la Falla Sabanalarga. Los análisis demostraron que, al este la Cuarzodiorita de Sabanalarga, un cuerpo de composición principalmente tonalita y con edades ígneas de 76.7 ± 2.4 , 85.4±2.4, 74.6±7.6, 76.2±3.4, 71.6±1.2, 71.5±2.4 Ma, intruye rocas metamórficas en facie esquisto verde asociadas al Complejo Cajamarca (terreno Tahami). Del mismo modo, al oeste el Gabro de Santa Fe de composición gabro-gabrodiorita y con edades ígneas de 79.71±0.85, 86.7±1.6, 81.86 ± 0.61 , 78.4 ± 6.4 , 79 ± 2.4 , 79 ± 14 , 81.4 ± 2 Ma, se encuentra intruyendo rocas volcánicas básicas de ambiente oceánico de la Formación Barroso (terreno Caribe) y con algunos cuerpos de xenolitos en facie granulita de la Anfibolita de Pantanillo (Cardona, 2010; Rodríguez et al., 2012), con edades de cristalización de 87.9±1.7,

16 | Boletín de la Sociedad Geológica Mexicana | 73 (1) | A280520 | 2021

Figura 7 Edades U-Pb muestras JPZ-178, MGO-238, WSS, W67TR, W65MT, W66HD.

JPZ-121 0.015

0.014

0.012

0.011

0.0155

0.0145

0.0135

0.0125

0.0115 0.05

0.015

0.0145 0.0135 206Pb/238U 0.0125 0.0115

0.0105

0.017

0.015

0.011

0.008

0.007

0.0

0.04

0.03 206Pb/238U

0.02

W64SA

206Pb/238U 0.013 0.05

WSF

TCR-815

206Pb/238U

0.07

0.0

JPZ-159A

0.09 207Pb/235U

0.09 207Pb/235U

0.09 0.11 207Pb/235U

MSWD (

0.12 0.16 207Pb/235U

0.20 0.24

rdia Age = 79 ±14 Ma

0.4

0.3

0.2 207Pb/235U

0.13

0.11

0.11

066Pb/238U 0.013

Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021 /

DISCUSIÓN Y CONCLUSIONES

[1.4%] 0.13 10; only, () = 2.6, pr 0.13 es are 2 94 0.61 [0.75%] 95% y data-pt errs only ND = 1.18, probab 0.15 W68SC ses are 68.3% cor 0.018 0.016 0.014 %PP/2 0.012 0.010 oncordia Age = 79,0 ±2.4 Ma Concordia Age = 78,4 ±6.4 Ma 0.008 (10 , decay WD (of 0.006 0.05 0.07 0.09 207Pb/235U 0.11 0.13 0.2 WTrCa 0.020

0.1

0.08

W64SA N= 18

Gabro de Santa Fe

| Boletín de la Sociedad Geológica Mexicana | 73 (1) | A280520 | 2021

Figura 9 Edades U-Pb muestra WBR.

 84.2 ± 0.69 y 80.9 ±1.2 Ma (Correa et al., 2018) y asociados a las raíces del arco volcánico engrosado (Toro-Toro et al., 2020) .

Entre ambos plutones y al interior de las trazas de la falla de Sabanalarga, se encuentran un cinturón de bloques de basaltos, esquistos, rocas ultramáficas y milonitas que varían en el grado de su deformación. Los dos intrusivos presentan anomalías de Nb-Ti, patrones de HFSE y REE en los diagramas multielementales característicos de rocas generadas en ambientes de subducción. Sin embargo, tienen algunas diferencias: la Cuarzodiorita de Sabanalarga presenta valores de Sr=78.6-504 ppm, Y=12-25 ppm y razones Sr/Y =6.5-25.1 y La/Yb=4.4-5.9 características de magmas no adakíticos; mientras tanto, el Gabro de Santa Fe presenta valores de Sr=151-732 ppm, Y=7-20.9 ppm y razones Sr/Y=9-122 y La/Yb=2.08-7.6 afines con algunas características adakíticas (Kay y Kay, 2002). Además, en el diagrama de discriminación tectónica (La/Yb)n vs Sr/Y (Condie y Kroner, 2013) de la figura 6b se observa que las rocas asociadas a la Cuarzodiorita de Sabanalarga caen en el campo de los arcos continentales; mientras que las rocas del Gabro de Santa Fe caen entre los campos de arcos oceánicos y continentales ; sugiriendo la evolución a partir de un arco inmaduro.

Las diferencias de espesor cortical, basadas en valores La/Yb y Sr/Y (Profeta et al., 2015) para la Cuarzodiorita de Sabanalarga, arrojan espesores entre 23-29 km y de 17-52 Km para la corteza Gabro de Santa Fe; datos que indican que ambos plutones se emplazaron en cortezas de diferente espesor; una continental de 23-29 km (al este del SFCR) y una corteza oceánica engrosada de 15-52 km (al oeste del SFCR). En la margen oriental asociada al magmatismo tipo Batolito Antioqueño-Stock de Ovejas (Leal-Mejía,2011; Duque-Trujillo et al., 2019) y en el margen occidental asociada a la formación de granitos sobre corteza tipo Plateau en ambientes de subducción o fusión parcial de la corteza oceánica (Weber et al., 2015).

Las muestras de la Cuarzodiorita de Sabanalarga presentan valores de Zr hasta 150 ppm y las del Gabro de Santa Fe presenta valores desde 25-111 ppm. El contenido de Zr en los plutones estudiados muestran que la posibilidad de que el magma sea saturado en Zr es mayor para la Cuarzodiorita de Sabanalarga; esto por estar emplazada en un ambiente continental. Mientras que para el Gabro de Santa Fe, la saturación de Zr es menor en la mayoría de las muestras: debido a su ambiente oceánico (Weber *et al.*,2015). Las bajas cantidades de Zr en el Gabro de Santa Fe

Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021 / 19

Figura 10 Modelos tectónicos A) Modelo de subducción con migración de la trinchera al occidente (Modificado de Rodríguez *et al.*, 2012). B) Modelo de doble subducción (Modificado de Villagómez *et al.*, 2011; Jaramillo *et al.*, 2017).

explican la dificultad para la separación de circones presentada por las rocas de dicha unidad.

Los datos U-Pb obtenidos en este trabajo indican que ambos cuerpos cristalizaron en el Cretácico Superior. La Cuarzodiorita de Sabanalarga presenta dos grupos de edades, posiblemente correspondientes a dos pulsos: el más joven está entre 71.5 y 76.7 Ma (con una media ponderada de 72.8 \pm 2.9 Ma) y un dato más antiguo de 85 Ma. La morfología de cristales de circón (Giraldo, 2017) y los datos isotópicos ⁸⁷Sr/⁸⁶Sr=0.70379-0.70379 y \mathcal{E}_{Nd} = +6.58 (Ordoñez-Carmona, 2001), permiten asociar este pulso al Stock de Altavista con ⁸⁷Sr/⁸⁶Sr= 0.70292, 0.70456, 0.70743 y \mathcal{E}_{Nd} =+7.4, +9.8, +2.6 (Correa *et al.*, 2006).

El Gabro de Santa Fe presenta edades entre 78.4 y 81.8 Ma (con una media ponderada de 81.0 \pm 1.4 Ma) y una edad de 86.7 \pm 1.6 Ma, similares a las edades de 80 y 87 Ma de la Granulita de Pantanillo. Cuerpos satélites asociados al Gabro de Santa Fe, como el Stock de Buriticá, tienen edades U-Pb entre 93-100 Ma (Weber *et al.*, 2015). Ambos cuerpos presentan relaciones isotópicas de ⁸⁷Sr/⁸⁶Sr= 0.7037 y \mathcal{E}_{Nd} = +7 (Weber *et al.*, 2015), y ⁸⁷Sr/⁸⁶Sr= 0.70469 y \mathcal{E}_{Nd} = +6.67, +6,81 (Ordoñez-Carmona, 2001), valores isotópicos primitivos (Weber *et al.*, 2015).

Ambos plutones presentan una diferencia de aproximadamente 8-10 Ma en su cristalización, siendo un poco más joven los Plutones al Este de la Falla Sabanalarga y asociados a una de las primeras etapas del magmatismo del Batolito Antioqueño, entre 81-72 Ma (Stock de Ovejas) (Leal-Mejía, 2011; Duque-Trujillo *et al.*, 2019). La edad de cristalización del Gabro de Santa Fe está asociada a cuerpos intrusivos de afinidad tonalítica en el Plateau Caribe menores a 100 Ma, como el Gabro de Altamira, Granito Pujilì, el Batolito de Buga y el Batolito de Aruba (White *et al.*, 1999, Vallejo, 2007; Villagómez *et al.*, 2011; Zapata-Villada *et al.*, 2017).

La existencia de dos arcos contemporáneos podría ser explicado en base a dos modelos geológicos, una subducción única o una doble subducción tipo Molucca. El modelo de subducción única explicaría dos magmas con características distintas; esto al considerar la existencia de la trinchera al occidente de la Formación Barroso, con fusión de placa a diferentes profundidades (Rodríguez *et al.*, 2012a). Debido a la reología y composición de los materiales intruidos, al occidente el basamento engrosado del Plateau Caribe y al oriente el basamento metamórfico pre-cretáceo del terreno Tahamí, es probable que se generaran magmas de diferente afinidad geoquímica (Figura 10A). En este modelo sería necesario explicar las unidades que se encuentran entre las Fallas Cauca-Oeste y Falla San Jerónimo, como los Esquistos de Sabaletas y el Complejo Quebradagrande, (Figura 10A). Las evidencias de campo, como la abstención de cornubianas y la no evidencia de intrusión de la Cuarzodiorita de Sabanalarga en los Esquistos de Sabaletas y el Complejo Quebradagrande, sugieren que estas dos unidades fueron adosados a la margen posterior a su acreción. Villagómez et al., (2011) presenta evidencias de intrusiones de c.a de 80 Ma del Plutón de Córdoba sobre rocas del Complejo Quebradagrande. Sin embargo, los Esquistos de Sabaletas con edades máximas de depositación de 76 Ma (Zapata-Villada, 2018) no se observan intruidos por cuerpos cretáceos c.a 80-72 Ma; evidencia que sugiere que esta secuencia metamórfica de bajo grado no se encontraba acrecionada a la margen continental en este periodo (Figura 10A).

Por otro lado, la subducción opuesta tipo Molucca (Hall y Wilson, 2000; Zhang et al., 2017) involucra la colisión de dos arcos oceánicos, sin embargo, en el Noroccidente de Suramérica comprende la colisión de un arco oceánico y arco continental, basado en reconstrucciones cinemáticas de la Placa Caribe de régimen oblicuo transpresivo (Kennan and Pindel, 2009, Villagómez et al., 2011; Jaramillo et al., 2017). Esta doble subducción, sugiere la existencia de una zona de subducción desarrollada al occidente sobre el Plateau Caribe y otra al oriente sobre el basamento pre-Cretácico del terreno Tahami, (Figura 10B; Vallejo et al., 2006; Villagómez et al., 2011; Wright and Wyld, 2011; Weber et al., 2015, Jaramillo et al., 2017) y permite explicar fragmentos de unidades alóctonas existentes entre ambos arcos.

Las rápidas tasas de exhumación entre 80-73 Ma del Norte de Suramérica (Villagómez y Spikings, 2013), los cambios en la sedimentación de las cuencas tras arco (Villamil, 1999; Bayona, 2018), y un cambio importante en la composición del magmatismo del arco continental en la Cordillera Central c.a 73 Ma (Jaramillo *et al.*, 2017), sugieren una colisión de un arco oceánico y un arco continental (Jaramillo *et al.*, 2017, Pardo-Trujillo *et al.*, 2020). Además, el registro estratigráfico y proveniencia de parte del Miembro Urrao, que suprayase facies vulcanoclasticas de la Formación Barroso, es también coetáneo con la colisión de ambos arcos (Pardo-Trujillo *et al.*, 2020).

Finalmente, a pesar de los grandes avances en geología regional, trabajos estratigráficos y geocronología U-Pb en los últimos años, la poca cantidad de evidencias estructurales, la escasa información isotópica de intrusivos a ambos lados la Falla Sabanalarga o Falla Cauca Oeste (SFCR) y la perdida de kilómetros de corteza producto del régimen transpresivo oblicuo del Cretáceo (Kennan and Pindell, 2009, Moreno- Sanchez *et al.*, 2016) hacen necesario trabajos más rigurosos en el área de estudio para poder establecer un único escenario tectónico posible.

Agradecimientos

Este trabajo ha sido financiado por el Servicio Geológico Colombiano, el fondo CAPES (Coordenação de aperfeiçoamento de pessoal de nivel superior), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) y la Universidad del Estado de Rio de Janeiro. Un agradecimiento especial por el apoyo en campo a Francy Ortiz, Tomas Correa, Angela Viviana Rincón, Faustino Mosquera, Manuel Castro (Grupo de Cartografía 1:50.0000 del Grupo de Estudios Geológicos Especiales, Medellín), y a la Universidad Nacional de Colombia, particularmente a los profesores Oswaldo Ordóñez y Jorge Julián Restrepo.

Referencias

- Álvarez, E. y González, H. 1978, Geología y geoquímica del Cuadrángulo I–7 Urrao, Mapa escala 1:100.000: Medellín, INGEOMINAS, 347 p.
- Álvarez, J., Rico, H., Vásquez, H., Hall, R, Blade,

L, 1975, Geological map of the Yarumal Quadrangle (H-8) and part of the Ituango Quadrangle (H-7), Escala 1:100.000, Bogotá, Colombia. INGEOMINAS.

- Barrero, D., 1979, Geology of the Central Western Cordillera, west of Buga and Roldanillo, **Publicaciones** Colombia: Geologicas Especiales del Ingeominas, 4, 1-75.
- Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., Ibañez, M., 2012. Early Paleogene magmatism in the northern Andes: insights on the effects of Oceanic Plateau-continent convergence: Earth and Planetary Science Letters, 331-332, 97-111. https://doi.org/10.1016/j.epsl.2012.03.015
- Bayona, G., 2018, El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno: Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. 42 (165), 364-378. https://doi.org/10.18257/raccefyn.632
- Blanco-Quintero, I., García-Casco, A., Toro, L., Moreno, M., Ruiz, E., Vinasco, C., Cardona, A., Lázaro, C., Morata, D., 2014, Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia): International Geology Review, 56 (15), 1852-1872. https://doi.org/10.1080/00206814.2 014.963710
- Botero, A., 1963, Contribución al conocimiento de la geología de la zona central de Antíoquia: Anales Facultad de Minas , Medellín, Colombia, 101 p.
- Bustamante, C., Cardona, A., Archanjo, C.J., Bayona, G., Lara, M., Valencia, V., 2016, Geochemistry and Isotopic Signatures of Paleogene Plutonic and Detrital Rocks of the Northern Andes of Colombia: a Record of Post-collisional Arc Magmatism: Lithos, 277, 199-209. https://doi.org/10.1016/j. lithos.2016.11.025
- Bustamante, A., Juliani, C., Hall, C.M., Essene, E,J. 2011. ⁴⁰Ar/³⁹Ar ages from blueschists

of the Jambaló región, Central Cordillera of Colombia: Implications on the styles accretion in the Northern Andes: of Geologica Acta, 9, 351-362. https://doi. org/10.1344/105.000001697

- Aiglsperger, T., Proenza, J.A., Zaccarini, F., Labrador, M., Navarro-Ciurana, D., 2011, Looking for needles in a haystack: how to find PGM in laterites by using hydroseparation techniques: Revista de La Sociedad Española de Mineralogía, 15, 23-24.
- Buchs, D., Kerr, A.C., Brims, J.C., Zapata-Villada, J.P., Correa-Restrepo, T., Rodríguez, G., 2018. Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications: Earth and Planetary Science Letters, 499, 62-73. https://doi. org/10.1016/j.epsl.2018.07.020
- Cardona, J.D., 2010, Análisis petrográfico de rocas metamórficas al noroccidente de Santa Fe de Antioquia en el llamado Batolito de Sabanalarga al occidente de la falla Cauca Almaguer: Medellín, Universidad Nacional de Colombia Sede Medellín, Tesis de Grado, 72p.
- Castro, N., Feininger, T., 1965, Geología en la región entre Buriticá y Santa Fe de Antioquia, Con especial referencia a la geología económica de un cuerpo andesítico. INGEOMINAS, Medellín, Informe Interno, 37 p.
- Cediel, F., Shaw, R., Caceres, C., 2003, Tectonic Assembly of the Northern Andean block, in The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics: AAPG Bulletin, 79, 815 -848. https://doi.org/10.1306/M79877C37
- Chemale, F., Kawashita, K., Dussin, I. A., Nunes Avila, J., Justino, D., Bertotti, A., 2012, U-Pb zircon in situ dating with LA-MC-ICP-MS using mixed detector configuration: Anais da Academia Brasileira de Ciencias, 84 (2),275-295.https://doi.org/10.1590/ s0001-37652012005000032
- Cochrane, R., 2013, U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active

margin dynamics and implications for the volume balance of continents: University of Geneva, Switzerlan, Thése de doctorat, 191 p. 10.13097/archive-ouverte/unige:30029

- Correa M., A.M., Pimentel, M., Restrepo, J.J., Nilson, A., Ordoñez, O., Martens, U., Laux, J.E., Junges, S., 2006, U-Pb zircon ages and Nd-Sr isotopes of Altavista Stock and the San Diego Gabbro: New insights of Cretaceous arc magmatism in the Colombian Andes, en V SSAGI: Punta del Este, Uruguay.
- Correa, T., Zapata-Villada., J, P., Rincón, A., Obando, M., Ortiz, F., Rodríguez, G., 2017, Edades U-Pb y Ar-Ar obtenidas durante la cartografía 1:50.000 del borde occidental de la Plancha 130, Santa Fe de Antioquía, en XVI Congreso Colombiano de Geología: Santa Marta, Colombia. Abstract, 1223-1228.
- Correa, T., Obando, M., Zapata- Villada, J., Rincón, A., Ortiz, F., Rodríguez, G., Cetina, L., 2018, Geología del borde Occidental de la plancha 130 Santa fe de Antioquia, Escala 1:50,000: Medellín, Servicio Geológico Colombiano, Memoria Explicativa, 552 p. https://doi.org/10.32685/10.143.2018.754
- Condie, K.C., Kröner, A., 2013, The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean: Gondwana Research, 23, 394-402. https:// doi.org/10.1016/j.gr.2011.09.011
- Coyner, S.J., Kamenov, G.D., Mueller, P.A., Rao, V., and Foster, D.A., 2004, FC-1: a zircon reference standard for the determination of Hf isotopic compositions via laser ablation ICP-MS, en American Geophysical Union, Fall Meeting: San Francisco, USA.
- Castro, A., 2014, The Off-Crust Origin of Granite Batholiths, Geoscience Frontiers, 5, 63 -75. https://doi.org/10.1016/j.gsf.2013.06.006
- Duque-Trujillo, J., Bustamante,C., Solari, L., Gómez-Mafla, A., Toro-Villegas, G., Hoyos, S., 2019, Reviewing the Antioquia batholith ans satellite bodies: a record of Late Cretaceous to Eocene syn- to postcollisional arc magmatism in the central

Cordillera of Colombia: Andean Geology 46 (1), 82-101. https://doi.org/10.5027/ andgeov46n1-3120

- Flórez, J., Valencia, A, 2006, Cartografía geológica de 137 km² entre los municipios de Santa Fe de Antioquia y Olaya, Departamento de Antioquia: Colombia, Bogotá, D.C. Universidad Nacional de Colombia. Tesis de grado.
- Etayo, F., González, H., Álvarez, J., 1980, Med Albian ammonites from northern Western Cordillera, Colombia: Geología Norandina, 2, 25-30.
- Giraldo, W., 2017, Novas idades U-Pb (LA-ICP-MS) de rochas granitoides na região de Sabanalarga (Colômbia) e sua correlação com a evolução da Placa do Caribe: Rio de Janeiro, Brasil, Universidade do Estado do Rio de Janeiro, Tesis de Grado M. Sc, 90 p.
- González, H., Londoño, A.C., 2002, Catálogo de las unidades litoestratigráficas de Colombia, Batólito de Sabanalarga, Cordillera Occidental departamento de Antioquia, INGEOMINAS: Medellín, Informe técnico, 12 p.
- González, H., Restrepo, J.J., Toussaint, J.F., Linares E., 1976, Edad radiométrica K-Ar del Batolito de Sabanalarga : Publicación Especial de Geología, 8, 1-5.
- González H., Londoño, C. 1998, Edades K-Ar en algunos cuerpos plutónicos del Graben Cauca-Patía y norte de la Cordillera Occidental: Geología Colombiana, 23, 117-131. https://doi.org/10.15446/gc
- Gómez, J., Nivia, A., Montes, N.E., Jimenez, D.M., Tejada, M.L., Sepulveda, J., Osorio, J.A., Gaona, T., Diederix, H., Uribe, H., Mora, M., 2007, Geological map of Colombia, Escala 1:1'000.000: Bogotá, INGEOMINAS, 2 p.
- Guiral, J., Rincón, J., Ordoñez, O., 2015, Geología de la porción sur del Batolito de Sabanalarga, Implicaciones para la teoría de terrenos al occidente de Colombia: Boletín de Ciencias de la Tierra, 38, 41 – 48. https://doi. org/10.15446/rbct.n38.46367

- Geoestudios-Ingeominas, 2005, Complementación geológica, geoquímica y geofísica de la parte occidental de las planchas 130 Santa Fé de Antioquia y 146 Medellín Occidental. Escala 1:100,000: INGEOMINAS, Informe técnico, 276 p.
- Gómez, J., Montes N. E., Nivia, Á., Diederix, H., 2015, Mapa Geológico de Colombia 2015, Escala 1:500,000: Bogotá, Servicio Geológico Colombiano, 2 p.
- Hall, R.; Álvarez, J.; Rico, II., 1972, Geología de los departamentos de Antioquia y Caldas (Sub-zona IIA): Bol, Geol, Ingeominas, 20 (1), 85 p.
- Hall, R., Wilson, M.E.J., 2000, Neogene sutures in eastern Indonesia: Journal Asian Earth Sciences, 18 (6), 781–808. https://doi. org/10.1016/s1367-9120(00)00040-7
- Ibáñez Mejía, M., Tassinari, C.C.G., Jaramillo, J.M., 2007, U-pb Zircon Ages of the Antioquian Batholith: Geochronological Constraints of Late Cretaceous Magmatism in the Central Andes of Colombia, en XI Congreso Colombiano de Geología: Bucaramanga, 11 p.
- Irvine, T.N.,Baragar, W.R. 1971, A guide to chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences 8, 523-548. https://doi. org/10.1139/e71-055
- Jaramillo, J.S., Cardona, A., León, S., Valencia, V., Vinasco, C., 2017. Geochemistry and geochronology from Cretaceous magmatic andsedimentary rocks at 6°35'0 N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision: Journal of South American Earth Sciences, 76, 460-481. ttps://doi. org/10.1016/j.jsames.2017.04.012
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, 211, 47– 69. https://doi.org/10.1016/j. chemgeo.2004.06.017

- Jones, D. L., Cox, A., Coney, P.,Beck, M, 1982, The growth of western North America: Scientific America, 247, 70-84.
- Kay, R.W., Kay, S.M., 2002, Andean adakites: three ways to make them: Acta Petrologica Sinica, 18(3), 303-311.
- Kennan, L., Pindell, J., 2009, Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate? In: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate: Geological Society of London, Special Publications 328, 487–531 https://doi.org/10.5724/gcs.07.27.0649
- Leal-Mejía, H., 2011, Phanerozoic gold metallogeny in the Colombian Andes: A Tectono-Magmatic approach: Barcelona, España, Universidad de Barcelona, PhD thesis, 1000 p.
- Ludwig, K. R., 2000, Decay constant errors in U–Pb concordia–intercept ages: Chemical Geology, 166, 315–318. https://doi. org/10.1016/s0009-2541(99)00219-3
- Ludwig, K.R., 2012, User's Manual for Isoplot 3.75-4.15, A Geochronological Toolkit Microsoft Excel, Berkeley Geochronology Center, Special Publication, 75p.
- Maya, M., Gonzáles, H., 1995, Unidades Litodémicas de La Cordillera Central de Colombia: Boletín Geológico, 35 (2-3), 43-57. https://doi.org/10.32685/10.143.1995.708
- Moreno-Sánchez, M., Pardo-Trujillo, A., 2003, Stratigraphical and sedimentological contrains on western Colombia: implications on the evolution of the Caribbean Plate. The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation and plate tectonics. C. Bartolini, R. T. Buffler and J.F Blickwede: American Association of Petroleum Geologist, Memoir 79,891-924. https://doi.org/10.1306/M79877C40
- Mora-Bohórquez, J. A., Ibánez-Mejía, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., Serna, L., 2017, Structure and age of the Lower Magdalena Valley basin basement,

northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin: Journal of South American Earth Sciences, 74 , 1-26. https://doi.org/10.1016/j. jsames.2017.01.001

- Moreno-Sánchez, M., Hincapié, J., Ossa, M., Augusto, C., Toro Toro, L.M., 2016, Caracterización geológico-estructural de algunas zonas de cizalla en el Complejo Quebradagrande en los alrededores de Manizales y Villamaría: Boletín de Geología, 38 (4), 15-27. https://doi.org/10.18273/ revbol.v38n4-2016001
- Middlemost, E., 1994, Naming materials in the magma/igneous rock system: Earth-Science Reviews, 37, 215-224. https://doi. org/10.1016/0012-8252(94)90029-9
- Mejía, M., Álvarez, E., González, H., Grosse, E., 1983, Mapa Geológico de Plancha 146 Medellín Occidental, Escala 1:100,000: Bogotá, INGEOMINAS, Mapa.
- Nakamura, N., 1974, Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites: Geochimica and Cosmochimica Acta, 38, 757-775. https:// doi.org/10.1016/0016-7037(74)90149-5
- Nivia, A., Gómez, J., 2005, El Gabro Santa Fe de Antioquia y la Cuarzodiorita Sabanalarga, una propuesta de nomenclatura litoestratigráfica para dos cuerpos plutónicos diferentes agrupados previamente como Batolito de Sabanalarga en el departamento de Antioquia, Colombia, en X Congreso Colombiano de Geología, Bogotá, Colombia, 11 p.
- Ordoñez, O., Pimentel, M., Laux, J.H., 2008, Edades U-Pb del Batolito Antioqueño: Boletín de Ciencias de la Tierra, 1 (22), 129-130.
- Ordoñez-Carmona, O., 2001, Caractericao isotopica Rb-Sr e Sm-Nd dos principais eventos magmaticos nos andes colombinos: Brasilia-DF, Brasil, Universidad de Brasilia, Tese de doutorado, 177 p.

- Ordoñez-Carmona, O., Pimentel, M. M., 2002, Rb-Sr and Sm-Nd isotopic study of the Puquí complex, Colombian Andes: Journal of South American Earth Sciences, 15 (2), 173-182 https://doi.org/10.1016/ s0895-9811(02)00017-2
- Paton, С., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R., 2010, Improved laser ablation U-Pbzircon geochronology through robust downhole fractionation correction: Geochemistry, Geophysics. Geosystems, 11(3),1-36. https://doi. org/10.1029/2009gc002618
- Pardo-Trujillo, A., Cardona, A., Giraldo,A.S., León,S., Vallejo, D.F., Trejos-Tamayo, R., Plata,A., Ceballo, J., Echeverry, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G.E., Celis, S.A, Osorio-Granada, E., Giraldo-Villegas, C.A., 2020, Sedimentary record of the Cretaceous–Paleocene arc– continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints: Sedimentary Geology, 410, 105627. https://doi. org/10.1016/j.sedgeo.2020.105627
- Peña-Urueña, M.L., Muñoz-Rocha, J.A., Urueña, C.L., 2018, Laboratorio de Geocronología en el Servicio Geológico Colombiano: avances sobre datación U-Pb en circones mediante la técnica LA-ICP-MS: Boletín Geológico, 44, 39-56. https://doi.org/10.32685/0120-1425/ boletingeo.44.2018.7
- Pecerillo, A., Taylor, S. R., 1976, Geochemistry of Eocene Calc-alkaline volcanic rocks from Kastamonir area, Northern Turkey: Contributions to Mineralogy and Petrology, 58, 63-81. https://doi.org/10.1007/ bf00384745
- Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, 100, 14-48. https:// doi.org/10.1016/j.lithos.2007.06.016

- Pindell, J., Kennan, L., Maresch, W. V., Stanek, K., Draper, G., Higgs, R., 2005, Plate kinematics and crustal dynamics of circum Caribbean arc continent interactions: Tectonic controls on basin development in proto-Caribbean margins: Special Papper Geological Society of America, 394, 7–52. https://doi. org/10.1130/0-8137-2394-9.7
- Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Henriquez-Gonzales, S.M., Kirsch, M., Petrescu, L., DeCelles, P.G., 2015, Quantifying crustal thickness over time in magmatic arcs: Scientific Reports, 5: 17786, 1-7. https://doi.org/10.1038/ srep17786
- Rubatto, D., 2002, Zircon trace element geochemistry: distribution coefficients and the link between U–Pb ages and metamorphism: Chemical Geology, 184, 123–138. https:// doi.org/10.1016/s0009-2541(01)00355-2
- Restrepo, J.J., Toussaint, J.F., 1975, Edades radiométricas de algunas rocas de Antioquia, Colombia: Publicación Especial Geológica, 6, 24p.
- Restrepo, J, J., Ordoñez-Carmona, O., Martes, U., Correa, A, M., 2009, Terrenos, complejos y provincias en la Cordillera Central de Colombia, en XII Congreso Colombiano de Geología: Paipa, Boyacá, 1-16.
- Rodríguez, G., Arango, M.A., Bermúdez, J.G., 2012a, Batolito de Sabanalarga, plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte: Boletín Ciencias Tierra, 32, 81-98.
- Rodríguez, G., González, I., Restrepo, J.J., Martens, U., Cardona, F., David, J., 2012b, Ocurrence of granulites in the northern part of the Western Cordillera of Colombia: Boletín de Geología, 34, 37–53.
- Rodríguez, G., González, H., Zapata, G., Cossio, U., Correa , A., 2016, Geología de la plancha 147 Medellín Oriental, escala 1:5000: Servicio Geológico Colombiano, Memoria explicativa, 464p. https://doi. org/10.32685/10.143.2016.501

- Rodríguez, G., Zapata, G. 1995, Exploración de metales base (Cu - Pb - Zn) y oro en una faja al oeste del Municipio de Ituango: Medellín, INGEOMINAS, Informe 2186, 49 p.
- Rodríguez, G., Arango, M.A., 2013, Barroso Formation: a Tholeiitic volcanic arc and San Jose de Urama diabases: a T-MORB Type accretionary prism in the northern segment of Western Cordillera of Colombia: Boletin Ciencias la Tierra 33, 17-38.
- Simon, E.J., Pearson,N.J., Griffin,W.L., Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasmamass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, 211(1– 2), 47-69. https://doi.org/10.1016/j. chemgeo.2004.06.017
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008, Plešovice zircon - A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, 249 (1-2), 1-35. doi: 10.1016/j.chemgeo.2007.11.005. https:// doi.org/10.1016/j.chemgeo.2007.11.005
- Spikings, R., Cochrane, R., Villagómez, D., Van der Lelij, R., Vallejo, C., Winkler, W., Beate, B., 2015, The geological history of northwestern south America: from pangaea to the early collision of the caribbean large igneous province (290-75 Ma): Gondwana Research, 27, 95-139. https://doi.org/10.1016/j. gr.2014.06.004
- Stacey, J.S., Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, 26(2), 207-221. https://doi. org/10.1016/0012-821X(75)90088-6
- Sun, S., Mcdonough, W., 1989, Chemical and isotropic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in ocean basin: Geologial Society Special Publication, 42,

http://dx.doi.org/10.18268/BSGM2021v73n1a280520

313-345. https://doi.org/10.1144/gsl. sp.1989.042.01.19

- Suter, F., Sartori, M., Neuwerth, R., Gorin, G., 2008, Structural imprints at the front of the Chocó-Panamá indenter: Fiel data from the North Cauca alley Basin, Central Colombia: Tectonophysics, 460, 134-157. https://doi. org/10.1016/j.tecto.2008.07.015
- Toro-Toro, L.M., Vallejo, D., Salazar-Ríos, André., Murcia, H., Osorio-Ocampo, S., García-Arias, M., Arredondo, C., 2020, Granulite rocks at the Western Cordillera of Colombia: Evidence of metamorphism in the Colombian Caribbean oceanic plateau: Journal of South Amrican Earth Sciences, 101, 102632. https://doi.org/10.1016/j. jsames.2020.102632
- Toussaint, J., Restrepo, J., 1978, Edad Cretácea de una anfibolita granatífera de Pijao-Quindío: Boletín Ciencia de la Tierra, 17, 1.
- Vallejo, C., Spikings, R.A., Luzieux,L., Winkler,W.,Chew, D., Page, L., 2006, The early interaction between the Caribbean Plateau and the NW South American Plate: Terra Nova, 18(4), 264–269. h t t p s : / / d o i . org/10.1111/j.1365-3121.2006.00688.x
- Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., Beltran, A., 2011, Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia: Lithos, 125, 875 - 896. https://doi.org/10.1016/j. lithos.2011.05.003
- Villagómez, D., Spikings, R., 2013, Thermochronology tectonics and of the central and western cordilleras of Colombia: early cretaceoustertiary evolution of the northern Andes: Lithos 168, 228-249. https://doi.org/10.1016/j. lithos.2012.12.008
- Villamil, T., 1999, Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela: Palaeogeography, Palaeoclimatology, Palaeoecology, 153,

239–275. https://doi.org/10.1016/ s0031-0182(99)00075-9

- White, R.V., Tarney, J., Kerr, A.C., Saunders, A.D., Kempton, P.D., Pringle, M.S., Klaver, G.T., 1999, Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust: Lithos, 46, 43-68. https://doi.org/10.1016/ s0024-4937(98)00061-9
- Weber, M., Gomez-Tapias, J., Duarte, E., Cardona, A., Vinasco-Vallejo, C.J., 2011, Geochemistry of the Santa Fe Batholith, in NW Colombia: Remnant of an accreted Cretaceous arc, en Memorias XIVCongreso Latinoanericano de Geologia: Medellín, Colombia, 128-129.
- Weber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., Valencia, V.A., 2015, Geochemistry of the Santa Fe batholith and buriticá tonalite in NW Colombia - evidence of subduction initiation beneath the colombian caribbean plateau: Journal of South America Earth Science, 62, 257-274. https://doi.org/10.1016/j. jsames.2015.04.002
- Wright, J.E., Wyld, S. J., 2011, Department of Geology, University of Georg Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean: Geophere, 7 (2), 468-493. https://doi.org/10.1130/ges00577.1
- Wetherill, G. W., 1956, Discordant uranium– lead ages: Transactions of the American Geophysical Union, 37, 320–326. https:// doi.org/10.1029/tr037i003p00320
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C. and Spiegel W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses: Geostandards Newsletter, 19, 1–23. https:// doi.org/10.1111/j.1751-908x.1995. tb00147.x
- Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig,

J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli., P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, Ø., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.F, 2004, Further characterisation of the 91500 zircon crystal: Geostandards and Geoanalytical Research, 28(1), 9-39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x.

- Zapata, S., 2015, Mesozoic evolution of Colombia Central Cordillera: From extensional tectonics to volcanic arc settings: Medellín, Colombia, Universidad Nacional de Colombia, Thesis MSc, 1-48 p.
- Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., Castaleda, J.P., 2018, Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau: Godwana Research, 66, 207-226. https:// doi.org/10.1016/j.gr.2018.10.008
- Zapata, J., Correa, T., Obando, M., Rincón, A., Ortiz, F., Rodríguez, G., 2017, Redefinición cronoestratigráfica del Batolito de

Sabanalarga, en Congreso Colombiano de Geología 16 y Simposio de Exploradores, 3, Santa Marta, Colombia, 1472-1477.

- Zapata-Villada, J.P., Restrepo, J.J., Cardona A., Martens, U., 2017, Geoquímica y geocronologíade las rocas volcánicas básicas y el gabro de Altamira, Cordillera Occidental(Colombia): registro de ambientes de Plateau y arco oceánico superpuestos durante el Cretácico. Boletín de Geología, 39 (2), 13-30. https://doi.org/10.18273/revbol. v39n2-2017001
- Zapata-Villada, 2018, Registro magmático y metamórfico en una zona de colisión Cretácica en la margen occidental de la Cordillera Central: Implicaciones tectónicas en los Andes del Norte: Medellín, Colombia, Universidad Nacional de Colombia, Tesis de Maestría, 52p.
- Zhang, Q., Guo, F., Zhao, L., Wu, Y., 2017, Geodynamics of divergent double subduction: 3-D numerical modeling of a Cenozoic example in the Molucca Sea region, Indonesia: 3-D numerical modeling of DDS: Journal of Geophysical Research: Solid Earth, 122 (5), 3977-3998. https://doi. org/10.1002/2017JB013991

http://dx.doi.org/10.18268/BSGM2021v73n1a280520

Anexo 1. Resultados isotópicos U-Pb en circones.

C	^		~				č	3	u		.0		~	<i>.</i>	>		3	~		ጉ
%	Concf	-13.4304	-19.547923	-8.862254	-7.7745614	-13.785129	-8.3556477	-6.7716312	-33.926774	IMUNIN#	4.80668847	9.15442914	12.0922813	25.9164998	103.32896	4.27654773	10.3985116	10.8068438	-221.24159	
S	sq	341.98659	137.89431	487.61987	625.72951	144.08081	433.47814	-568.5334	112.02205	IMUN IN#	01.045705	79.268071	95.341747	16.555827	7.6901072	01.364925	78.566884	40.725071	-7.594396	
7Pb/ 1	6Pb al	82.45947 -	00.07618 -	81.37399 -	82.64668 -	557.0852 -	18.16588 -	110.7153	33.94822 -	INUM!	72.23301 4	9.965985 3	49.13899 2	00.25537 1	8669821 2	37.60821 3	32.51951 3	99.82206 5	4.440528	
20	20	581983 -5	859032 -41	561397 -8	1.23067 -9	504984 -	263898 -9:	881256 -1:	370447 -2	471262 #	763886 16	938596 86	774707 6-	342767 30	469657 73.	403272 19	576853 7:	454646 6	079318 -3	
/ 1s	abs	3416 37.1	6076 24.9	5351 31.8	1804 34	3225 18.7	8784 26.7	8252 26.4	2268 35.6	4813 18.0	7456 47.7	1366 52.4	6633 48.8	2396 35.9	9413 31.3	0782 46.6	3347 54.9	6939 78.	3981 20.0	
207Pb	235U	539 60.782	393 64.948	742 54.701	422 51.747	194 60.242	313 53.086	362 48.878	567 70.151	034 45.679	541 165.94	207 112.01	556 100.01	379 85.302	499 76.249	191 195.09	148 100.86	943 98.71	351 72.885	
1 S	abs	4 13.3194	34 13.3636	14.2024	95 13.6857	06 13.298	57 13.41	13 13.3845	52 13.4665	11 13.5195	13 12.8027	97 13.6953	24 14.0020	24 12.7313	12.8822	99 15.0444	53 13.1498	7 14.0702	12.4584	
206Pb/	238U	78.226867	78.20658	78.109601	76.396469	76.794910	76.718705	75.213544	79.371085	79.076080	80.379031	79.640419	78.495712	77.815682	76.325984	82.862739	76.171126	75.62867	76.196771	
1 s	[%]	58.7142298	34.4670123	55.3249671	63.6779747	25.8633351	47.21131	51.1862405	47.8832677	35.6173235	23.9826449	43.5957356	45.4974593	38.8188984	37.4864471	15.5534501	51.6801094	77.2660796	22.050754	
7Pb/)6Pbe	.03664666	.03925006	.03293057	.03180812	.03699251	.03251536	0.0304769	.04187669	.02703972	.10263059	.06804634	.06128178	.05233915	.04748858	.11875713	.06372511	.06275156	.04539438	
2(2(2785182 0	4417716 0	1222376 0	7081103 0	5635131 0	4727679 0	2838131	3398567 0	3274167 0	5324597 0	6693763 0	6501387 0	8838141 0	4105474 0	7594362 0	1683577 0	3409368 0	9561449 0	
	Rhc	267126 0	876142 0.4	827509 0.3	914103 0.2	165043 0.5	835196 0.3	954468 0.3	665775 0.3	968306 0.4	.92799 0.5	964447 0.3	379877 0.3	608896 0.3	779348 0	558312 0	635163 0.3	044432 0.2	503451 0.5	
, 1s	[%]	0887 17.0	0569 17.0	9046 18.1	9215 17.	8405 17.3	7209 17.4	3583 17.7	8855 16.9	4222 17.0	4686 15	13085 17.1	5108 17.8	4431 16.3	1044 16.8	3705 18.1	8613 17.2	0099 18.6	9016 16.3	
206Pb/	238U	129 0.0122	677 0.0122	809 0.0121	265 0.011	253 0.0119	248 0.0115	121 0.0117	157 0.0123	681 0.0123	698 0.0125	616 0.0124	422 0.0122	303 0.0121	064 0.0115	867 0.0125	271 0.0118	504 0.0118	211 0.0118	
1 S	[%]	48 61.1332	17 38.4702	36 58.2362	l8 66.1498	31.1251	18 50.3446	78 54.1914	97 50.8003	72 39.5081	37 28.7900	38 46.8647	33 48.8693	57 42.1258	9 41.1108	23.9069	54.487	33 79.4743	22 27.4512	
207Pb/	235U	0.0616894	0.066054	0.0553503	0.0522843	0.061124	0.0536734	0.049315	0.0715309	0.046014	0.1775468	0.1166290	0.1035159	0.0876390	0.077986	0.211834	0.104436	0.1021043	0.074420	
	Th/Ub	0.38851946	0.69512647	0.54263164	0.57002506	0.67903418	0.73242904	0.56406507	0.43057998	0.42222154	0.52170782	0.43876421	0.42521326	0.65004068	0.6861125	0.37256364	0.49644433	0.49049194	0.79406753	
	m	9.7037529	03.797705	9.1220307	6.8781239	64.210508	30.306177	3.0808194	4.5940229	4.8327689	9.7739796	6.0254212	40.924235	7.3121135	3.7256945	1.1521046	0.6342906	36.764822	178.73163	
2	1d (9664586 7	1525327 1	5078012 6	8224572 7	L.504547 1	4400279 1	5036387 9	5070932 5	5960067 7	6187087 7	5819499 5	4015275	2560186 7	3063708 9	3317778 4	1015497 6	0328488	1.924984	
ŧ	udd	056083 30.	576114 72.	435001 37.	474918 43.	929024 11	214464 95.	328663 52.	197971 23.	838137 31.	162544 41.	105647 24.	721183 17.	845418 50.	261083 64.	977079 15.	882761 30.	015997 18.	578003 14:	
Pb	mqq	26334 1.01	14219 1.38	54685 0.89	30719 0.98	91435 2.16	39862 1.68.	34915 1.11.	55224 0.62	23283 0.78	35071 1.27	27611 0.79.	12959 0.58	55744 1.05	50743 1.31.	96528 0.6	03825 0.81	58643 0.48	51788 2.45.	
٩٢	f206	0.091	0.0723	0.1295	0.093	0.0419	0.0548	0.1338	0.1716	0.088	0.1128	0.1742	0.1853	0.1106	0.0485	0.1979	0.1360	0.1805	0.0545	
Spot numbe		WSS/001 A	WSS/002 A	WSS/003 A	WSS/004 A	WSS/005 A	WSS/006 A	WSS/007 A	WSS/008 A	WSS/009 A	WSS/001 B	WSS/002 B	W SS/003 B	WSS/004 B	W SS/005 B	WSS/006 B	WSS/007 B	WSS/008 B	WSS/009 B	

path D Th U 200PV 15 200PV 15 200PV 15 706 pm									Y	sotope ratios							Ages (Ma)			
1/206 ppm pppm ppm ppm ppm<	Spot number	P		4	~	N	207Pb/ 1	[S	206Pb/	{ s	N	107Pb/	S	206Pb/	S S	207Pb/	1s 20	Pb/	{s	10
TV-001A 0.12055681 1561474 943207081 44.442172 0.5925695 0.5615738 0.01239558 1.14651542 0.448701295 6.59193913 79.3617558 8417248070 45 8427043 9437078 79 9448105 CINV-003A 0.120556681 126915470 234491035 0.10232615 2.91201996 0.00123923 11.1055116 0.38158798 0.66941393 89.7489794 39.45779 95 954013 CINV-003A 0.10595657 1.07554474 33.4577981 75-5012056 0.44491039 0.10232613 29.1269553 0.01233983 11.1055116 0.38158798 0.66941393 9.748979 39 9341398 17.445095 29.4471 CINV-003A 0.10595657 10.7554474 33.4577981 55.40024569 0.10239655 0.01233981 11.4454129 0.5593988 0.00641393 8.76129985 8.1524931 3.66552 9.4491039 0.10239653 0.10234961 11.445412901 0.5593598 0.06641393 8.76129985 8.1520924 14.6675 CINV-005A 0.6051574 1.4601752 3.5495169 0.0413685 0.0123196 1.2145910 0.5593986 0.00539881 7.4159858 8.05956912 14.0071 CINV-001B 0.0135245 0.1697517 0.1569577 0.9557686 0.01221196 1.2145910 0.5593986 0.00396887 7.44579858 8.0595793 14.6077 CINV-001B 0.0135245 0.1569577 0.9563140 0.0552097 1.6575798 0.01221496 1.2145410 0.5573988 0.05759848 9.7741595 95.65066137 14.0071 CINV-001B 0.0135245 0.156977 0.3583168 0.0052097 14.5745190 0.0233943 0.0566881 7.5257914 0.967196 7.7465985 0.03936817 4.6773981 9.0537848 9.477455 9.550658 2.40037 CINV-001B 0.0135245 0.156977 0.3663140 0.0152073 1.2145910 0.124592 0.03398617 6.657388 9.477475 9.5231048 9.4577455 0.553704 8.9537461 0.57238941 9.057289841 9.477475 9.523748 8.9513993 14.9071 CINV-001C 0.0555771 0.045688 3.55575519 0.3665420 0.0025724 1.23675693 0.00156677 0.1274451 0.5233948 0.0166663 2.5633440 0.00156227 1.23666098 0.01272491 1.226572 0.2779434 0.9566668 2.9643946 0.75236748 8.8664704 4.23401 CINV-001C 0.0555771 0.456188 3.5595290 0.0135478 0.00158687 1.0457448 0.0253888 7.5237445 9.5237488 9.52079993 14.8077 CINV-001C 0.0555771 0.456188 3.5595290 0.0135478 0.00158671 0.6575744 0.0557888 7.2337435 9.56377093 9.56371039 9.5437655 9.5239993 9.5407709 CINV-001C 0.0555771 0.445189 9.05529	f20	16 pp	m	udd udd	μ mda	h/Ub	235U	[%]	238U	[%] R	ho 2	106Pbe	%]	238U 6	rbs	235 U	abs 20	sPb d	p squ	oncf
Cirv.002A 0.1099691 005347981 75.012065 04491039 0.10122451 9101944 00123231 31.015116 038136798 0.06614308 25.919391 35 812.0358 912.43898 102.430028 35.3440 Cirv.001A 0.017846094 08747002 2.2430185 61.544431 0.54662389 0.10246901 11.2453123 0.32589889 0.06713818 11.245179 79.884183 89811398 102.430028 35.3440 Cirv.001A 0.017846094 08747002 2.2430185 61.544431 0.54662389 0.001246901 11.245123 0.32589888 0.00579381 51.862159 79.884183 8.9831398 102.430028 35.3440 Cirv.001A 0.01554543 1.46077 97.8816497 734711212 0.4995688 0.00173815 11.1449095 0.33868887 71.2775178 1.8821159 5.5605151 74.0577 Cirv.001B 0.5877405 0.65601952 0.5972388 11667579 0.39857681 0.0625993 0.06413685 0.07758458 1.01446905 0.33868808 0.0025993 0.05662195 2.15569561 310527 Cirv.001B 0.5877405 0.65601952 0.5972388 11667077 0.39857681 0.0025993 0.05662097 21.65595862 0.0121496 1.21459556 0.33868808 0.027593 30565813 14.0077 Cirv.001B 0.5877405 0.65601952 0.55700393 0.4576381 0.0562099 21.6558682 0.0121496 1.21459556 0.3386808 0.0725381 7.4215388 1.4667708 75.039393 14.0077 Cirv.001B 0.0495711 1.13943045 53.050218 0.3738069 0.0562097 21.6558753 0.0227149 1.214541 0.22339986 0.0036611 1.3467303 1.543779 3058528 1.70037 Cirv.001A 0.1550497 33.6560193 0.5307081 0.0562097 1.6572348 0.02533808 0.0124607 1.1429081 0.6573384 0.0358688 1.2587543 0.5039393 1.54077 Cirv.01A 0.1550497 1.5167445 0.2539349 0.0552304 0.0056570 1.2074610 0.5723454 0.055388 9.4198417 9.6271548 9.5709393 1.54077 Cirv.01A 0.1550497 1.5676339 0.3055218 0.0053941 1.240607 1.14296071 0.6723348 0.03584817 1.2587543 0.5039383 1.54077 Cirv.01A 0.1550499 0.4555696 1.7587743 0.600398 0.0114701 11.4296071 0.6723348 9.4198447 9.6271168 9.3709393 1.54077 Cirv.01A 0.1550499 0.4555696 1.7587743 0.00939511 0.5723466 0.055888 1.2587573 0.0079393 1.567723 9.5379393 1.54077 Cirv.01A 0.1550499 0.4555696 1.7587743 0.0015954 2.12248616 0.01548665 1.2587572 0.0079393 1.567723 9.5370393 1.54077 Cirv.	67TV - 001 A 0.1	2022568 1	.20691444	49.8307081	84.8442172 0	0.58732003	0.08926985	26.7162783	0.01214955	11.1861542 (0.41870182	0.0532897	24.2616875	77.8490704	8.70831709	86.8229749	23.1958676	341.1517793	82.76917849	22.81948244
TV-003A 01736040 87473002 2143043 05465289 01614398 34505201 001246001 11245131 03558640 066173818 32651477 818824138 90356405 631202765 130522 GTV-004A 01856243 148015256 780120381 13146245 056937059 001246601 112451951 05495864 006173815 11364905 03558864 0547787 818822139 93055465 5302397 14.0071 GTV-005A 0308156243 14801556 780120381 131462405 05386880 01256545 03958868 039055451 305929 14.0071 GTV-0015 03615617 056560793 11676577 03857681 10545645 03958868 003956541 7845815 8132925 130532 GTV-0016 03817869 05636979 14.737888 11659577 0355780 1021196 11.1454095 05580080 00395641 73471132 04995648 0395786 10538688 04736451 0538684 94776453 53386886 03956451 04091 GTV-0018 0583789 040560797 0156577 0385781 11.6595467 03391865 00396648 05361780 1325393 86530704 1323759 05580091 01356467 0381789 0538064 055617093 155947 03817893 155942 03958661 03956661 03958617 045175881 8821388 1750888 147001 G105977-0018 0585719 0556540 0558778 165877 0365929 00121719 11.14290567 05738984 00556666 3165473 557705 26570039 155947 03575946 03538617 945145 55735374 5557345 0533848 94776435 50338529 6437643 5597346 1553748 0533848 94776435 50338591 45975 G10012010 01572641 0126747 015723841 05737481 02533848 005570841 012537454 0553384 9476745 557328 22093993 143077 G1012010 01577461 01254797 0513388 15695695 00120704 111.256742 0277466 012533448 005586661 256817033 1559429 03795991 135976407 11256742 0277466 057338 1556745 0573988 1758873 1459778 0553588 1758873 057959941 0365557 0577460 01577461 01255745 0575788 1268776 0379583 145877 02795993 135677 G107-0017 00575459 0455758 0495675 0495748 0058588 00120704 111.256742 0277466 025383 7758883 1459877 0455586 03759831 1459765 0553998 1356774 0355578 05755898 1258778 1368577 045558 0379593 145977 G107-0017 00575459 0455758 0495675 0465675 0465675 0475686 00125724 11255574 02797486 025888 72087583 1458778 1586374 0279758 1458758 00125724112 1255574 0279798 11255574 02797983 1458757 0465556 0379683 11265575 04	67TV - 002 A 0.1	0999657 1	.07534474	33.4577981	75.2012065 0	0.44491039	0.1032251	29.1201994	0.01239233	11.1055116 (.38136798	0.06041308	26.9193913	79.3951753	8.81724038	99.7489979	29.0471071	618.4020395	166.4700649	12.83876349
577V-004 00815624 14801556 78012093 113164216 06897069 00641368 20799654 001278315 113641901 0.549576 00363887 77.77617 81.8822135 90356465 61202765 130522 677V-0018 0.6807460 0.971771 5.688047 7371222 0.4995668 202393815 11.540905 0.33863897 77.2475959 8.6530951 42.7760492 14.0677 677V-0018 0.0807460 0.971771 5.6860477 0.3985786 0.0652097 21655862 0.01211496 11.779575 0.0385887 77.6475985 8.6530951 42.7760492 14.0677 677V-0018 0.0587460 0.6501977 215526346 10.652097 21655862 0.01211496 11.77617 81.58223561 78.2793825 2.6056137 14.097 677V-0028 0.15812899 0.40350797 14.737886 9.0652097 21655862 0.01211496 11.779575 0.0395887 7.627813 9.4613905 5.5056382 73.0303 677V-004 0.04957171 11.9145458 21502516 51205216 0.9782708 3429779 0.0121495 11.770575 0.03389185 0.00356817 96.70303 15.912 677V-005A 0.15502696 6.501473 2.5275165 51196245 0.0987207 8127793 0.00124411 0.25239804 0.0366666 19.645748 9.778378 0.6338259 2.43024 677003 0.04957171 10.416188 21.5052495 51.9666938 0.001244072 11.20724461 0.52338494 0.03666663 19.654376 0.6533805 9.537762 9.6371652 8.6202993 15.4307 677V-005A 0.1550596 6.5014732 2.5275654 51.9667938 0.00239411 2.3066938 0.01246077 11.20724461 0.52338494 0.03666663 19.654376 20.738908 1.25337849 0.03566663 19.654346 0.0724413 12.0724461 0.52338494 0.03666663 19.654376 20.7389058 1.2537762 9.6371652 8.6202993 15.4307 677V-005A 0.15505996 6.5014732 2.5275654 51.9667978 0.012944677 1.20724461 0.52338494 0.0366663 19.6545434 0.7363748 3.6643470 0.0715941 2.307563 15.4327 677V-0015 0.05757499 0.4576351 46.6974996 0.0495488 7.91007204 11.2557426 0.00356887 7.4557883 7.240756 2.0339348 3.7562545 1.374555 5.747752 9.6371658 7.3270558 6.202993 15.4307 677V-005A 0.0575949 0.4575858 17.654298 0.9013448 2.31.063307 0.01139412 11.2675446 0.0533844 0.0366663 19.654542 0.3749315 2.8232776 6.9388 45.64754 2.377545 1.54836 1.54835 4.5575455 1.54836 0.0173843 1.54837 0.0073843 1.558377 0.007384 1.25837776 2.937348 8.644504 4.32014 4.32014 4.32014 4.32014 4.32014 4.32014 4.32014 4.32014 4.32014 4.32014 4.32014 4.	67TV - 003 A 0.1	7846094 0	.87427002	22.430185	61.514431 0	0.36463289	0.10614198	34.5055201	0.01246901	11.2453123 (32589894	0.06173818	32.6216779	79.8834183	8.98313988	102.430082	35.3440324	665.0517876	216.9510519	12.01160869
TNV-005A 0.86501955 0.5517311282 0.8950688 0.0456643 31932243 0.0105165 11140505 0.33868888 0.002593 0.05682033 77.4150385 85.45054871 4.0607 67W-0018 0.08877465 0.65601955 0.5572368 51.669577 0.3987681 0.0662097 21.6558682 0.0111496 12.1879275 0.56280023 0.03956887 75.287813 9.4613982 55.066317 14.0971 67W-0018 0.15812489 0.46560197 1.4.71588 31.867573 0.3987681 0.0662097 21.6559675 0.55680023 0.03956187 15.007114 45.8216585 17.9003 67W-0018 0.15812489 0.4650197 1.4.71588 31.867573 0.5387681 0.0562097 21.6559675 0.55280023 0.0395618 7.527813 9.4613952 5.4.3024 67W-0018 0.15812489 0.46570197 1.4.7158491 0.25239395 0.01214701 11.4.295647 0.25339385 0.00736611 1.5.1754888 9.4.756473 9.3776435 9.3570513 1.5.2323939 1.5.07053 77W-0014 0.04957171 1.1.93943045 55.075913 0.5867180 0.058273 1.6.992569 0.01314701 11.4.29617 0.5733384 0.6573938 1.5.6370533 1.5.9232 67W-014 0.04957717 1.1.93943045 55.070513 0.5867180 0.058273 1.6.992569 0.01314701 11.4.29240 0.0552638 1.5.6375488 9.4.158473 0.5371453 1.5.23230493 1.5.677023 1.5.670593 9.4.19847 9.6.73158 9.4.19847 9.6.73158 9.4.19847 9.5.23105393 1.5.432 67W-014 0.105796499 0.05556454 51.954255 0.0582728 1.6.992569 0.01314701 11.2.624671 0.5.723394 0.0366668 1.2.687569 8.4.198479 0.5.331598 1.5.232 67W-014 0.05759649 0.5655134 6.379458 0.0262391 1.5.0709508 0.0112954 11.2.524615 0.0055868 1.5.667548 9.7.005793 1.5.2323777 0.584888 1.5.683240 4.3.2014 4.2.500 6077-604388 1.5.65524 8.499457 0.566938 0.9041674 0.041654 2.31063407 0.0112954 11.2.5248616 0.0026588 2.4.5666454 2.3.766575 0.2079391 1.0.5754816 0.0255488 2.30035837 1.5.832434 1.3.748656 0.5.779348 0.5.666638 9.470642 0.31248687 1.0.575456 0.5.729394 0.566658 2.4.526651 0.4.232114 0.5.2452572 0.5079393 1.5.677466 0.5.765833 4.659341 0.6.757935 1.5.854740 0.0015954 2.2.0754816 0.2.0035683 2.4.566454 2.3.745655 2.3.7456555 0.2.0039031 2.3.747545 0.5773931 1.0.9770 0.0579549430 0.745558837 0.4694546 0.7.7794610 0.5.7656516 0.0123954 0.7.0465456 0.2.7209593 2.3.7697934 2.3.7466555 0.3.7466555 2.3.7469564 2.3.745655	67TV - 004 A 0.0	18156243 1	.48015256	78.0120938	113.164216 0	0.68937069	0.06413685	20.6799635	0.01278315	11.3641901	0.5495266	0.03638887	17.2776177	81.8832135	9.30536405	63.1202765	13.0532502	-601.6181608	-103.9452861	-13.61049564
57W-001B 00857195 205972368 11676957() 38857681 00616122 37/556682 001211496 [118/59267) 05280033 003956887 7/5287813 96413305 50569311 45.8216888 17.007114 45.8216888 17.007114 45.8216888 17.0007 67W-001B 015812869 040360791 41.773888 15.00571480 12.7566456 0.01221719 11.74541 0.52139958 0.00376817 46.5739813 95.63163163 76.3876352 13.036770 67W-001B 015812859 040360791 11.1654975 0563641 03067701 42.547739 0.01211497 11.1.1445 0.57328913 95.7236818 94.7767435 0.5386525 13.0367595 15.9742 67W-001A 015951255 040350791 11.1654261 0.5376460 10.5077461 0.5732881 9.56473454 0.52378484 94.7767435 0.5336825 4.3037 67W-001A 01595170 1.15149406 12.5376545 13.637780 900582771 12.3966093 0.01227704 11.1.74451 0.5733844 0.00536817 46.573158 82.029399 14.307 67W-001A 015951971 0.1514510 1.23756651 0.00239411 2.3066093 0.00120704 11.1.274461 0.2732483 0.05338484 94.776745 0.537558 0.2039993 14.307 67W-001A 01595096 0550710 0.0535271 0.5468192 0.00122704 11.1.274461 0.2732484 0.95378658 2.2039939 14.307 67W-001A 0155756969 0.6651348 0.3567571 0.3664306 0.0223711 2.3966093 0.00123704 11.2574461 0.0573488 0.9538887 11.263758 8.2039939 14.307 67W-001A 0155756196 0.655148 0.3567571 0.0129704 11.2675461 0.0273486 0.0268683 2.5883872 0.2039391 14.307 6077-001C 005796490 0.4555888 3.5955278 0.4475460 0.0223714 12.585740 0.00128764 0.0156868 1.2645487 0.27095485 1.2545886 0.1246675 1.264568 0.005888 7.2045983 7.2405766 8.666474 4.2.540 6077-001C 005796490 0.4555889 0.3676571 0.00139748 1.126574 0.0274868 2.2075883 7.2405766 8.666474 4.3.2017466 2.5709484 0.0146847 9.310144 4.540 607W-001A 0045683 9.4679761 0.014548 2.3404030 0.01136478 1.126574 0.2073688 7.1005888 7.3075839 1.2075783 4.32014 4.2.540 607W-001A 0045683 9.4059586 0.301294704 0.0145647 9.3470470 0.01136478 1.126577 0.447745 0.0029888 7.3075833 1.4.2756456 5.377883 7.4.555374 8.3433985 7.3573818 1.097578 7.4.471401 0.0146848 7.11056778 0.0028888 7.2.0079993 7.347714 0.00145648 7.347731	67TV - 005 A 0.3	16031405 0	.79177721	36.6886047	73.4711232 0	.49936088	0.04296634	32.9332243	0.01208162	11.1540905 (.33868808	0.025793	30.9868283	77.4163985	8.63509517	42.7160492	14.0677723	0	0	0
757W-02B 015812889 04036979 1473788 318692788 04524819 0461212 37756845 001221719 12.795462 03389185 00274034 35.522651 78.278855 178.20384 94776435 0538258 17.3008 67W-004A 00455717 1139404 51502438 03505720 43424793 00121495 11.2174545 0.52539808 010365414 667303 77848848 94776435 05382585 54.3024 67W-004A 00455717 11394046 51570545 51195245 03867310 60568773 15.999269 001314701 11.4030671 05.7233816 0635369 84.1988147 9.5231558 85.029293 15.9107 67W-005A 014557171 0.746188 35.550259 51195245 0493718 0.0655877 15.072461 0.52338494 00366663 19.6545345 97.827546 8643500 15.3305493 15.932 67W-005A 014557171 0.746188 35.559259 511952455 0.4937189 0.0629411 23.0660938 0.01246027 11.2072461 0.52338494 0.0366663 19.6545345 0.7535714 664303 17.535746 9643788 35.1029293 14.3077 67W-002C 00557171 0.746189 35.5559259 5438796 0.5634246 0.0529411 23.0660938 0.01246027 11.20724461 0.52338494 0.0366663 19.654376 0.7335714 664303 15.532 67W-002C 00555717 0.746189 35.5559259 5438796 0.5563426 0.0792744 11.256544 0.20796661 0.52338494 0.0366663 19.654376 0.7335714 664304 43.2014 42.5407 60055717 0.746189 35.555524 54436 0.5694346 0.074564 11.256574 0.1279544 11.2675486 0.0056888 7.240576 9.537155 2.637162 93.730533 15.382 67W-004C 00557317 0.746189 35.555524 544296 0.57093308 0.0113547 11.20574461 0.52338494 0.0366663 19.6545426 0.733714 42.5407 67W-004C 00557317 0.746189 35.555524 544296 0.57093308 0.0113547 11.26754461 0.5233849 0.0366683 24.55574 2.2075486 1.2375455 2.2455777 0.746758 5.2325577 2.455565 2.4329456 0.57093308 0.01136478 11.05557 0.0021488 7.1005748 2.2075683 7.2655428 1.2575456 0.57093308 0.01135478 11.055574 0.00214867 0.0305588 7.2075483 1.2575456 1.2755456 4.375455 1.3755455 4.3757451 1.2075465 4.3757451 1.2075465 4.3757451 1.2075465 4.3757451 1.2075465 4.3757451 1.2575456 0.0039312 4.32540 0.0035488 7.1005756 6.0239411 4.375456 4.3757451 1.247777 1.2075483 1.2575455 4.3757451 1.2475451 1.2477450 0.0033433 4.5556424 0.0029928 4.45565 4.3757451 1.2475451 1.2477450 10.248388 1.455552 4.2755456 4.377456 0.	67TV - 001 B 0.0	18877405 0	.66501955	20.5972368	51.6769577 0	1.39857681	0.06620979	21.6558682	0.01211496	12.1879275 (.56280023	0.03963682	17.900588	77.6287813	9.46133962	65.0963137	14.0971719	-374.5678574	-67.04984889	-20.72489131
717-0038 004955711 L13943046 53.0730518 0.3738069 0.0508720 48.327739 0011455 11.213451 0.22339365 0.03036617 46.73043 9.4776435 9.430743 0.5383256 5.4304 677043 10.5231588 93.617031 5.94.204 677043 10.5231588 93.617031 5.94.204 677043 10.5231588 93.617031 5.94.204 677043 10.5231588 93.617031 5.94.204 677043 10.5231588 93.617031 5.94.204 677043 10.5231588 93.617031 5.94.204 704 10.7461 0.5233344 0.05323044 10.5731574 0.673158 87.095931 4.907 10.74010 10.242040 10.5732344 0.05323044 10.573574 0.673158 87.003931 4.807 15.83730 14.7411 1.210461 10.2107461 0.5233344 10.653148 15.64324 10.67231588 93.617031 4.5240 15.823144 10.6723344 10.6723344 10.6723344 10.6723344 10.672344 10.573444 10.5723444 10.573344 0.675344 10.753574 0.673158 86.43001 2.8310933 14.807 15.82730 14.74101 0.10127704 11.257441 0.2173445 0.2239344 0.0366663 19.643545 79.827778 96.4384 86.43201 2.8310933 14.807 15.832 14.87246 10.575444 0.20734601 0.0169866 19.64354 79.827778 96.4384 86.43204 4.32101 4.2540 0.0579649 0.045558 9.7405251 0.01127704 11.255742 0.20739461 0.00168668 19.643547 9.2307345 86.64370 4.32101 4.2540 0.0579649 0.045558 9.740528 0.0112972 11.255741 0.2073461 0.0265586 9.7005883 7.2405758 8.664370 4.32101 4.2540 0.012770 11.255471 0.2073461 0.0265586 9.7005883 7.2405758 8.664370 4.32101 4.2540 0.071070 11.255471 0.2073461 0.0265488 7.7405148 8.747140 0.0118687 11.265742 0.0015954 0.005888 7.2405748 8.664374 4.32014 4.2540 0.00112704 11.255748 0.005888 7.3075833 1.697478 0.0012954 1.255757 0.000791478 8.664374 1.307418 8.7471470 0.0118687 11.09577 0.444378 0.0028888 7.307583 7.3075833 1.545758 1.3746555 0.3709338 0.01144887 11.09577 0.445748 0.025888 7.307583 7.3757318 1.35476655 0.3706333 0.0431478 0.0045888 7.347783 0.0003933 9.37283515 79.445458 7.3757318 1.3154777 1.3164577 0.0003938 9.7508458 1.055758 0.0039312 9.754888 1.095758 0.0029312 9.754888 1.0959471 0.00129754 1.3547513 0.00039312 9.7548351 1.097768 1.345573 1.0107778 0.00129754 1.0007778 0.00129754 1.00077978 0.00129754 1.000779754 0.00009312 9.7548351 1.0007708	67TV - 002 B 0.1	5812889 0	.40369079	14.737888	31.8692738 0	0.46244819	0.04616122	37.7569845	0.01221719	12.7965462 (.33891865	0.02740343	35.5223631	78.2798252	10.017114	45.8216858	17.3008868	0	0	0
67TV-004A 004957171 113943046 53.6709539 78.867783 0.6805181 0.09568273 16.999269 0.01314701 11.4290871 0.67232815 0.05328084 12.5837639 84.1988147 9.62315588 93.6170303 15.9142 67TV-0016 00555096 0.5601473 2.5.756554 51.9564269 0.026929411 23.046027 1.2.0724461 0.52338494 0.003666663 19.6547548 20.6375658 26.637566 28.05029391 12.2657 67TV-0016 0.0555596 0.5601473 2.5.756554 51.4564276 0.02327412 53.9406938 0.01297264 11.2255424 0.20796601 0.0166665 28.033838 57.465756 8.6643704 4.3.2014 45.497 667TV-0016 0.0555717 0.4546388 35.9559279 6.6543206 0.02327412 53.9406938 0.01297264 11.2255420 0.2079661 0.0156585 5.2803839 77.2657578 8664704 4.3.2014 45.497 667TV-0016 0.05559596 0.6567179 6.4374956 0.57093308 0.00156473 11.8565442 0.02194616 0.0257488 37.065756 43.2014 43.4014 43.2014 45.497 667TV-0016 0.05495469 0.72018519 37.065517 6.437495 0.57093308 0.01135473 11.8569145 0.01145488 71.0045685 3.2603838 72.4675783 3.2469540 44.3.2014 43.2014 45.497 677TV-0016 0.005493469 0.72018519 37.065517 6.4374956 0.0134548 231.063307 0.01135473 11.8569145 0.0055488 71.004568 2.2005588 230756831 2.8435984 73.245556 47.24556 5.77731 677TV-0016 0.0043153 37.0655119 8.6437495 0.57093308 0.01136173 11.8569145 0.0114648 731.0639138 8.4564554 7.27675131 8.1856145 0.0026888 7.2075638 2.2075638 7.42575458 7.7754545 1.2375777 76.601138 8.4394358 7.45575456 7.77244 0.0434135 1.2167577 1.2185677 0.043458 2.449400 0.01136173 11.8569145 0.0114647 0.345887 7.02756455 0.0239323 1.2532577 76.601138 8.4394582 4.7575455 2.7756455 7.7754545 2.7756458 0.0029312 2.756357 2.756358 2.4557545 2.756358 2.455757 0.0023373 2.7563526 0.002341 2.255564 2.455757 0.0023373 2.756357 1.0564748 2.4557545 2.4757411 1.21857 0.004313 1.056777 0.0043133 1.05777 0.0043458 7.470470 0.00136477 1.1656577 0.0023428 0.0239254 2.2575458 2.477270 0.0023428 2.2755777 1.2075458 7.7557458 7.757431 1.2457645 0.004313 0.0043133 0.5118564 2.2756586 9.04994914 0.0145687 1.165557 0.0073772 0.445745 0.0023923 2.7528377 1.057758 1.15557655 7.777848 0.0023032 2.75283777 1.0577588	67TV - 003 B 0.0	19182855 0	.42390511	13.1625497	35.2052136 0	1.37388069	0.05087202	48.2347793	0.01214952	12.174451 (1.25239985	0.03036817	46.673083	77.8488848	9.47767435	50.3836296	24.3024325	-1121.590045	-523.4806529	-6.940939356
671V-005A 015505006 06601432 25.706554 51.1062455 0.0437189 0.06299411 23.0660938 0.012.60627 12.0724461 0.5338449 0.03666663 19.6543326 52.029993 14.2077 671V-001C 00575717 0.7461898 3.5559229 64.87956 0.5663426 0.02827412 53.9840851 0.0107274 11.2565742 0.20796681 0.01696666 32.8033895 77.355774 8.6843560 28.32106333 15.282 671V-001C 00575717 0.7461898 3.5559229 64.87956 0.5663426 0.02827412 53.9840851 0.01129542 11.255474 0.20796610 0.0165668 32.8033895 77.365748 4.32014 4.2540 671V-001C 00575719 0.7461898 3.5562519 6.6843946 0.0415642 98.4703057 0.01139542 11.2555474 0.20796681 28.3003895 77.365748 4.32014 4.32014 4.2540 671V-001C 005493469 0.72018519 37.06653138 8.65873940 0.01135472 11.2555472 0.20796683 72.8025374 6.547388 6644545 4.3274565 5.377565451 4.32401 671V-001C 005493469 0.72018519 37.0965317 64.974956 0.01134548 7.31063307 0.01135472 11.8965145 0.0055488 2.2075683 72.8025434 6543545 13.575455 5.37764 671V-001C 0.005433469 0.72018519 7.6501318 8.4394025 0.01136173 11.8965145 0.0051488 2.2075683 72.8252734 8.5439545 3.37573451 10.8716 671V-001A 0.0481383 0.5131857 5.5118654 2.2756385 0.4994974A 0.0145687 3.1656557 0.3437273 0.0003533 3.37587351 6.942984 0.5573412 0.1126477	67TV - 004 A 0.0	14957171 1	.13943046	53.6709539	78.867783	0.6805181	0.09658273	16.999269	0.01314701	11.4290871 (0.67232815	0.05328084	12.5837639	84.1988147	9.62315588	93.6170303	15.9142108	340.775312	42.88236062	24.70801485
TOT-001C 005796499 7.535770 5.64379957 5.6643206 0.02827112 5.346937 5.6643206 0.02827112 5.846126 5.8643560 3.83169933 5.535740 4.86435601 3.83169933 5.535740 4.86435601 3.83169933 5.53740 4.86435601 3.83169933 5.51740 4.7540	67TV - 005 A 0.1	5505096 0	.65014732	25.276554	51.1962455	0.4937189	0.06299411	23.0660938	0.01246027	12.0724461 (1.52338494	0.03666663	19.6545345	79.8277762	9.63716528	62.0292993	14.3077363	-580.9836411	-114.18963	-13.7401074
67TV-002C 005796499 0.44555896 17.5828731 46.6853348 0.37662519 -0.0416542 98.4703057 0.01129542 12.2458816 0.12436116 -0.0267458 -97.705883 72.4057676 8.86684704 -43.20114 -42.540 67TV-003C 00549499 0.7201929 73.0963517 64.974946 0.0134548 31.063307 0.01136173 11.8959145 0.0055888 -230.75638 72.829433 8.6644354 5.13.754555 -31.781 67TV-00AA 0.04841553 1.01630931 55.615254 80.4280543 0.69149074 0.0045808 71.0054577 1.0054572 0.4465452 0.0293031 5.615138 8.43930825 7.5757315 1.18167 67TV-00AA 0.04841553 1.01630931 55.615254 80.43949714 0.0345807 3.1635557 0.4454542 0.0239323 3.0756385 3.45573315 1.18167 67TV-00AA 0.034333 5.1913977 25.118554 2.2756305 0.94949714 0.0345887 3.1635555 7.9443721 0.0003323 3.2758355 3.4558543 2.6557534 2.655555 4.557341 1.07575	67TV - 001 C 0.0	06752717	0.7461898	35.9559229	63.4879967 0	0.56634206	0.02827412	53.9840851	0.01207204	11.2265742 (1.20796081	0.01698663	52.8038396	77.3553704	8.68435801	28.3106933	15.2832688	0	0	0
67TV-003C 006493469 0.72018519 37.0963517 64.974956 0.57093308 -0.0134548 231.063307 0.01136173 11.8969145 0.05148768 0.0085483 23.055683 7.2.8224334 8.66445545 -31.7545455 -31.781 67TV-004A 0.04841531 1.01630913 55.155754 0.0429494 0.0495908 4.8474101 0.01136887 1.1054577 0.4465456 0.0293012 2.2.232277) 6.601138 8.43390825 3.4557313 1.13167 67TV-00A 0.303333 0.5191977 2.61118654 2.2756305 0.04949744 0.03468876 1.4653552 0.01239756 1.0565057 0.029332 3.27823516 79.4284718 8.6545883 4.6553941 10.2070	67TV - 002 C 0.0	15796499 0	.44555896	17.5828731	46.6853348 0	0.37662519	-0.0416542	98.4703057	0.01129542	12.2458816 (0.12436116	-0.0267458	-97.705883	72.4067676	8.86684704	43.20114	-42.540295	0	0	0
671V-004 0.04841553 1.01630931 55.615.2544 80.4280543 0.69149074 0.0479508 24.8474101 0.01186887 11.0954272 0.4465426 0.0293012 22.2325277 76.0611388 8.439390825 47.5571315 11.8167 671V-005A 0.3023333 0.51913977 25.1118654 5.2.2753058 0.49949714 0.03468876 31.6835622 0.0123975 10.8766575 0.3432713 0.02039323 29.7583715 8.63868628 34.6252391 10.9705	67TV - 003 C 0.0	0 6493469 0	.72018519	37.0963517	64.974956 0	0.57093308	-0.0134548	231.063307	0.01136173	11.8969145 (0.05148768	-0.0085888	-230.75683	72.8294334	8.66445545	-13.754565	-31.781753	0	0	0
671V-005 0 0.3023383 0.51913977 261118654 52.2763058 0.49949714 0.03468876 31.6835622 0.01239756 10.8760575 0.3432713 0.02029323 29.7583516 79.4284718 8.63868628 34.6252391 10.9705	67TV - 004 A 0.0	14841553 1	.01630931	55.6152544	80.4280543 0	0.69149074	0.0479508	24.8474101	0.01186887	11.0954272	0.4465426	0.0293012	22.2325277	76.0611388	8.43930825	47.5571315	11.8167155	0	0	0
	67TV - 005 A 0.	.3023383 0	.51913977	26.1118654	52.2763058 0	.49949714	0.03468876	31.6835622	0.01239756	10.8760575	0.3432713	0.02029323	29.7583516	79.4284718	8.63868628	34.6252391	10.9705092	0	0	0

28

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones.

								v	sotope ratios						Ages (I	Va)			
Spot number		Pb	7	0		207Pb/	15	206Pb/	15		207Pb/	1 5	206Pb/	15	207Pb/	15	207Pb/ 1	s %	
	f 206	mdd	mdd	mda	Th/Ub	235U	[%]	238U	H [%]	Rho	206Pbe	[%]	238U	ibs	235U (sdr	206Pb c	bs C	oncf
65MT/01 A	0.0980890	7 2.12006103	81.7021362	162.52127	0.50271658	0.07054733	27.9123792	0.01389857	10.2583964	0.36752139	0.03681368	25.9589332	88.9790101	9.12781961	59.2187041	19.3205872	-570.159	-148.00719	15.605999
65MT/02 A	0.1974352	6 1.02918888	31.6329594	95.6689382	0.33065026	0.07227891	19.731013	0.01182301	15.2963762	0.77524536	0.04433861	12.4632961	75.7690111	11.589913	70.8597263	13.9813418	-91.852623	-11.447864	82.489763
65 MT/03 A	0.1283535	6 1.57037298	45.0626995	121.483845	0.37093574	0.07954872	28.7862026	0.01451104	9.80255488	0.34052963	0.03975881	27.0657603	92.8719547	9.10382433	77.7205689	22.3728004	-366.60087	-99.223313	25.333261
65 MT/04 A	0.1105047	5 1.25141951	40.3344791	102.353196	0.39407151	0.06630391	24.8132675	0.01261531	15.4740541	0.62362017	0.03811888	19.3972135	80.8148024	12.5053263	55.1859486	16.1747638	-476.94954	-92.514921	16.944099
65 MT/05 A	0.0623754	9 2.25087473	75.505137	167.417231	0.4509998	0.0837703	13.9549654	0.01380454	9.76564055	0.69979683	0.04401156	9.96861692	88.3811686	8.63098724	81.683487	11.3989023	-110.04747	-10.97021	-80.31186
65 MT/06 A	0.0899475	9 1.47615181	51.2680843	121.277617	0.42273328	0.081378	28.4703299	0.01428113	10.4942091	0.3686016	0.04132788	26.465662	91.4108976	9.59285071	79.4396617	22.6167338	-267.33494	-70.751961	34.193398
65 MT/07 A	0.1207255	5 1.4091381	29.6994563	109.671476	0.27080384	0.08524419	22.1164879	0.0138098	9.75580266	0.44110994	0.04476887	19.84851	88.4145785	8.6255518	83.0634294	18.3707133	-68.215118	-13.539685	129.61141
65 MT/08 A	0.0313469	7 3.78095645	110.026784	293.931775	0.37432763	0.07893026	13.1482851	0.01233439	10.6728268	0.81172767	0.0464114	7.67907344	79.0262003	8.43432948	77.1386994	10.1424161	19.045126	l.46248921 4	14.941861
65 MT/09 A	0.1153099	7 1.74763103	36.1426942	139.738996	0.2586443	0.06223233	27.2740552	0.01258833	11.1584686	0.40912393	0.03585476	24.8869978	80.6430462	8.99852902	51.3013825	16.7193729	-642.00103	-159.77478	12.561202
65MT/01 B	0.1470605	9 1.22592365	26.3008378	93.6553616	0.28082576	0.08981614	29.509372	0.01371352	12.9526963	0.438935	0.04750117	26.514726	87.802341	11.3727706	87.3320882	25.7711508	74.4967297	19.7526038	17.860665
65MT/02 B	0.1495758	3 1.77799851	67.1461724	135.774334	0.49454246	0.09362041	33.9316226	0.0140531	11.212074	0.33043141	0.0483167	32.0256836	89.9614309	10.0865422	90.8703522	30.8337849	114.804656	36.7669757 7	8.3604379
65 MT/03 B	0.0773150	9 1.16195422	32.4562143	104.685225	0.31003625	0.05284222	36.2655874	0.00854296	18.4486297	0.50870897	0.04486123	31.2224422	54.8375768	10.1167815	52.2855071	18.9616463	-63.184707	-19.727808	-86.78932
65 MT/04 B	0.1360160	1 1.52630354	37.4562627	122.116683	0.30672519	0.09225504	18.427751	0.0141119	11.126873	0.60381069	0.04741363	14.6892717	90.3352625	10.05149	89.6018742	16.5116103	70.1110891	10.2988084 1	28.845898
65 MT/05 B	0.1164355	1 3.14420271	106.531761	233.723946	0.45580165	0.08231979	16.8159795	0.0128143	11.5566944	0.6872448	0.04659164	12.215563	82.0815096	9.48590926	80.3235972	13.5071997	28.3464433	3.46267766 2	89.565462
65 MT/06 B	0.2155124	2 1.0840612	23.4764224	89.1262878	0.26340626	0.08561971	30.6360287	0.01358924	14.4791458	0.47261824	0.04569592	26.9985294	87.0119694	12.5985899	83.4147187	25.5549572	-18.401367	-4.9680984	472.85602
65MT/07B	0.116974	2 1.29334997	47.6973352	116.204438	0.41046053	0.0817346	26.3808503	0.01240438	14.3954601	0.5456784	0.04778919	22.1070123	79.4718679	11.440341	79.7744457	21.0451771	88.8458079	19.6411536	89.449204
65 MT/08 B	0.0786131	5 2.9441739	104.597992	226.730716	0.46133137	0.09187303	17.6299152	0.0141155	11.6782527	0.66241117	0.04720527	13.207283	90.3581267	10.5522504	89.2466892	15.7341156	59.624205	7.87473747	51.546049
65 MT/09 B	0.0801399	6 2.13410361	82.0630251	165.218661	0.49669344	0.08212144	25.0546681	0.01327076	12.7026654	0.50699795	0.04488067	21.5958024	84.9861617	10.7955078	80.1374949	20.0781833	-62.127721	-13.41698	136.79266

								Y	sotope ratios						Ages	(Ma)			
Spot number		Pb	Th			207Pb/	15	206Pb/	15		207Pb/	1 S	206Pb/	15	207Pb/	1 s	207Pb/	ls 9,	
	f206	mdd	bpm	mdd	Th/Ub	235U	[%]	238U	[%]	Rho	206Pbe	[%]	238U	abs	235U	abs	206Pb (ibs C	oncf
003-Sample1	0.23080647	0.78655861	32.8619716	67.4179326	0.48743666	0.06652317	27.2662296	0.01191492	15.6419502	0.57367485	0.04049306	22.3333086	76.3545224	11.9433363	65.3947123	17.8306724	-319.42371	-71.337882	-23.903837
004-Sample 2	0.04915684	1.41463011	46.7307053	118.928652	0.39293059	0.07146716	22.46224	0.01170506	15.6698255	0.69760743	0.04428243	16.0937502	75.0174987	11.7551111	70.090765	15.7439559	-94.963886	-15.283251	-78.995818
005-Sample 3	0.06665804	1.23749406	35.8831724	99.924924	0.35910132	0.06957156	21.9813998	0.01186948	15.4763747	0.70406684	0.04251075	15.609733	76.065045	11.7721113	68.2927919	15.0117116	-196.18309	-30.623656	-38.772479
006-Sample 4	0.21104288	0.848813	21.8625339	74.9432157	0.29172132	0.07498359	23.7443452	0.0119882	15.4148918	0.64920265	0.04536396	18.0603167	76.8213464	11.8419274	73.4176717	17.4325454	-36.067373	-6.5138817	-212.99402
007-Sample 5	0.05440807	1.54702933	69.7409838	123.173871	0.5661995	0.0726671	19.685281	0.01193521	15.4231257	0.78348517	0.0441577	12.23264	76.4837931	11.7961916	71.2272543	14.0212852	-101.89281	-12.464181	-75.062994
008-Sample 6	0.2958916	0.69947767	31.318911	60.0641535	0.52142433	0.07625165	20.6473204	0.0125662	15.2671237	0.73942397	0.04400927	13.9006033	80.5021531	12.2903633	74.6147267	15.4059417	-110.1755	-15.31506	-73.067199
009-Sample 7	0.06414161	1.34747183	55.2276365	110.76994	0.49857964	0.06870889	21.9940869	0.0117387	15.7711833	0.7170647	0.04245135	15.330024	75.2318451	11.8649522	67.473494	14.8401789	-199.68536	-30.611814	37.675193
010-Sample 8	0.06610246	1.50947501	58.4761968	118.353052	0.49408271	0.07872867	21.4536512	0.01205366	15.3011655	0.71321965	0.04737102	15.0377353	77.238307	11.8183612	76.9489636	16.5083623	67.9716165	10.2213918	13.633177
011-Sample 9	0.13433506	0.83621512	27.7142526	62.0670671	0.44652106	0.06776048	31.483293	0.01190956	15.7605763	0.50060126	0.04126477	27.2543937	76.3203955	12.0285341	66.5720151	20.9590626	-271.21707	-73.918568	-28.139967
66HD/01B	0.10883737	0.83794109	23.5409179	63.6041989	0.37011578	0.08635468	22.1001871	0.01253526	11.0942606	0.50199849	0.04996332	19.1137556	80.3051894	8.90926702	84.101908	18.5866791	193.287291	36.9444603	1.5470614
66HD/02 B	0.11276098	1.16222267	40.7007703	90.5923135	0.44927399	0.07404502	23.2527869	0.01196893	11.474352	0.49346137	0.04486827	20.2245233	76.698578	8.80066485	72.5307568	16.8654223	-62.801961	-12.701397	-122.12768
66HD/03B	0.07355981	1.75793289	83.2522606	128.297512	0.64890004	0.07857653	15.8553625	0.01208918	11.1477194	0.70308827	0.04714056	11.2747892	77.4645517	8.63553088	76.8057519	12.1778304	56.3537254	6.35376376	37.461279
66HD/04B	0.15853187	0.50778942	13.6189799	41.6056878	0.32733457	0.07034446	24.4365702	0.01178707	11.8765105	0.48601381	0.04328354	21.3563682	75.5400069	8.97151685	69.0262698	16.8676529	-151.27656	-32.30718	49.935036
66HD/05 B	0.1906841	0.65300829	24.0680412	49.2640504	0.48855181	0.07501376	22.1727058	0.01260013	11.3011156	0.5096859	0.0431782	19.0765214	80.7182012	9.1220572	73.4461738	16.2850041	-157.32704	-30.012526	-51.305995
66HD/06B	0.07949759	1.05500539	31.1880367	78.4423648	0.39759175	0.07428805	23.5559664	0.01192551	11.6911424	0.49631343	0.04517942	20.449957	76.4219983	8.93460464	72.7604809	17.1394344	-45.969986	-9.4008424	-166.24325
66HD/07B	0.16177326	0.58582074	21.1135135	44.2818424	0.47679844	0.06766341	34.647609	0.01216925	11.600151	0.3348038	0.04032635	32.6480215	77.9745136	9.04516132	66.4797006	23.0336267	-330.02026	-107.74508	-23.62719
66HD/08B	0.04680622	2.90184315	148.368081	209.020722	0.70982475	0.07764386	14.0520121	0.01180611	11.2483096	0.80047679	0.04769789	8.42226669	75.661289	8.51061602	75.9273491	10.6693203	84.3109292	7.10089131	9.7407841
66HD/09 B	0.1744438	0.53661123	20.8845984	41.8423204	0.4991262	0.05974909	45.7667872	0.01192291	12.3760646	0.27041585	0.03634527	44.0616821	76.4054067	9.4559825	58.9248857	26.968027	-604.87953	-266.52009	-12.631508

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones.

Snot number	Dh Th			20704/	1 6		orope rarios	20	7Dh/ 16	16	1 1 v		Ages (Wa) 7Dh / 1 c	402.00	1 10	%
	f206 ppm ppm	bpm	Th/Ub	235U	[%] 2	138U [%	6] R	tho 20	6Pbe [%]	23	18U ab	s 23	5U abs	206Pb	abs	Concf
JPZ_121_2	47:	3 894	0.52908277	0.0847	0.0045	0.01069	0.00014	0.06414	0.0563	0.003 6	7.778006 2.	99459125	82.6	4.2	440	100 21.8684421
JPZ_121_17	158.	9 390	0.4074359	0.0894	0.005	0.01106	0.00017	0.029618	0.058	0.0033 69	.9639612 3.	18025532	86.8	4.7	490	110 24.0638731
JPZ121_34	29	3 458	0.63973799	0.1282	0.006	0.01129	0.00022	0.37893	0.0839	0.0037 69	.0577589 3.	27919283	122.3	5.3	1284	84 77.0981306
JPZ121_5	69	0 1048	0.65839695	0.0828	0.0036	0.01145	0.00013	0.16889	0.0517	0.0022 73	.0028525 3.	19499675	80.8	m i	263	85 10.6806066
121_121_21	- 96. 202	1 1/2.2	102/0862.0	0.08/9	0.0033	1110.0	0.00015	-0.0459/4	1950.0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.1/b15U1 3. / 062051 2	523/316/ 21/02267	80.7	ر. م	390 276	1/0 16.8839309 20 11 6552051
JPZ 121 3	53.5	2 109.8	0.4845173	0.075	0.012	0.01179	0.00033	0.11836	0.0448	0.0076 75		91736365	70	, ti	-100	250 -7.6724856
JPZ 121 6	74.5	3 138.7	0.53568854	0.077	0.011	0.01186	0.0003	0.019999	0.0461	0.0069 76	.1412904 3.	77726048	74	11	40	230 -2.8122591
JPZ 121_4	59.5	5 133.7	0.44502618	0.096	0.012	0.01194	0.00033	0.15294	0.0579	0.0075 75	.5187939 3.	86122777	06	11	310	230 19.175632
JPZ121_15	28.	5 406	0.70197044	0.0823	0.0044	0.01195	0.00015	0.23527	0.0498	0.0026 76	.3609016 3.	39506833	80.6	4.1	212	98 5.55139905
JPZ121_23	57.5	9 115.6	0.50086505	0.127	0.017	0.01215	0.00036	0.1396	0.0765	0.0097 75	.0229686	4.021484	116	15	780	250 54.6193149
JPZ12111	12	7 311	0.40836013	0.0847	0.0066	0.01217	0.00024	0.084476	0.0502	0.0038 77	.7218506 3.	65 705 144	81.7	6.1	190	130 5.11844401
JPZ121_12	38	8 606	0.64026403	0.081	0.0035	0.01219	0.00017	0.11305	0.0479	0.0022 7	8.074655 3.	46254043	79.2	3.3	121	85 1.4413704
JPZ12128	56.	3 143.4	0.39260809	0.0922	0.0095	0.01222	0.00025	-0.049259	0.0541	0.0059 7	7.656402 3.	72951521	90.1	8.9	350	180 16.0239178
JPZ 121_10	45.	8 115.5	0.3965368	0.08	0.011	0.01228	0.00031	-0.077369	0.0463	0.0063 7	8.806796 3.	95770521	67 5 2	10	20	210 0.24516158
1PZ 121_31	24.	2 309	100735720	98/0.0	0.013	0.01223	12000.0	0.1.983	0.0472	0.0084 77	./81/1/4 5. 873///08 /	10550500	1.0/	0.0 7 7 0	300	150 -3.4039844 250 18 2162000
IP7 121 90		1 317	100002100	8790.0	0.0075	0.0124	0.00007	2780 0	0.0574	0.0044 78	4664286 3	75997544	94.5	1 1	540	140 20 4336703
IP7 121 39	121	2 222.6	0.54447439	0.0966	2200.0	0.0124	0.0002	-0.041491	0.0593	0.00.5	8.276895 3	57285371	5.00	7.1	450	150 18.1702467
JPZ 121 1	93.5	1 179	0.52011173	0.085	0.01	0.01243	0.00032	0.01081	0.0503	0.006 79	.3654508 3.	99880194	82.5	9.4	160	190 3.94951355
IPZ 121 13	30.	2 102.1	0.29578844	0.13	0.015	0.01243	0.00029	0.079588	0.0775	0.0092 76	.6453668 3.	81832859	120	13	850	220 56.5652368
JPZ 121 22	155	5 247	0.62753036	0.1084	0.0085	0.0125	0.00024	0.15055	0.0627	0.0049 78	.5637182 3.	68357329	103.9	7.8	660	150 32.2493416
121_7	53	3 980	0.54387755	0.083	0.0048	0.0125	0.00021	0.17029	0.0477	0.0027 80	.0719574 3.	65709492	80.6	4.4	120	110 0.65946014
JPZ_121_25	54(0 1140	0.47368421	0.0843	0.0038	0.01251	0.00014	-0.082618	0.0497	0.0024 79	.9345047 3.	52046329	81.9	3.5	188	87 2.45888215
JPZ121_18	- 66	4 212	0.46886792	0.0948	0.0072	0.01252	0.00023	0.092641	0.0549	0.0042 79	.4744738 3.	70509658	91.5	6.7	360	140 15.1313064
JPZ121_46	40.	5 90.2	0.44900222	0.084	0.01	0.01252	0.0003	0.039992	0.0507	0.0064 79	.8974334 3.	94190957	79.7	9.8	210	210 -0.2471085
JPZ121_26	63.	7 1264	0.5039557	0.0861	0.0033	0.01252	0.00015	0.13502	0.0514	0.0019 7	9.826942 3.	51092439	84.2	3.1	234	75 5.47817297
JPZ121_32	111.	3 207	0.53768116	0.0767	0.0071	0.01255	0.00021	0.077411	0.0442	0.0039 80	.7441736 3.	68249047	75.8	6.4	60	140 -6.1232575
JPZ27	14	1 283	0.49823322	0.0817	0.0078	0.0126	0.00028	-0.018097	0.0466	0.0047 80	8212997	3.872706	79.4	7.2	120	160 -1.7585707
121_37	21.	408	0.5245098	0.0934	0.0062	0.01263	0.00019	-0.019923	0.0543	0.0036 80	.230/9/9 3.	63989556	06	0. N	340	130 12.1/63/41
121_20	- 90.	193	0.47,098446	85/0.0	c/00.0	5/7TO.0	0.00010	C0/2200-	0.0441	0.0044 82	2 10509250.	8/936/19 70251070	13.0		040	100 -10.282894
IP7 121_14	424	4 340 6 771	0 55252918	0.0877	19000	0.01281	0.00015	115710	0.0484	10 0000	.c 10620/c. 9771391 3	6/61000/	2 08	0.0	134 134	82 -1 5579211
JPZ 121 24	44	1 950	0.46421053	0.0856	0.0052	0.01283	0.00017	0.06122	0.0499	0.0028 81	.9498466 3.	64981229	84.7	4.4	140	100 3.35589812
JPZ12129	10	9 251	0.43426295	0.0887	0.009	0.01287	0.00026	0.01879	0.0513	0.0051 82	.0593838 3.	85949345	84.9	8.3	240	160 3.46165915
JPZ121_41	28.5	8 79.8	0.36090226	0.117	0.016	0.01289	0.0003	0.29437	0.065	0.0089 80	.7664663 3.	99698963	107	14	480	250 32.4807249
JPZ121_45	28:	2 526	0.53612167	0.0942	0.0046	0.01288	0.00019	0.19485	0.0547	0.0026 81	.7707819 3.	69222387	91.7	4.3	384	96 12.1427457
JPZ121_40	42	5 592	0.71790541	0.0869	0.0039	0.01292	0.00017	0.15941	0.051	0.0023 8	2.407985	3.6414677	84.3	3.6	226	87 2.29591218
121_50 121_50	102. 5 8 -	1.101 5	0.42404240	0.12	10.0	0001325	0.00023	0.11939	0.0684	28 / 500.0 C8 / 500.0	.5 0120020.	92231826	11/	9.2 10	200	160 41.5596825
JPZ 121 47	45	600 600	0.75833333	0.0973	0.0044	0.01328	0.00018	0.36458	0.0552	0.0023 84	.2458752 3.	75078614	94.6	5 4	399	85 12.2903641
JPZ 121 33	14	4 188	0.39361702	0.074	0.011	0.01334	0.00035	-0.048397	0.0398	0.0061 86	.2755766	4.3060506	70	10	-210	190 -18.86464
JPZ 121_19	10(0 224	0.44642857	0.0974	0.0086	0.01336	0.00028	0.031885	0.0517	0.0047 85	.1269093 4.	04136567	94.4	7.7	270	160 10.8932543
JPZ121_44	36.4	4 97	0.37525773	0.103	0.011	0.01347	0.00029	0.018811	0.0582	0.0067 85	.1212224 4.	10743632	97	10	520	200 13.9551304
JPZ121_51	63	2 125.9	0.5019857	0.101	0.011	0.01369	0.00034	0.011999	0.0555	0.006 86	.8022418 4.	29456602	95.8	9.8	370	190 10.3658131
JPZ121_43	26	1 64	0.4078125	0.097	0.015	0.01375	0.00038	0.11357	0.052	0.0085 87	.5675122 4.	55001567	06	14	190	270 2.77784274
JPZ 121 49	20:	5 315	0.65079365	0.1084	0.0079	0.01389	0.00027	0.11886	0.0575	0.0041 87	.8415282 4.	13434509	104	7.3	610	130 18.3950258
JPZ121_53	102.	7 197	0.5213198	0.0926	0.0079	0.01391	0.00026	0.060433	0.0486	0.0042 88	.9615921 4.	11379256	91.2	7.2	130	140 2.5161509
JPZ121_54	31.	9 80.3	0.39726027	0.103	0.015	0.01397	0.00035	0.0055303	0.0532	0.0081 88	.8275419 4 27547134	4.4747543 16160705	96 123 0	14	170	260 8.07458809
IFZ121_42		100	0.55137615	0.111	0.014	0.0142	0.00036	0 020472	0.0604	0.0049 80	4674063 4	500.24864	104	0./ 13	460	220 16 2499471
IPZ 121 52	70	6 124	0.61290323	0.086	0.023	0.0148	0.00059	-0.10221	0.052	0.014 94	.2219515 5.	73189911	78	22	60	320 -17.216743
IPZ 121 38	73.	7 179	0.41173184	0.1167	0.0096	0.01518	0.00045	0.15051	0.0563	0.0047 96	.1057126 5.	02639912	110.5	8.7	370	160 14.9775565
JPZ 121 8	135	5 306	0.44117647	0.229	0.017	0.0155	0.0005	0.42693	0.1025	0.0064 92	.3797525 4.	98846513	206	14	1600	110 122.992587

10	v	~	1		(n	+;	ir				- :	ó	n	•	C				. 1	•	2	d		c	:	•	~	+.	ś	ni						_	DI	h	on	
ie				•	~			~				10	ĩ		J	~	1	~				~	~	a.	m		3	-	3	Ű		יר	~ ~		.0	5		~	_			en	
2	.01107 39.8660594	9.23742891	5.16458733	12.1956233	4.09357028	122.724182	21.94427	-5.2323683	46.3534312	-7.9572555	49.3244223	-5.1631045	9.03840958	9.1350405	2.55520491	25.9879158	25.150214	4.03838808	-2.7222671	32.4377141	27.3609026	40.165218	-13.591048	10.5919785	39.7583688	4.91348874	0.6571152	35.6431634	-4.0638093	-1.8494198	4.35309025	39.2754953	4.41229458	0.8215436	90.0049516	-4.9614417	5.48916622	28.1556728	5.95061074	152.279465	41.5448835		
6	390	180	150	180	160	650	220	160	240	180	380	210	340	270	210	550	400	100	180	280	320	610	150	130	390	140	140	280	210	270	120	150	170	100	390	180	160	230	230	440	280		
1 S	aos		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
/bb/	240	210	210	290	230	200	370	0	600	-80	200	150	30	160	120	-350	130	140	0	360	270	-420	-120	390	320	210	110	520	20	-20	160	690	270	140	680	-20	170	610	250	840	480		
207	215	9.1	7.6	9.6	7.8	50	12	8.1	15	8.6	26	11	21	15	11	38	30	5.5	6	18	21	42	7.1	7.1	30	7.1	7	19	11	17	9	8.7	9.5	S	31	9.7	8.7	15	13	40	26		
15	Sab							_	_			_				_	_		_						_		_				-								_		_		
207Pb/	107	87.8	85.6	91.6	85.6	167	101	80	120	78.2	122	80	92	92	87	104	104	88.8	83.5	111	107	117	76.3	96.2	120	92	80	118	86	88	93.9	123.6	94.6	91.7	165	87.2	97.6	117	56	216	144		
	83408989	10285701	03927396	10258877	4.0499361	65673903	29805903	19950183	27824825	20579165	32818049	45212773	76100138	66426855	33649141	36778386	37892255	28300422	32122914	84576933	96777036	56102672	40006959	33308179	61003014	46999294	48387785	78363087	65638136	14301979	47356777	41389969	68106591	4.4729605	5.9260875	83866431	68186356	53148142	06613094	5.6707083	07673578		
1.	1621 4	813 4.	5227 4.	134 4.	7055	5324 6.	7198 4.	089 4.	946 4.	5265 4.	3039 5.	3551 4.	9379 4.	9231 4.	8594 4.	5994 6.	L376 5.	1102 4.	3982 4.	9839 4.	237 4.	9198 6.	357 4.	1174 4.	1789 5.	1298 4.	9854 4.	9579 4.	9172 4.	L557 5.	9605 4.	9725 4.	8571 4.	, 832	3421	2336 4.	5159 4.	2173 5.	634 5.	3349	1515 6.		
206Pb/	76.501	80.375	80.629	81.643:	82.233	74.9806	82.824	84.4170	81.993	84.960	81.701	84.355	84.373	84.29	84.832	82.5475	83.100	85.353	86.2478	83.8129	84.013	83.4729	88.3010	86.986	85.8624	87.69	88.4189	86.9929	89.642	89.658:	89.982	88.744	90.602	90.952	86.8398	91.752	91.652	91.295	93.439	85.619	101.734		
	0.017	0.0057	0.0047	0.0058	0.0047	0.038	0.0071	0.0049	0.0091	0.005	0.016	0.0071	0.013	0.0092	0.0072	0.027	0.017	0.0028	0.0054	0.012	0.015	0.031	0.004	0.0041	0.02	0.0044	0.0039	0.012	0.0063	0.009	0.0033	0.005	0.0051	0.0028	0.019	0.0051	0.0046	0.0083	0.0072	0.028	0.012		
1 S 1 S	<u>چ</u>	5 10	1	1	6	80	m	9	ß	2	2	2	4	2	m	4	2	6	2	2	e	e	2	4	∞	9	6	6	2	2	2	9	4	6	5	80	6	5	4	4	H		
07Pb/	0.06	0.053	0.05	0.054	0.04	0.12	0.057	0.044	0.070	0.043	0.07	0.051	0.05	0.054	0.050	0.07	0.0	0.04	0.047	0.07	0.07	0.08	0.040	0.054	0.06	0.052	0.048	0.06	0.046	0.047	0.049	0.065	0.050	0.04	0.08	0.044	0.04	0.063	0.055	0.13	0.07		
	-0.05976	0.053295	0.03097	0.073065	0.027143	0.13336	0.089192	0.067555	0.11061	0.065371	0.27718	0.093453	6606800.	0.086803	0.089314	0.067095	0.076924	0.37116	0.011882	0.064849	0.044831	0.1245	0.013797	0.14543	0.048086	0.12663	0.25163	0.079378	0.0148	0.26519	0.19413	0.020664	0.25173	0.18841	0.20865	0.15247	0.18834	0.11096	0.12456	0.22494	0.63265		
i	00048	20027	0026	0026	- 52000	20072	- 0003	- 92002	0031	- 92000	00055	20035 -	0 68000	00039	- 6000.	69000	00054	0029	0028	- 44000	00044	20067	- 82000	0026	00055	20032	00031	20037	0034	00047	0028	- 20026	0035	20027	00063	20038	00034	00056	00043	2000	00058		
15	010 [%]	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
206Pb/	0.01227	0.01264	0.01264	0.01285	0.01286	0.01302	0.01309	0.01313	0.01318	0.0132	0.01321	0.01323	0.01328	0.01328	0.01329	0.01333	0.01335	0.01335	0.01346	0.0135	0.01355	0.01364	0.01367	0.0137	0.01376	0.01378	0.01383	0.01396	0.01398	0.014	0.01409	0.01418	0.0142	0.01423	0.01423	0.01428	0.01434	0.01455	0.01474	0.015	0.01638		

0.1116 0.03917 0.03917 0.03812 0.03823 0.02823 0.02823 0.02823 0.02823 0.02913 0.02917 0.02917 0.01124 0.01124 0.01243 0.01205 0.029562 0.020562 00

31.6 (168.5) (168.5) (168.5) (168.5) (168.5) (168.5) (168.5) (168.5) (168.5) (177.6) (127.6) (

0.175 0.633 0.78581299 0.41904762

0.5175 0.46812339 0.46812339 0.252700935 0.25700935 0.252717463 0.252717463 0.2527247 0.41991247 0.41991247 0.6495224 0.26495294 0.377919923 0.238425794 0.37791932 0.37791932 0.28425794 0.331002534

77/10 0.232510288 0.45198498 0.345198498 0.345198498 0.245198482 0.202222222 0.24828483 0.74786842 0.35084883 0.54888385 0.54888385 0.54868646 0.35089059 0.35089059 0.5508278 0.260172607 0.56389776 0.0563839776 0.056389776 0.056389776 0.056389776 0.056389776 0.056389776 0.056389776 0.0563838776 0.056383877 0.056383877 0.056383877 0.056383877 0.05638387 0.056387

15 [%]

207Pb/ 235U

41 mat

qd

An circones.

ANEXO

Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021 /

31

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones.

					3	color and a					(mul cafe		
Spot number	Pb Th U 1206 ppm ppm p) 2 Dam Th/Ub 2	07Pb/ 15 35U [%]	206 238	5Pb/ 15 8U [%		ho 20	7Pb/ 15 6Pbe [%]		206Pb/ 15 238U abs	207Pb/ 15 235U abs	207Pb/ 1 206Pb a	s Concf
TCR_815_105	100.9	179.8 1.78196234	0.11	0.015	0.01187	0.00034	-0.12512	0.0687	0.0098	74.045702 5.0810904	102	14 600	260 37.7527624
TCR_815_121	112	227.9 2.03482143	0.091	0.015	0.01193	0.0004	0.01206	0.06	0.01	75.2541193 5.3209431	84	14 180	280 11.6217966
TCR_815_125	762	601 0.78871391	0.084	0.011	0.01201	0.00031	0.0080252	0.0493	0.0066	76.7911005 5.1445786	83	10 160	210 8.08544151
TCR_815_137	176.8	327.8 1.8540724	0.086	0.015	0.01206	0.00036	-0.025366	0.0514	0.0098	76.9056961 5.2977239	81	14 20	280 5.32379799
TCR_815_151	64.6	139.8 2.16408669	0.093	0.017	0.01205	0.00035	-0.033904	0.056	0.011	76.3960798 5.2867333	86	16 -10	290 12.5712212
TCR_815_58	1405	1609 1.14519573	0.0805	0.0044	0.01206	0.00016	0.023516	0.0478	0.0026	77.2550936 4.8659267:	78.2	4.2 110	100 1.22309922
TCR_815_74	42.3	92.9 2.19621749	0.08	0.024	0.01207	0.00055	0.047185	0.056	0.016	76.5223778 6.0395196	72	23 -300	410 -5.9098762
TCR_815_163	164.8	234 1.41990291	0.092	0.018	0.0121	0.00046	0.021974	0.056	0.011	76.7118251 5.6164390	85	17 170	330 10.804299
TCR_815_81	147	375 2.55102041	0.093	0.012	0.01214	0.00028	-0.0052392	0.0568	0.0075	76.8862618 5.0503294	89	11 260	210 15.7554002
TCR_815_135	194	320 1.64948454	0.079	0.016	0.0122	0.00038	0.12755	0.046	0.0096	78.3249491 5.4597629	74	16 -80	300 -5.5218026
TCR_815_109	81.9	159 1.94139194	0.102	0.018	0.01222	0.00043	0.027963	0.062	0.012	76.8795823 5.5164765	94	16 160	300 22.2691347
TCR_815_65	221	343 1.5520362	0.079	0.012	0.01225	0.00033	0.072972	0.0472	0.0071	78.5263607 5.2910395	75	11 -20	220 -4.4906713
TCR_815_98	253	358 1.41501976	0.079	0.01	0.01225	0.0003	-0.01147	0.0482	0.0064	78.4278017 5.213113	75.2	9.6 -10	200 -4.1156345
TCR_815_139	114.9	303.7 2.64316797	0.075	0.016	0.01227	0.0004	-0.0002133	0.046	0.01	78.7725 5.5419063	69	15 -210	300 -12.405979
TCR_815_4	69.5	143.4 2.06330935	0.085	0.021	0.0123	0.00046	-0.014378	0.052	0.014	78.3705592 5.7533447	76	20 -120	360 -3.0248083
TCR_815_113	832	882 1.06009615	0.0844	0.0061	0.0123	0.00023	0.0088446	0.0504	0.0039	78.5288938 5.0493230	82	5.8 180	140 4.42016436
TCR_815_162	86.3	119.6 1.38586327	0.068	0.016	0.0123	0.00049	0.049287	0.0389	0.0094	79.6668477 5.8854658	. 62	15 -320	310 -22.175909
TCR_815_159	263	318 1.20912548	0.086	0.011	0.01232	0.00036	0.11738	0.0515	0.0066	78.5470312 5.3221827	81	10 110	210 3.12293
TCR_815_126	667	640 0.95952024	0.0885	0.0085	0.01231	0.00027	0.06632	0.0499	0.0047	78.641999 5.1220847	86.5	7.7 260	160 9.99211754
TCR_815_127	860	920 1.06976744	0.0905	0.0076	0.01234	0.00021	-0.01177	0.0524	0.0044	78.584672 4.9791348	88.5	6.9 250	150 12.6173817
TCR_815_166	385	498 1.29350649	0.083	0.01	0.01234	0.00029	0.087255	0.05	0.0061	78.8229361 5.1992993	81.3	9.9 110	200 3.14256739
TCR_815_70	414.5	446.5 1.07720145	0.085	0.011	0.01235	0.00031	0.059445	0.0506	0.0062	78.8269379 5.2598201	83	10 100	210 5.29395428
TCR_815_94	926	1128 1.21814255	0.0828	0.0057	0.01235	0.00025	-0.0044305	0.0508	0.0036	78.8070669 5.0448659	80.1	5.4 170	130 1.64063091
TCR_815_153	91	128.8 1.41538462	0.086	0.017	0.01232	0.00043	-0.049713	0.056	0.011	78.1010093 5.6200600	78	16 -20	310 -0.1293317
TCR_815_158	235	379 1.61276596	0.095	0.012	0.01237	0.00034	0.079559	0.0544	0.0068	78.5759088 5.3062554	. 06	11 320	200 14.5389235
TCR_815_84	203.9	512 2.51103482	0.087	0.01	0.01239	0.00029	0.057452	0.0502	0.006	79.1210692 5.1968932	84.4	9.7 110	200 6.67196596
TCR_815_82	183.5	250.9 1.36730245	0.077	0.014	0.01241	0.00039	0.17055	0.0475	0.0087	79.5177979 5.5026877	74	13 -130	270 -6.9390728
TCR_815_112	521	614 1.17850288	0.078	0.0074	0.01239	0.00027	0.11626	0.0467	0.0046	79.469912 5.1403218	76.2	7.1 20	160 -4.1146541
TCR_815_155	53.2	130.5 2.45300752	0.1	0.019	0.01242	0.00045	0.024632	0.061	0.012	78.2327665 5.6491406	. 90	17 180	310 15.0413107
TCR_815_80	52.9	111.3 2.10396975	0.112	0.022	0.01243	0.00052	0.011882	0.068	0.014	77.5954833 5.9133786	101	21 330	350 30.1622153
TCR_815_6	56.3	190.7 3.38721137	0.095	0.018	0.01245	0.00044	-0.052217	0.055	0.011	79.0219168 5.6907880	87	17 100	310 10.0960386
TCR_815_79	269.8	498.7 1.84840623	0.0791	0.0076	0.01245	0.00025	0.13069	0.0458	0.0044	79.9432754 5.1439751	76.1	7.1 30	160 -4.8075031
TCR_815_99	204.2	300.2 1.47012733	0.078	0.011	0.01247	0.00032	0.12592	0.0466	0.0063	79.9909196 5.2849028	74.5	9.9	210 -6.8644287
TCR_815_100	252	378.9 1.50357143	0.082	0.01	0.01245	0.00027	0.076361	0.0482	0.0059	79.7029311 5.2086150	7.77	9.3 50	200 -2.5129955
TCR_815_160	263.1	416 1.58114785	0.0821	0.0079	0.01246	0.00028	0.051613	0.0488	0.0047	79.7065479 5.1926361	80	7.2 120	160 0.36816561
TCR_815_107	22.3	60.3 2.70403587	0.089	0.035	0.01251	0.00072	-0.046448	0.057	0.024	79.1999244 6.7514985	62	31 -730	540 -21.717097
TCR_815_96	52.3	177.7 3.39770554	0.083	0.017	0.01251	0.00043	-0.014199	0.051	0.011	79.803694 5.6988177	78	16 -50	310 -2.2601635
TCR_815_123	149	375 2.51677852	0.117	0.015	0.01251	0.0005	0.11604	0.0685	0.0089	78.0426165 5.7427297	109	13 730	230 39.6672804
TCR 815 129	102.3	427 4.17399804	0.105	0.014	0.01252	0.00034	0.015924	0.0579	0.0078	79.1723485 5.3619961	66	13 430	230 25.0436571

Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021 / 33

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones.

					lso	toperatios					Ages (Ma)			
Spot number	Pb Th U		207Pb/ 15	N	06Pb/ 13		20	7Pb/ 15	206Pb/ 1s	20	77Pb/ 15	207P	b/ 15	%
	f206 ррт ррт ррт	Th/Ub	235U [%]	2	38U [%	1	Sho 20	6Pbe [%]	238U abs	23	:5U abs	206P	b abs	Concf
TCR_815_130	472	832 1.76271186	0.098	0.011	0.01253	0.0003	0.023814	0.054	0.0059 79.6283957 5.23	718441	94	10	360	180 18.0483409
TCR_815_140	447	1073 2.40044743	0.079	0.0081	0.01252	0.00026	-0.019267	0.0452	0.0047 80.451281 5.21	363622	76.4	7.6	0	170 -5.0356948
TCR_815_152	78.8	152.1 1.93020305	0.075	0.013	0.01254	0.00038	0.11945	0.0448	0.0081 80.6195967 5.51	033465	72	13	-110	260 -10.691689
TCR_815_24	44.4	178.5 4.02027027	0.0869	0.0094	0.01254	0.00029	0.070422	0.0519	0.0057 79.9035036 5.24	684893	84.2	8.6	310	180 5.37710634
TCR_815_97	394	429 1.08883249	0.076	0.011	0.01256	0.00031	0.075163	0.0438	0.006 80.8486453 5.36	302944	73	10	-10	200 -9.7078254
TCR_815_150	111	196 1.76576577	0.103	0.016	0.01256	0.00042	0.025063	0.0571	0.0096 79.5050847 5.57	653518	94	15	340	260 18.2314319
TCR_815_83	308	890 2.88961039	0.0908	0.0068	0.01259	0.00022	-0.0079167	0.0528	0.004 80.1296373 5.09	973345	87.3	6.3	260	140 8.94845273
TCR_815_104	72.6	145.4 2.00275482	0.08	0.018	0.01255	0.00044	0.16628	0.046	0.011 80.5624894 5.73	376234	74	18	06-	320 -8.1458374
TCR_815_134	1092	1182 1.08241758	0.0869	0.0067	0.01259	0.00023	0.032583	0.0489	0.0039 80.5245421 5.12	131874	83.7	6.2	140	140 3.94346597
TCR_815_85	766	979 1.27806789	0.0827	0.0073	0.0126	0.00025	0.060341	0.0473	0.0041 80.750367 5.1	970336	80.7	6.7	120	150 -0.0623737
TCR_815_116	42.63	97.8 2.29415904	0.115	0.034	0.01255	0.00062	-0.024198	0.081	0.024 77.0291991 6.50	098942	91	31	-160	480 18.1370195
TCR_815_110	78.6	167 2.12468193	0.084	0.024	0.01262	0.00054	0.11276	0.052	0.013 80.400979 6.13	047262	78	22	30	350 -2.9862559
TCR_815_149	40.9	150.9 3.68948655	0.075	0.015	0.01262	0.00035	0.091608	0.0421	0.0085 81.4057418 5.53	553202	69	14	-180	270 -15.239394
TCR_815_93	1191	1541 1.2938707	0.0842	0.0055	0.01263	0.00018	0.134	0.0485	0.0031 80.8199315 5.05	555056	81.9	5.1	130	120 1.3363888
TCR_815_86	1377	1319 0.95787945	0.0799	0.0061	0.01264	0.00022	0.011765	0.0464	0.0036 81.0971163 5.13	423421	77.3	5.7	50	130 -4.6821841
TCR_815_77	186.1	279.8 1.50349275	0.091	0.013	0.01266	0.00033	0.093583	0.0524	0.0073 80.6140282 5.38	975298	85	12	160	220 5.44070545
TCR_815_102	1073	1308 1.21901212	0.0845	0.0045	0.01267	0.0002	0.23509	0.0491	0.0025 81.0136789 5.11	161627	82.3	4.2	153	95 1.58778256
TCR_815_124	140.5	263 1.87188612	0.092	0.016	0.01268	0.00039	0.20937	0.0544	0.0091 80.5369013 5.59	440719	85	14	210	260 5.54168166
TCR_815_68	223	382 1.71300448	0.087	0.01	0.01272	0.00034	0.008037	0.051	0.0062 81.1376856 5.44	759741	83.7	9.8	150	200 3.15798306
TCR_815_78	182.1	344 1.88907194	0.092	0.011	0.01273	0.00026	-0.029485	0.0536	0.0067 80.9350483 5.2	493611	87	10	130	190 7.49360364
TCR_815_16	11.06	49.9 4.51175407	0.129	0.036	0.01276	0.00067	0.063924	0.082	0.023 78.2104738 6.5	826945	114	33	-10	490 45.7605285
TCR_815_31	65.8	223.2 3.39209726	0.0873	0.0086	0.01274	0.00026	-0.061454	0.0519	0.0054 81.1725235 5.24	361984	83.4	8.1	220	170 2.74412622
TCR_815_7	158.5	336 2.11987382	0.0732	0.0097	0.01277	0.0003	0.11827	0.042	0.0057 82.3793827 5.43	542126	69.8	9.1	-120	190 -15.270062
TCR_815_26	30.9	66.8 2.1618123	0.084	0.018	0.01277	0.00049	0.055495	0.05	0.011 81.5579608 5.95	876493	75	16	-120	300 -8.0408593
TCR_815_34	7.77	178.1 2.29214929	0.105	0.013	0.01279	0.00032	0.041414	0.0609	0.0073 80.5641231 5.3	409528	100	12	390	220 24.1247297
TCR_815_63	120	263 2.19166667	0.097	0.018	0.01279	0.0004	0.29654	0.0544	0.0095 81.2326422 5.65	964164	89	16	280	260 9.56186779
TCR_815_138	118.6	291.8 2.46037099	0.081	0.017	0.01279	0.0005	-0.14302	0.045	0.01 82.1993418 6.05	787559	74	16	-160	300 -9.9749482
TCR_815_146	86.2	292 3.387471	0.109	0.014	0.01279	0.00035	0.11086	0.0578	0.0075 80.882961 5.48	572371	102	13	480	210 26.1081428
TCR_815_28	73.3	171.7 2.34242838	0.0826	0.0096	0.01281	0.00031	0.081988	0.0465	0.0054 82.1728322 5.40	1436833	79.3	6	0	190 -3.4960851
TCR_815_41	93.8	136 1.44989339	0.08	0.021	0.0128	0.00044	0.162	0.048	0.012 81.9545848 5.86	919051	69	19	-120	330 -15.807029
TCR_815_95	223	589 2.64125561	0.0879	0.0098	0.0128	0.00027	0.31001	0.0492	0.0056 81.8310831 5.32	705485	83.6	6	50	190 2.16166869
TCR_815_2	1751	2141 1.22272987	0.091	0.005	0.01282	0.00019	0.14237	0.0516	0.0028 81.7110098 5.09	837009	88.3	4.6	230	100 8.06377286
TCR_815_5	138.2	483 3.49493488	0.082	0.0089	0.01282	0.00029	0.12146	0.0466	0.0052 82.2263958 5.40	1128939	79.1	8.4	60	180 -3.8021803
TCR_815_9	532	1115 2.09586466	0.0852	0.0047	0.01282	0.00018	0.022101	0.0494	0.0028 81.937783 5.11	141658	82.9	4.4	170	110 1.17432635
TCR_815_154	274	325 1.18613139	0.0736	0.0092	0.01282	0.00031	0.020546	0.0422	0.0052 82.6799128 5.42	936953	71.8	8.6	-120	180 -13.159076
TCR_815_165	598	865 1.44648829	0.085	0.0068	0.01282	0.00028	-0.012941	0.049	0.004 81.979014 5.31	193577	81.9	6.4	130	150 -0.0963831
TCR_815_118	189.3	359.1 1.89698891	0.081	0.012	0.01283	0.00035	-0.019657	0.0459	0.0067 82.3624657 5.5	498045	78	11	20	230 -5.2966672
TCR_815_148	262	317 1.20992366	0.0826	0.0092	0.01283	0.00032	0.19419	0.046	0.0049 82.3521504 5.40	1178527	80.2	8.6	30	160 -2.6133506
TCR_815_101	380	473 1.24473684	0.077	0.0082	0.01285	0.00028	-0.0054241	0.045	0.0049 82.5832815 5.34	487942	74.6	7.8	-40	170 -9.6669464
TCR_815_76	1155	1397 1.20952381	0.0843	0.0038	0.01287	0.00017	0.097978	0.048	0.0022 82.4008476 5.11	595582	81.9	3.5	113	85 -0.6078185
TCR_815_111	59.8	144 2.40802676	0.068	0.024	0.01288	0.00055	0.051843	0.049	0.017 82.3610453 6.36	078066	61	23	-310	370 -25.93586

					CI	or operation										
5	Pb Th U		207Pb/	5]	206Pb/ 1	S		07Pb/ 15	2	06Pb/ 1		207Pb/ 15	7075	b/ 1s	%	
	206 ppm ppm ppm	Th/Ub	235U	%	238U	%	Rho	06Pbe [%]	2	38U a	bs	235U abs	206PI	b abs	Con	cf
7 -	20/.74	269.2 1.006/314	580.0 61	10.0	98710.0	0.00054	0.002405	0.0477	.8 / cuu.u	2.3681149	C 23105033	18	9.6 CC	0/	-T- 002	276909
. 9	934	1529 1.6370445	10.00 T	0.006	0.01287	0.00025	0.051967	0.046	0.0034 8	2.6077881	0.32674373	78.8	5.6	018-	130 4.	6094783
~	49.1	130.5 2.6578411	4 0.152	0.018	0.01291	0.00039	0.12229	0.09	0.011 7	8.2957521 5	6.48406133	139	16	1180	230 77.	5319813
33	754	937 1.2427055	0.0899	0.0055	0.01292	0.00022	0.12226	0.0511	0.0031 8	2.3975979	5.22991784	86.8	5.1	230	120 5.3	4287676
33	1164	1273 1.0936426	0.0838	0.0058	0.01292	0.00025	0.171	0.046	0.0032	82.927328	5.26121797	81.5	5.5	60	120 -1.	7211793
_	23.87	74.3 3.1126937	6 0.119	0.02	0.01294	0.00046	0.00059051	0.075	0.013 8	0.0379633	6.85104039	109	19	560	300 36.	1853743
	116	247 2.1293105	14 0.072	0.015	0.01292	0.00041	0.0045195	0.0427	0.0092 8:	3.2700749	5.79935554	99	14	-230	280 -20	.739834
10	96.2	353 3.6694386	0.099	0.01	0.01293	0.00028	0.12357	0.056	0.0058 8	1.9517314 5	3.35095598	94.5	9.2	350	180 15.	3117797
1 2	52.5	150 2.8571425	6 0.055	0.025	0.01294	0.00062	0.030763	0.031	0.016 8	4.6153804 6	5.71954937	49	24	-950	450 -42	906060.
10	92	217.2 2.3608695	0.0767	0.0099	0.01294	0.00028	0.010029	0.0449	0.0058 8	3.1695645	6.41918874	73	9.3	-130	190 -12	.227507
6	48.5	127.1 2.6206185	6 0.148	0.033	0.01295	0.00054	0.10699	0.087	0.021 7	8.8498714 6	5.25601972	120	28	120	410 52.	1879464
38	135.5	223.4 1.6487084	0.076	0.014	0.01295	0.00035	-0.051608	0.0442	0.0083 8	3.3064297	64712495	70	13	-240	250 -15	.972872
15	1340	2280 1.7014925	64 0.0812	0.0042	0.01295	0.00021	0.092709	0.0452	0.0023 8	3.2023259	5.261228	79.2	3.9	9	91 -4.	8103534
1	42.6	106.9 2.5093896	57 0.108	0.032	0.01298	0.00061	-0.089168	0.068	0.021 8	1.0149943 6	5.59027308	86	30	0	440 6.1	5318904
~	39.9	109.3 2.7393485	17 0.156	0.027	0.013	0.00043	0.12842	0.088	0.015 7	9.0486077	5.70109867	132	22	500	320 66.	9858634
~	23	130 5.6521735	0.08	0.014	0.013	0.00039	0.1125	0.0442	0.0074 8	3.6266639 5	6.69784653	80	13	20	240 -4.	3367315
17	601	556 0.9251247	9 0.0777	0.0088	0.01299	0.00031	0.044985	0.0453	0.0052 8	3.4477563	5.4726082	75.1	8.3	-30	180 -10	003572
20	124	254.3 2.0508064	15 0.099	0.017	0.01299	0.00037	-0.12032	0.0547	0.0096 8	2.4661774	65975995	06	15	50	270 9.1	3565151
~	98.3	168 1.7090535	0.099	0.017	0.01303	0.00047	0.014361	0.06	0.011 8	2.1638532	6.91161426	89	16	06	300 8.3	2013902
1	601	1454 2.4193011	.6 0.0893	0.007	0.01304	0.00024	0.016866	0.0499	0.004 8:	3.2853878 5	5.30617469	85.8	6.5	140	140 3.0	1927178
_	804	1023 1.2723880	0.0907	0.0049	0.01304	0.0002	0.055363	0.0506	0.0028 8	3.2120137	5.23124897	88.3	4.6	230	100 6.1	1448524
~	256.4	521 2.0319812	8 0.0839	0.0052	0.01304	0.00022	-0.0022481	0.0478	0.003 8:	3.5055067	5.31297402	82.1	4.9	110	110 -1.	5831305
~	24.6	100.1 4.0691056	69 0.072	0.015	0.01305	0.00039	-0.0081384	0.0417	0.0092 8	4.2091161	6.80576442	65	15	-260	260 -22	.811207
~	197.4	261.7 1.3257345	5 0.09	0.013	0.01302	0.00033	-0.026296	0.0506	0.0076 8:	3.0849412	5.53277561	86	12	40	240 3.5	3852846
47	126.3	348 2.7553444	12 0.0833	0.0094	0.01304	0.00032	0.016485	0.0483	0.0055 8:	3.4530979	5.58527529	80.2	80. 80. 80.	70	190 -3.	8981152
~	684	884 1.2923976	6 0.0917	0.0058	0.01305	0.0002	0.022207	0.0513	0.0032	83.202122	5.2296282	88.8	5.4	210	120 6.7	2804711
5	16	68.7 4.293	5 0.1	0.02	0.01306	0.00044	0.089808	0.059	0.012 8	2.4572229	5.88133576	89	18	70	300 7.9	3475311
•	638	785 1.2304075	52 0.134	0.011	0.01305	0.00022	0.12479	0.0735	0.0061 8	0.8730583	6.18864971	125	10	880	160 54.	5632162
~	219	381 1.7397260	0.074	0.019	0.01303	0.00042	-0.024385	0.044	0.011	83.839736	6.87957118	65	18	-60	310 -2	2.47113
~	182.4	271.4 1.487938	86 0.085	0.011	0.01308	0.00029	0.05977	0.047	0.0061	83.844646	6.47307561	80	10	-40	200	-4.58544
~	562	1148 2.0427046	63 0.0842	0.0049	0.0131	0.00019	0.15865	0.0472	0.0027 8	3.9512284	5.2506053	81.6	4.6	60	100 -2.	8007075
96	45.3	143.4 3.1655625	0.141	0.025	0.0131	0.0005	0.10051	0.083	0.015 80	0.1810648 €	5.03071473	125	21	710	320 55.	8971564
31	120.7	323 2.6760563	14 0.079	0.015	0.0131	0.00038	0.02846	0.046	0.0088 8	4.0775771 5	5.77077202	75	14	-230	260 -10	.796668
28	91.9	240.4 2.6158868	33 0.089	0.017	0.01314	0.00039	-0.036054	0.0494	0.0096 8:	3.9741002	5.76046813	82	16	-160	280 -2.	3508441
19	249.7	373 1.4937925	5 0.086	0.013	0.01316	0.00033	0.090508	0.0457	0.0069 8.	4.4926921	6.61893876	83	12	-20	230 -1.	7666523
~	41.8	110.3 2.6387555	98 0.094	0.018	0.0132	0.00049	0.015534	0.059	0.011 8	3.3373892 (6.04444642	87	17	60	290 4.3	9491909
32	3110	2600 0.8360125	86 0.085	0.004	0.01321	0.0002	0.17336	0.0459	0.0022 8	4.7910558	5.31928374	83.1	3.7	37	85 -1.	9943799
~	18.62	64.8 3.4801288	160.00 0.091	0.027	0.01323	0.00056	0.020124	0.054	0.017 8.	4.0576413 (5.51809954	76	25	-240	420 -9.	5858523
~	530	738 1.3924528	33 0.078	0.01	0.01323	0.00033	-0.031983	0.0452	0.0058 8	4.9932824	6.60842482	7.77	9.3	10	180 -8.	5810104
~	16.73	57 3.40705	32 0.115	0.025	0.01325	0.00051	-0.02635	0.064	0.014 8	3.1192368 (5.14494926	98	23	130	350 17.	9029112
44 4	553	1070 1.9349005	64 0.0861	0.0081	0.01325	0.00029	0.1299	0.0472	0.0044 8	4.9082409	5.51666868	83.2	7.4	100	140 -2	.011867

ຼະບິ ບິ

S S

/ Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones.

34

٩r	۱e	X	0	1		((D	1	tiı	n	u	a	ci	Ó	n))	R	e	SI	u	t	a		0	5	is	60	t	Ó	pi	İC	0	S	ι	J-	P	b	e	en		circones
%	Concf	79 2.12051982	250 46.8001497	290 -15.329783	130 5.81668384	280 -14.45327	110 -4.2134593	160 21.577426	460 -10.142076	690 -19.59545	290 24.2279129	470 -20.358227	330 -18.485212	2100 -10.596908 21031067 - 00	410 -37.809727	160 7.26779919	400 19.8689984	73 -6.8781978	63 -1.4164436	190 5.05179615	290 66.2609596	290 15.0830754	310 26.2603629	1076206-0- OCT	270 30.4111157 470 139 902909	COCZOC:CCT 0/4	440 -25.218684	350 64.3609558	380 83.1935339	440 100.119779	470 11.4742993	110 -0.1374576	71 8.90469092	230 8.50384063 150 11 1 7 7 7 9 2 2	1300 166.986043	480 77.7819672	460 94.0292441	340 57.116262	380 -22.108588	510 136.593906	1100 410.995676	
207Pb/ 15	206Pb abs	3.6 107	16 610	15 -170	6.4 180	15 -160	4.8 40	8.7 490	29 -330	48 -1120	19 340	28 -720	21 -80	49 -3100 46 -30	25 -680	8.4 240	28 20	3.3 -3	2.7 85	9.8 160	20 650	20 460	20 290 • 7 190	0./ 10U	18 520 38 80	2 2 2 2 2	2.6 -500	24 670	30 760	34 750	31 -340	5.1 170	3.4 275	7.4 250	47 -1100	40 510	41 610	29 700	23 -260	51 1060	94 300	
207Pb/ 1.5	235U abs	86.6	121	27	1.68	73	81.8	102.3	77	66	105	69	02 H	C/ 78	54	92.7	103	81.4	86	91.1	140	66	108	/.10	112	1 207	65 65	139	152	164	98	89.8	97.7	97 000	6.66 670	156	169	155	81	224	390	
15	abs	7618 5.30489576	9841 5.63194805	3043 5.97856278	2021220.2 0.0291202 2412 5.43311486	1781 5.98628767	2192 5.38740345	9101 5.51740945	3294 7.3174534	9069 9.01741422	0672 6.11153839	9502 6.67031804	9888 6.26602942	7163 12.1003444	1299 6.67129203	243 5.56090466	1383 6.60617012	3976 5.51239364	5437 5.30658887	1265 5.62454927	9753 6.14442769	3126 6.42113222	5334 6.32194354	1964/1/1/16 1999	2497 6.0091604 2708 7 05149948	719732733 5058	1066 6.66169274	9633 6.96249303	3609 6.96537262	9201 7.00842567	5405 7.89423196	5068 5.68426809	1708 5.72147736	19448/41 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	274 11.7130155	9322 7.81473722	2723 8.71139293	1599 7.64110033	926 7.85647732	947 9.17205364	5852 15.0609278	
206Pb/	J 238U	0.002 84.8017	0.0095 82.4249	0.0093 85.0358	0.0038 84.7692	0.0086 85.3334	0.0027 85.3982	0.0056 84.1435	0.02 85.6908	0.049 82.0849	0.012 84.5220	0.017 86.6379	0.013 85.8739	0.088 83.889/	0.016 86.830	0.0048 86.4192	0.018 85.9271	0.0018 87.4123	0.0016 87.2356	0.0058 86.7191	0.012 84.2049	0.012 86.0248	0.012 85.5375	0.0048 8/.0155	0.011 85.8822	01010 00 01000	0.02 86.9201	0.016 84.5695	0.02 82.9723	0.024 81.9509	0.022 87.9126	0.0029 89.9236	0.0019 89.7114	0.0016 89.39//	0.059 85.772	0.027 87.7479	0.036 87.1002	0.016 98.6530	0.014 103.990	0.033 94.6765	0.082 76.3215	
207Pb/ 15	206Pbe [%	26 0.0482	52 0.0711	16 0.0448	55 0.0497	0.042	57 0.0456	52 0.0591	17 0.05	52 0.084	38 0.062	24 0.043	53 0.053	51 U.U/3	0.043	36 0.0509	31 0.056	0.0453	97 0.0475	39 0.0528	78 0.078	91 0.062	16 0.067	1/ 0.0403	17 0.065	19100 93	36 0.059	94 0.083	58 0.099	58 0.115	54 0.068	74 0.0491	76 0.0521	1/50.0 56	0.098	51 0.108	19 0.126	96 0.081	17 0.047	26 0.13	45 0.331	
2	Rho	2 0.217.	7 0.0124	3 0.0275	0.120.05	3 -0.0116	1 0.235	2 0.0690	5 -0.0382	7 0.0554	7 0.133	3 0.0768	5 0.0645	78500 a	0.0390	8 0.0645	5 -0.0742	2 0.28	5 0.146	7 0.0782	5 0.209	5 0.0296	3 -0.0782	162.0 0	3 0.0760. 3 0.558		0.0383	2 0.114	3 0.0411	9 0.349	6 -0.0514	5 0.0573	8 0.337	4 U.U/98	0.174 ¹	5 0.0612	5 0.131	6 0.332	9 -0.00427	1 0.00491	5 0.366 [,]	
isotoperatio 1 s	[%]	0.000	0.0003	0.0004	0.000.0	0.0004	0.0002	0.0003	0.0007	0.0008	0.0004	0.0006	0.000	0.000	0.0006	0.0002	0.000	0.0002	0.0001	0.0002	0.000	0.0005	0.0005	0.000	0.0004	10000	0.0005	0.0006	0.0006	0.0006	0.0007	0.0002	0.0002	2000.0	0.001	0.0007	0.0008	0.0007	0.0006	00.00	0.001	
206Pb/	238U	9 0.01325	7 0.01326	6 0.01323	2 0.01327	6 0.01323	1 0.0133	6 0.01333	1 0.01342	3 0.01343	2 0.01344	3 0.01345	3 0.0135	0.01353 0.01353	6 0.01348	9 0.01355	4 0.01356	6 0.01361	3 0.01362	1 0.01363	3 0.01367	1 0.01368	2 0.01369	50510.0	2 0.01371 7 0.01374	F/CTOO 2	8 0.01377	7 0.01382	5 0.01385	1 0.01398	4 0.01409	5 0.01407	7 0.01409	4 0.01413 4 0.01413	5 0.0143	8 0.01483	4 0.01509	7 0.01609	4 0.01624	1 0.0165	5 0.0185	
15	[%]	0.003	0.01	0.01	200.0	0.01	0.005	0.00	0.03	0.05	0.02	0.0	0.02		0.02	0.00	0.03	0.003	0.00	0.01	. 0.02	. 0.02	0.02	600.0	0.0		0.02	0.02	0.03	0.04	0.03	0.005	0.003		0.08	0.04	0.05	0.03	0.02	0.06	0.1	
207Pb/	235U	0.0893	0.129	0.0742	0.0916	0.078	0.0841	0.1047	360.0	0.118	0.116	0.082	0.083	20.0	0.062	0.0966	0.102	0.0835	0.0884	0.096	0.151	0.11	0.121	2000.0	0.115	70000	-000.0 580.0	0.163	0.186	0.204	0.117	0.0932	0.1014	01.04 201.0	782.0	0.211	0.217	0.177	0.0	0.27	0.7	
	Th/Ub	2290 1.65223665	136.3 2.15323855	211.3 1.77712363	879 1.52076125	191 1.86705767	522 1.65451664	209 5.83798883	68.2 2.61402836	81.8 2.39882698	85.2 3.15555556	62.7 2.0557377	317 3.60227273	03.2 2.0/932489 1247 1 44682126	98.9 3.17190507	458 1.33139535	115.2 2.32258065	3630 1.64253394	3680 0.94601542	471 1.92244898	204.6 1.82352941	275 2.36254296	110 1.64917541 1700 1 0FE00062	70006550.1 00/T	205 2.93696275	00000170.0 II./C	137.9 2.60188679	83.5 5.30832804	79.9 2.25070423	60 1.8404908	67.8 3.7877095	841 0.82857143	2820 2.01428571	22/21/21/21/21/21/21/21/21/21/21/21/21/2	83 1.53419593	55.7 2.90104167	172 0.78181818	105.9 2.62779156	155 3.97435897	70.4 2.87346939	26.91 3.27372263	
Pb Th U	206 ppm ppm ppm	1386	63.3	118.9	5.0/1 578	102.3	315.5	35.8	26.09	34.1	27	30.5	80 1	23./ 021	31.18	344	49.6	2210	3890	245	112.2	116.4	66.7	OTOT	69.8 7 30	1001	1324	15.73	35.5	32.6	17.9	1015	1400	38.2	54.1	19.2	220	40.3	39	24.5	8.22	
Spot number		TCR_815_145	TCR_815_19	TCR_815_71	TCR 815 60	TCR_815_61	TCR_815_29	TCR_815_27	TCR_815_164	TCR_815_87	TCR_815_33	TCR_815_40	TCR_815_141	ICK_815_122 TCP_815_45	TCR 815 57	TCR 815 51	TCR_815_53	TCR_815_114	TCR_815_44	TCR_815_48	TCR_815_62	TCR_815_90	TCR_815_157	1 CK_015_4 /	TCR_815_55 TCP_815_21	TCD 015 50	TCR 815 92	TCR_815_15	TCR_815_8	TCR_815_14	TCR_815_39	TCR_815_156	TCR_815_54	ICK_815_36 TCP_015_46	TCR 815 59	TCR 815 73	TCR_815_88	TCR_815_43	TCR_815_38	TCR_815_69	TCR_815_56	

	_		652	025	264	117	873	564	524	992	715	667	621	758	034	302	507	118	994	326	ĺ				926	818	666	715	209	578	383	912	567	525	373	/54	100	879	865	875	1
	%	Concf	3.42013	3.57842	4.22436	4.91479	10.6912	11.232	13.5377	6.19913	12.166	3.7834	7.9987	8.27428	5.09159	5.24766	8.0829	17.0449	17.3264	20.5934			%	Concf	51.1654	148.254	-603.03	42.9330	4352.27	36.8957	382.547	-59.836	82.3032	59.605	-347.34	194.071	137.213	566.891	332.623	-222.8	
		2	074.97432	57.891613	312.51144	57.095661	5.5091276	3.2416821	3.0631861	53.655913	5.5950687	35.843854	07.197414	13.911083	94.826956	31.176973	70.115703	14.899074	15.760282	19.590694				S	.14193285	80478695	1.0577454	8.5046792	.12429688	1.4412867	67606554	-14.55585	79992587	1.08/0886	2.2844312		.72889247 76916539	78293294	90781662	3 0180291	
	b/ 15	b ab	.75855 10	.42236 86	.46619	.48816 25	363001 95	985617 93	950453 43	9.6908 16	287136 86	.19745 23	.50921 30	740451 24	3.5916 19	.46822 23	.01575 27	791831 11	195024 14	992315 11			Pb/ 13	Pb ab	845809 9.	074065 5.	926808	862695 1	412794 0.	827485 2	494556 2.	.58747	576966 4.	421856 1	264712 -	141045 4.	343442 5. 914108 4	037233 1	490323 1	975357	
	207F	206F	332 4014	184 2803	624 2154	557 1662	359 768.	669 686.	679 594.	566 127	834 630.	579 2463	671 1083	418 968.	904 179	782 1609	057 1030	154 427.	818 473.	084 427.			207	206	8566 160.	7487 53.3	3412 -12.	7612 187.	5744 1.79	5991 218.	7363 21.2	1174 -130	1967 94.8	59/3 129.	5556 -23.	703 29.8	2687 56.7 1793 59.7	3431 14.0	7184 23.2	1377 -35	
es (Ma)	15	abs	9 272.999	9 120.965	6 39.2963	8 29.9976	2 16.6139	1 16.2477	4 11.5034	8 21.6654	4 16.4393	8 37.8269	2 40.5324	7 32.057	5 29.8033	9 29.5605	5 35.2193	4 24.71	4 31.172	1 29.9910		es (Ma)	15	abs	12 10.634	37 12.471	12 10.690	94 12.56	07 10.129	26 12.678	55 13.303	72 11.493	03 9.8148	29 14./50	7 14.467	223.14.855	32 14.901. 75 14.162.	15.879	32 13.951	002 01 00	70/107 AS
Age	207Pb/	235U	834.22564	360.69084	237.25441	167.67519	110.17562	100.06354	100.09138	135.23613	96.990233	283.96191	133.94853	117.93827	198.32293	168.41682	125.78421	84.581565	96.557216	101.50592		Ag	207Pb/	235U	84.973934	78.213288	75.156714	84.2670	75.723560	85.43725.	79.34708	71.91167	78.604640	/8.80/39	77.503180	/6.109/60	77 76642	77 32254	75.66279		// 222.4/
			8342812	9375579	2769287	4975438	0130108	7773777	1903659	5457669	1182078	3130559	6425953	0947762	8348155	2002873	6870593	8387642	2468237	6314393				s	17653003	20608506	06980581	03206665	93551327	99820674	99772225	95040833	91186099	1055858.	.8289728	2.829894	8093938	7925846	.7696064		219128/.
	1 15	abs	10223 25.	18233 12.	24648 7.	78213 7.3	78962 7.	50988 6.8	29193 7.	98235 7.6	52397 7.6	42553 8.6	73238 9.1	53708 8.2	23367 9.4	94684 8.5	56652 8.1	57401 8.3	81332 7.9	83089 8.4			b/ 1s	l ab:	975506 9.	07986 9.	38235 9.0	52253 9.0	353295 8.9	80588 8.9	392365 8.9	395078 8.9	709735 8.	1//538 12)85172 12	10319/ I	474141 12 35771 12	59699 12	818297 12		845755 12
	206Pt	238U	58 137.3	100.3	84 91.01	08 81.70	91 82.14	14 77.16	02 80.54	175 79.32	372 76.68	56 93.19	15 86.66	65 80.15	123 91.32	25 84.45	46 83.25	113 72.91	66 81.98	25 88.13			206	2381	244 82.29	691 79.03	163 77.95	843 80.65	828 78.08	036 80.73	722 81.28	375 78.13	328 78.07	7I.// 69/	733 80.80	17.1/ 160	504 77.84 867 7835	493 79.35	446 77.3		567 80.15
	15	[%]	26.77556	30.95828	14.5052	15.46451	12.43020	13.57258	7.238113	12.78870	13.73898	9.574703	28.35208	25.17816	10.86235	14.36356	26.22442	26.85864	30.80342	27.94225			15	[%]	8 5.68366	4 10.8892	1 8.18257	5 9.85010	7 6.9279	7 9.79826	2 12.5935	2 11.1464	2 5.06013	79995.8 7	8 9.81929	/ 10.2612	9 10.0977 8 7 97633	2 12.7318	4 8.20600		8.3891
	07Pb/	06Pbe	.42922619	.19723142	.13426327	.10209134	0.0648158	.06237484	.05976151	.08344696	.06074698	.16071509	07556274	.07139486	.10964935	.09921811	07358164	.05538484	05652872	05538982			207Pb/	206Pbe	0.0492730	0.047080	0.0457995	0.0498469	0.0460797	0.0505164	0.0464540	0.0436466	0.0479106	0.04861/4	0.0456041	0.0468152	0.0471480	0.0463141	0.0464927		0.0453656
	2	2	493065 0	3454499 0	3273546 0	0279472 0	613635	1891014 0	7676837 0	0229548 0	3562452 0	9525806 0	1944346 0	679377 0	9103184 0	7473187 0	5041672 0	9354421 0	939155 0	.324988 0					89093427	73051949	31796889	75086157	85544065	75102375	56017168	71667526	91420447	16011688	85047029	18506626	85230707	78464725	89551712		88498207
ratios		Rho	45359 0.5	55168 0.3	52975 0.4	16627 0.5	05466 0.5	90071 0.5	37184 0.7	0.5298 0.6	05722 0.5	52837 0.6	40654 0.3	41828 0.3	46243 0.6	77129 0.5	59168 0.3	78761 0.3	54557 0.2	11744 0		oe ratios		Rh	504291 0.	487309 0.	348441 0.	983652 0.	432677 0.	449382 0.	687745 0.	543956 0.	415076 0.	41508/ 0.	875768 0.	U39095 (544885 U. 718229 C	144149 0.	127432 0.		447015 0.
adorosi	1 S	[%]	18.81	58 12.89	44 7.995	59 8.995	173 8.5370	32 8.912	26 8.927	07 9.649	83 9.926	76 9.261	05 10.574	88 10.2	72 10.38	98 10.08	118 9.811	42 11.49	63 9.665	35 9.602		Isotop	15	[%]	1825 11.1	3511 11.6	2166 11.6	9024 11.1	3665 11.4	0325 11.1	3983 11.0	9515 11.4	3439 11.	5944 16.b	1432 15.	5869 16.6	1929 16.4 2861 163	9089 16.1	5834 16.5		1631 15.9
	206Pb/	238U	0.021528	0.015683	0.014218	0.012755	0.012824	0.012042	0.01257	0.012382	0.011966	0.014561	0.013535	0.012511	0.01426	0.013187	0.012998	0.011375	0.012799	0.013766			206Pb/	238U	4 0.01284	1 0.0123	7 0.012	9 0.0125	5 0.01218	5 0.01260	1 0.01268	8 0.01219	31210.0 6	0710.0 2	1 0.01261	0710.0 /	8 0.01214	7 0.01239	3 0.01206		9 0.01251
	s	6]	2.7248787	3.5370816	6.5629635	7.8903357	5.0795027	6.2374495	1.4929652	6.0204638	6.9495245	3.3211377	0.2597321	7.1815214	5.0277074	7.5520335	7.9997817	9.2162244	2.2842965	29.546068			1 S	[%]	12.51543	15.945818	14.224066	14.914020	13.377044	14.839661	16.766509	15.982685	12.486348	18./1/07	18.667046	19.518/95	19.305821	20.537145	18.439338		18.016976
	² b/ 1	ر ا	7410628 3	2650355 3	5321494 1	7955225 1	1461211 1	3356691 1	3359717 1	1246397 1	023174 1	2267989 1	101614 3	2316603 2	1569793 1	3041411 1	3187843 2	3686799 2	9976264 3	0513567			TPb/	เรบ	08728806	0.0800727	07682629	08653143	0.0774276	0.0877843	08127941	07339038	08048907	080/0484	07931763	0//83/48	078597984	07912562	07736312		07828979
	207.	235	53131 1.2	22142 0.4	35319 0.2	98823 0.1	99948 0.1	75762 0.1	52614 0.1	12986 0.1	58905 0.1	59714 0.3	25892 0.1	52638 0.1	32385 0.2	07163 0.1	38615 0.1	91563 0.0	38835 0.0	27534 0.1			2(lb 2.	715196 0	035727	462783 0	105699 0	359098	1383183	657886 0	273587 0	1634752 0	/842/2 0	077402 0	0 310106	477593 0	0 242001	574073 0		857874 0
		Th/Ub	895 0.267	620 0.279	927 0.285	562 0.35i	93 0.590	135 0.610	905 0.507	64 0.399	526 0.358	864 0.371	0.353	542 0.314	731 0.36	159 0.357	85 0.33	08 0.396	39 0.347	339 0.433				Th/L	0054 0.84	8377 0.75	6542 0.64	9581 0.69	8934 0.93	3836 0.60	2597 0.70	6256 0.61	6104 0.74	79.0 7685	6842 0.66	36.0 9539	8618 0.5 8176 0.67	4861 0.64	7547 0		32.0 2260
	n	mdd	12.04418	20.89565	22.19999	76.28545	140.3482	207.0614	120.3879	58.16157	85.84356	67.23003	68.52190	59.01105	33.39087	53.24990	35.56138	56.0590	94.83335	48.85189			n	mqq	34 356.53	12 321.2	52 256.24	29 339.52	97 347.72	51 249.42	73 238.36	02 262.83	54 515.65	C.822 P.4	06 248.94	1/ 2/8/b	22 297.54 21 309 90	52 253.52	19 251.58		82 307.67
	4	ma	3.22340218	.83451577	33483869	27.453787	32.9457681	126.46435	51.1000085	23.2140216	30.7911455	24.9892125	14.2059747	18.5605334	12.2958051	9.0140309	1.8725786	2.2506967	12.9440161	21.166321			Th	mdd	302.0351	241.0776	165.1836	234.634	324.6365	150.6100	168.4219	161.0492	384.8586	143.4990	164.4976	164.1493	162.9850	164.0063	144.4296		181.0885
	T.	9	0110875	2282257 5	3460109 é	0339572	9546296 8	5691422	3572952 6	6951686	0437081	7559568	1700779	7685049	5008982	9629547	4887252 1	8531867	7074069	8008469			9	ma	5.37174061	1.48710573	3.52813849	4.84248775	5.01552253	3.41230319	3.3352689	3.50735893	7.07540787	3.18484821	3.42815813	5./b544952	3.91937551	1.57013457	1.33409526		1.19086484
	β	udd	96962 0.5	34478 0.5	19154 0.5	47587 1.2	71976 2.0	27864 2.9	46171 1.7	85449 0.8	73593 1.2	19363 1.3	58864 1.1	90863 0.8	83315 0.5	61476 0.8	23139 0.5	36144 0.	38911 1.2	02934 0.6			4	6 b	1124492	3524999	1696662	2710588	2837779	0344317	3340281	2085348	1118755	4361/1/	5661885	2013163	2618827	3628179	3505855		0158869 /
	ber	f206	0.554	0.382	0.40	0.111	0.081	0.036.	0.072	0.114	0.083	0.191	0.187	0.343	0.375.	0.270	0.399.	0.325	0.09	0.218			mber	f20	nple1 0.0	nple 2 0.0	nple3 0.0	nple4 0.0	nple5 0.0	nple6 0.	nple 7 0.0	nple8 0.0	nple9 0.0	nple1 0.0	nple 2 0.0	nple3 0.0	nple4 0.0	hole 6 0.0	nple 7 0.0		nole 8 0
	Spot num		001 A	002 A	003 A	004 A	005 A	006 A	007 A	008 A	A 900	001 B	002 A	003 B	004 B	005 B	006 B	007 B	008 B	009 B			Spot nui		003-San	004-San	005-San	006-San	007-San	008-San	009-San	010-San	011-San	003-5an	004-Sar	005-Sar	006-San	008-San	009-San		010-San

								1	sot ope ratios						Ages (I	Ma)			
Spot number		Pb	#			207Pb/ 1	1 s 1	206Pb/	1 s	2	07Pb/ 1		206Pb/	s	207Pb/ 1	1 s	207Pb/	ls 9	
	f206	mdd	bpm	mdd	Th/Ub	235U	.%]	238U	.%] А	tho 2	06Pbe []	<i>[</i> %	238U	ıbs	235U G	abs	206Pb	ibs C	oncf
64SA/01 A	0.21613616	0.99853858	31.3055336	5 63.3530405	0.49414414	0.103507	70.4140506	0.01501516	66.8831543 (0.94985523 (0.04999638	2.0177698	96.0744385	64.257615	100.00842	70.4199792	194.824637	42.8960401	49.31329
64 SA/02 A	0.12028135	0.74997135	16.5926733	7 49.8916869	0.33257392	0.12568752	72.4342367	0.01608912	62.4130557 (0.86165132 0	0.05665764	6.7604286	102.891641	64.2178171	120.215236	87.0769883	478.232292	175.800241	1.5149923
64SA/03 A	0.43816302	0.68508645	16.7303147	7 43.3765158	0.38569983	0.13734032	69.9025468	0.01591183	63.500452	0.908414 (0.06260033 2	9.2242818	101.766733	64.6223357	130.672163	91.3431699	694.681438	203.015661	4.6494102
54SA/04 A	0.33469063	1.09315612	34.9825482	2 63.7891312	0.54840923	0.14433638	69.477074	0.01659537	60.6059298 (0.87231552 0	0.06307942	3.9703559	106.102612	64.3044747	136.898909	95.1133564	710.909409	241.498456	4.9249132
54SA/05 A	1.22631436	0.29708244	4.42800067	7 16.9570658	0.26113012	0.20853056	77.9874238	0.01601473	64.7191971	0.8298671 0	0.09443847	3.5139495	102.419614	66.2851518	192.31884	149.984509	1516.89855	660.062469	.75190928
64 SA/06 A	0.32878422	1.67628189	28.678525	9 84.3772169	0.33988475	0.14404369	63.2574023	0.01778998	56.6750411 (0.89594323 (0.05872427 2	8.0969512	113.673402	64.4244474	136.639165	86.4343863	556.888783	156.46877	0.4122269
64 SA/07 A	0.32319493	0.70109787	17.8079583	3 48.3074547	0.36863789	0.11501205	82.3303992	0.01402901	71.7585421	0.8715923 (0.05945866 2	0.3609498	39.8082985	64.4451257	110.539893	91.007935	583.931224	235.680188	5.3799446
64SA/08 A	0.34897846	0.79292644	20.4561661	1 51.4319351	0.39773277	0.08445725	80.8345636	0.01461714	68.8645859	0.85192005 0	0.04190571 2	12.3307866	93.5461278	64.4201535	32.3268877	66.5485804	-232.20134	-98.292654	-40.286644
64SA/09 A	0.45331791	0.490685	14.5101775	5 31.9293171	0.45444685	0.10320198	83.7760109	0.01317578	76.7105587 (0.91566259 (0.05680813	3.6735829	34.3818326	64.7297752	99.7277157	83.547902	484.092624	163.011331	7.4309271
64SA/01 A	0.51850931	0.76940147	13.381557)	7 43.0974523	0.31049533	0.09993338	91.5253329	0.01353026	78.4121105	0.85672576 0	0.05356771	47.206223	86.6368833	67.9338086	96.7148408	88.51858	352.919469	166.599952	4.5486268
64SA/02 A	0.65152955	0.6628635	17.5177042	2 39.0094347	0.44906327	0.09559466	97.9358281	0.01264368	83.132402	0.84884565 (0.05483514	1.7728709	80.9954085	67.3334286	92.7017147	90.7881919	405.507438	209.942842	9.9738404
64SA/03 A	0.81260771	0.68587912	21.5049472	2 41.3964607	0.51948758	0.08564786	93.7123823	0.01232226	85.4977659	0.91234225 (0.05041094	38.368511	78.9489842	67.4996176	83.4410459	78.1945919	213.985636	82.1031024	36.894525
64SA/04 A	0.19988539	2.4235756	90.5406634	1 152.46656	0.59383948	0.09139784	90.0200266	0.01189421	88.1373684 (0.97908623 0	0.05573127	.8.3141881	76.2226182	67.1806098	88.8046854	79.9420014	441.678269	80.8897888	7.2574979
64SA/05 A	0.38752669	2.11595195	101.489758	3 129.699163	0.78250126	0.08556596	88.7053594	0.01273276	82.5942495	0.93110777 0	0.04873908	2.3547635	81.5624699	67.3659099	83.3644488	73.9487339	135.298101	43.7753806	60.283529
64SA/06A	0.8652585	0.56397524	14.6162604	4 36.1485143	0.40433917	0.0712216	105.349997	0.01196023	88.8041856	0.84294436	0.0431888	6.6783774	76.6431394	68.0623158	59.8580325	73.5954351	-156.71756	-88.824971	-48.905265
64SA/07 A	0.18175086	2.86146367	105.070406	5 178.630089	0.58820105	0.0849965	88.7561003	0.01216409	86.5820179	0.97550498 (0.05067808	.9.5243316	77.9416693	67.4834701	32.8316615	73.5181525	226.214546	44.166878	4.4547558
64 SA/08 A	0.71127384	0.6869112	24.2640371	1 44.1958348	0.54901185	0.08307849	107.137173	0.01205315	90.3395126	0.84321352 0	0.04999041	7.5946721	77.2350797	69.7737946	81.0351246	86.8187414	194.547159	112.048798	9.6999268
64SA/09 A	0.11260205	2.42929531	30.851391	1 160.259227	0.1925093	0.07748407	84.2729834	0.01297154	80.9013252	0.95999123 (0.04332309 2	3.5989686	83.0822484	67.21464	75.7767729	63.8593472	-149.01016	-35.164861	-55.756096
64SA-001 A	0.04419161	2.0272498	38.8049315	3 157.22378	0.24681337	0.06517269	61.0066749	0.01453427	48.5323562 (0.79552535 0	0.03252153	6.9651834	93.0195853	45.1445964	54.1081714	39.1102637	-917.61336	-339.19746	-10.137122
64SA - 002 A	0.11868773	0.41801323	15.5856846	5 51.715972	0.30137082	i0///I0#	i0//vid#	0.01303267	54.7540609	i0//IC#	i0///I0#	#DIV/01	83.4712459	45.7038968	#VALOR!	#VALOR!	#NINUM!	iWUN!N#	WINN!N#
64SA - 003 A	0.11761243	0.69980604	28.8949136	5 73.7609979	0.39173702	i0///I0#	i0//vid#	0.01422885	50.1848485	i0//IC#	i0///I0#	#DIV/01	91.0785832	45.707649	#VALOR!	#VALOR!	#NINUM!	iWUN!N#	WINN!N#
64SA - 004 A	0.0003306	37.929604	277.210051	1 290.528335	0.9541584	0.88534576	9.38380319	0.1145014	6.54947932 (0.69795574 (0.05607908	.72012522	598.837236	45.7702003	543.865796	60.4190991	455.500575	30.610209	53.421812
64SA-005 A	0.00215561	29.5346882	167.983545	5 242.55834	0.69254904	0.83849702	10.6493751	0.11004796	6.82823582	0.64118652 0	0.05526094 8	17217144	573.026436	45.9558322	518.315889	65.8467784	422.795622	34.551583	59.184817
64SA - 006 A	0.00110797	58.9119742	32.2364305	3 83.6362975	0.38543588	24.6615245	12.350744	0.6103409	9.73340209	0.78808225	0.293053 7	.60274701	3071.36759	298.948557	3294.91066	406.945982	3433.88394	261.069508	9.4429645
64SA - 007 A	0.00718137	11.2199187	100.03182	2 97.1457903	1.02970825	0.76427841	25.6411946	0.12161527	10.1641015	0.39639734 (0.04557873 2	3.5406437	739.854015	75.1995127	576.475374	147.815173	-24.616382	-5.7948548	-3005.5351
64SA - 008 A	0.0024013	30.2801036	258.002855	3 235.122911	1.09731056	0.93337894	11.2697855	0.12461816	6.93438247	0.6153074 0	0.05432196 8	.88382828	757.089846	52.4995055	669.41079	75.4411602	384.420894	34.1512921	96.942949
64SA - 009 A	0.00345188	69.1849323	612.478235	5 480.618422	1.27435447	1.09150158	15.1690897	0.12307909	11.3317816	0.74703109 0	0.06431893	0.0842455	748.261701	84.7913817	749.233148	113.651848	752.135515	75.8471917	99.484958

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones.

/ Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021

36

A	n	ex	0	1.	(Co	n	ti	n	ua	ac	i	ór	1)	R	le	S	u	lt	ac	los	ise	otó	pic	:09	5	U-	P	b	e	n	ci	rc	0	ne	es	-				
	%	Concf 22 5741703	18.5415057	44.9982233 18.44412	93.2009473	337.764751	-87.212568	-46.241091	-9.7223262	-12.137649	-7.8167338	-11.851412	iWNNIN#	#NINUM!	7.61801473	-32.249749	-43.336864	-24.189153	47 9784077	-11.364941	-106.50508			% Concf	22.5741793 18 5415057	44.9982233	18.44412	337.764751	-87.212568	-7.1/02457 -46.241091	-9.7223262	-38.765246 -12.137649	-7.8167338	-8.4551619	#NINUMI	7.61801473	48.4884115	-43.336864	-24.189153 -45.146653	47.9784077	-11.364941 -106.50508
	15	abs 67.771887.4	60.2301283	65.8740876	23.2112815	4.87137108	-34.675284	-202.43235	-269.27663	-376.92422	-332.97104	-174.08225	iWNN!N#	imunin#	104.403135	-79.25579	-22.034801	-89.575122	-39.043903 8 64730876	-272.41546	-20.272396			1s abs	62.2718824 60 2301283	25.4451291	65.8740876	3/.b/11832 4.87137108	-34.675284	-282.45295 -28.162365	-269.27663	-28.752806 -376.92422	-332.97104	-1/4.00223	WININ#	104.403135	72.4105624	-22.034801	-89.575122 -39.043903	8.64730876	-272.41546 -20.272396
	207Pb/	206Pb	452.325703	16/.33062 405.943462	1048.79754	21.6711208	-84.946302	-128.74427	-820.41417	-744.27861	-991.09954	-701.86397	IWNN IN#	imun in#	795.361867	-236.02398	-211.37662	-379.76588	-217.94073 187 035494	-768.26559	-72.174303			207Pb/ 206Pb	345.944776	167.33062	405.943462	21.6711208	-84.946302	-1089.4106 -128.74427	-820.41417	-222.23725 -744.27861	-991.09954	-1084.4665	#NINUM	795.361867	158.749575	-211.37662	-3/9./6588 -217.94073	187.035494	-768.26559 -72.174303
1-04	1 s	abs 18.1673243	16.1867394	14.5868/44 16.8404624	28.9371196	18.1541506	29.4544832	14.6922365	19.7804746	34.1297879	18.5912811	16.7496704	19.35733316	14.8603665	16.3580529	24.0407291	11.5379227	19.5263908	10 0302511	23.389657	21.961899			:(Ma) 1 s abs	18.1673243 16 1867394	14.5868744	16.8404624	16.1312/92 18.1541506	29.4544832	14.2896306 14.6922365	19.7804746	12.6927452 34.1297879	18.5912811	15.0562326	19.3573316 14 8603665	16.3580529	37.5589982	11.5379227	19.5263908 18.252569	10.0302511	23.389657 21.961899
	207Pb/	235U	97.7989449	<pre>c19c281.8/ + c19c281.82 85.9591069</pre>	999.719442	71.6893686	69.516597	55.206543	57.001529	7027670.05	52.3151964	61.8686433	47.2255442	19.62956	83.2892834	67.298479	81.3163378	76.5259005	86.917597 93 3628413	63.3911953	72.4187193			Age: 207Pb/ 235U	87.2634793	78.1825615	85.9591069	71.6893686	69.516597	51.0770886	57.001529	66.0767707	52.3151964	59.8566859	47.2255442	83.2892834	79.588058	81.3163378	86.917597	93.3628413	<pre>63.3911953 72.4187193</pre>
	15	abs 1 8 16855.405	8.24427796	8.21856611 8.21856611	3 18.2356456	8.5356873	8.41305567	9.02393123	8.98600424	9.17708005	8.97410371	9.02669371	9.2960434	9.08636673	8.85178289	9.27611765	8.81767405	8.94067901	0.780635 8 70228716	8.90880664	8.78939537			1s abs	1 8.16855405 8 24427796	8.13971444	8.21856611	8 11.432//8 8 8.5356873	8.41305567	9.21022246 9.02393123	8.98600424	9.00738106	8.97410371	1 9.06427887	9.2960434	9.0003000/2 8.85178285	0.3171335	8.81767405	1 8.9406/901	8.70228716	9 8.90880664 5 8.78939537
	206Pb/	238U 238U	83.8679955	74.8726992	1 977.489246	8 73.1974073	9 74.0838507	[59.5327561	3 79.7633422	1 90.3379255	5 77.4716135	83.1807912	7 90.9387885	9 69.4131263	9 60.5907842	t 76.1171425	7 91.6039975	1 91.8621524	9 98.3929455 5 89 7366517	87.3129279	2 76.8692995			206Pb/ 238U) 78.094194 8 83 8679950	75.2958062	74.8726992	802/08080/2023	9 74.0838507	2 78.1134165 1 59.5327561	3 79.7633422	7 86.1508177 1 90.3379255	5 77.4716135	91.6933971	7 90.9387885	60.5907842	76.9751471	91.6039975	1 91.8621524 9 98.3929455	89.7366517	1 87.3129279 2 76.8692995
	15	[%]	13.3156546	16.2274045	2.21313271	22.47863	40.8202395	21.8746551	32.8220348	50.6428934	33.5961245	24.8028479	39.6939767	74.5636899	13.1264949	33.5795494	10.424427	23.5869321	17.9149179	35.4585011	28.0881072			15 [%]	133156546	15.206499	16.2274045	22.47863	40.8202399	25.92/1342	32.8220348	50.6428934	33.5961245	23.1298989	39.6939767	13.1264949	45.6130749	10.424427	17.9149179	4.62335175	35.4585013
	207Pb/	206Pbe	0.05599892	0.05484583	0.07426942	0.04646218	0.04446369	0.04367918	0.03363782	0.03455626	0.03171729	0.03508552	0.0243045	0.01307737	0.06565393	0.04184225	0.04225394	0.03955753	0.04214371	0.03426259	0.04469638			207Pb/ 206Pbe	0.05340269	0.04940996	0.05484583	0.04646218	0.04446369	0.03069182	0.03363782	0.04207179	0.03171729	0.03074206	0.0243045	0.06565393	0.04922895	0.04225394	0.04214371	0.04982924	0.03426255
		Rho 0 50342135	0.59392438	0.56028687	0.64451346	0.4604915	0.26802007	0.56956387	0.32464826	0.19667521	0.32596204	0.40083902	0.24939082	0.17291382	0.74384371	0.34114687	0.67840619	0.38143484	0.52175196	0.27653243	0.37703965			Rho	0.50242125	0.57941006	0.56028687	0.46049152	0.26802007	0.56956387	0.32464826	0.19667521	0.32596204	0.39299909	0.24939082	0.74384371	0.25648721	0.67840619	0.52175196	0.90266334	0.27653243
	1 souther tarios	[%] 10.4508737	9.83006434	10.9767194	1.86555971	11.661188	11.3561263	15.1579262	11.2658321	10.1586128	11.5837315	10.8518969	10.2223084	13.0902716	14.6091242	12.1866341	9.62586163	9.7327123	10.9567153 9 69758398	10.2033076	11.4342077			Isotope ratios 1 s [%]	10.4598737 9 83006434	10.8103158	10.9767194	13.1/0264 11.661188	11.3561263	10.5106431 15.1579262	11.2658321	10.4553634 10.1586128	11.5837315	9.88542159	13 0902716	14.6091242	12.1040807	9.62586163	9.7327123 10.9567153	9.69758398	10.2033076 11.4342077
	206Pb/	238U	0.01309502	0.01168234	0.16373309	0.01141946	0.01155855	0.00927779	0.01245015	0.01411232	0.01209029	0.01298703	0.01420685	0.01082589	0.00944346	0.01187766	0.01431151	0.01435213	0.01538028	0.01363656	0.01199573			206Pb/ 238U	0.01218804	0.01174874	0.01168234	0.01141946	0.01155855	0.00927779	0.01245015	0.01345384 0.01411232	0.01209029	0.01432558	0.01420685	0.00944346	0.01201235	0.01431151	0.01435213 0.01538028	0.01401774	0.01363656 0.01199573
	15	[%] 20 8180210	16.5510369	18.65/25/4526 19.5912487	2.89452405	25.3233512	42.370433	26.6132159	34.7016561	51.6517189	35.537057	27.0729557	40.9891128	75.7040228	19.6400452	35.7225445	14.1889355	25.5160549	20.9998546	36.8973276	30.3262736			1s [%]	20.8189319 16 5510369	18.6574526	19.5912487	14.1540966 25.3233512	42.370433	27.9765957 26.6132159	34.7016561	16.6344089 51.6517189	35.537057	25.1538025	40.9891128	19.6400452	47.1917511	14.1889355	25.5160549 20.9998546	10.743301	36.8973276 30.3262736
	207Pb/	235U	0.10110838	0.08834351	1.67667056	0.07315539	0.07086145	0.05587538	0.0577436	0.06723982	0.052873	0.06282593	0.04760864	0.01952025	0.08548561	0.06852469	0.0833785	0.0782793	0.08937136	0.06442082	0.07392652			207Pb/ 235U	0.08974251	0.08004002	0.08834351	0.07315539	0.07086145	0.05158996	0.0577436	0.07804385 0.06723982	0.052873	0.06072205	0.04760864	0.08548561	0.08153605	0.0833785	0.08937136	0.09630824	0.06442082 0.07392652
		Th/Ub 0 56654607	0.46853795	0.70058245	0.63344493	0.69731402	0.48534402	0.54389781	0.47687496	0.58175321	0.47815323	0.444566	0.45695777	0.61635036	0.53888947	0.5269079	0.29428013	0.38965347	0.82748801	0.45969147	0.38183712			Th/Ub	0.56654697	0.74208277	0.70058245	0.69731402	0.48534402	0.41846229 0.54389781	0.47687496	0.40000376 0.58175321	0.47815323	0.30972825	0.45695777	0.53888947	0.33503118	0.29428013	0.38965347 0.82748801	0.86575862	0.45969147 0.38183712
	U	01 7606778	153.374995	141.504818 84.7654012	73.3215758	93.3011904	75 70010376	153.090256	52.443747	53.6461312	90.0269086	104.153909	79.7217518	72.9253332	170.212551	57.1155024	104.495072	89.4712365	165.5753 250.63108	70.2914541	106.076863			U Dama	91.7696748 153 374995	141.504818	84.7654012	1//.134/U8 93.3011904	58.9719376	75.709102 153.090256	52.443747	142.341278 53.6461312	90.0269086	113.056361	79.7217518	170.212551	44.6805995	104.495072	89.4712365 165.5753	250.63108	70.2914541 106.076863
	τh	ppm 51 0018311	71.8620064	105.008287	46.4451803	65.0602277	28.6216775	83.2654558	25.0091098	31.2088088	43.0466572	46.303287	36.4294739	44.9475551	91.725752	30.0946095	30.7508238	34.8627779	137.011575 216 986019	32.3123816	40.5040838			Th Dom	51.9918311 71 8620064	105.008287	59.3851521	65.0602277	28.6216775	31.6814045 83.2654558	25.0091098	56.937046 31.2088088	43.0466572	35.0167489	36.4294739 AA 9A75551	91.725752	14.9693939	30.7508238	34.8627779 137.011575	216.986019	32.3123816 40.5040838
	bb	ppm 1 27122112	2.29380508	1.15238211	13.7581351	1.23152066	0.72495892	1.5046484	0.66078712	0.77679217	1.07776242	1.39743354	1.05466113	0.77985925	1.88823014	0.7491196	1.50257661	1.32083466	2.64106557 4 10338257	0.95135584	1.31469151			Pb ppm	1.27132112 7 79380508	1.97983279	1.15238211	4.5806434 1.23152066	0.72495892	0.9387242 1.5046484	0.66078712	1.98011198 0.77679217	1.07776242	1.53974119	1.05466113	1.88823014	0.56757027	1.50257661	1.32083466 2.64106557	4.10338257	0.95135584 1.31469151
		f 206	0.03001117	0.02375424	0.00337719	0.02349026	0.05463533	0.03492542	0.07240509	0.05122253	0.0449991	0.03655195	0.01811179	0.05332782	0.07668493	0.10742454	0.04803998	0.05985043	0.02170464	0.05262395	0.07736904			f 206	0.03915111	0.01702869	0.02375424	0.02349026	0.05463533	0.02853795 0.03492542	0.07240509	0.0238741 0.05122253	0.0449991	0.01655854	0.01811179	0.07668493	0.14162097	0.04803998	0.02985043 0.02170464	0.04812068	0.05262395 0.07736904
	pot number	/TPCA - 001 A	/TRCA - 001 A	/TRCA - 003 A /TRCA - 004 A	/TRCA - 005 A	/TRCA - 007 A	/TRCA - 008 A	/TRCA - 001 B	/TRCA - 002 B	/ IRCA - 003 B / TRCA - 004 B	/TRCA - 005 B	/TRCA - 006 B	/TRCA - 008 A	/TRCA - 009 A	/TRCA - 001 C	/TRCA - 003 B	/TRCA-004 B	VTRCA-005 B	/TRCA-006 B /TRCA-007 B	/TRCA-008 A	/TRCA-009 A			pot number	VTRCA - 001 A	/TRCA - 003 A	/TRCA - 004 A	V IKCA - 006 A VTRCA - 007 A	/TRCA - 008 A	/TRCA - 009 A /TRCA - 001 B	/TRCA - 002 B	/TRCA-003 B /TRCA-004 B	/TRCA - 005 B	/TRCA-000 B	/TRCA - 008 A	/TRCA - 001 C	/TRCA - 002 B	/TRCA - 004 B	/TRCA-005 B /TRCA-006 B	/TRCA-007 B	/TRCA - 008 A /TRCA - 009 A

/ \		ados isotopicos o i s en en	concos
	2.2.574193 18.5415657 18.5412657 18.54123 18.94213 33.7.54751 33.7.754751 33.7.754751 33.7.754751 46.24109 -12.1285246 -12.1285246 -12.12851419 -12.249715 -12.249715 -33.366675 -33.366675 -34.396155	8 22.5741793 18.5415057 18.5415057 18.5415057 18.54412 33.764751 33.764751 33.764751 33.764751 33.764751 33.7551615 34.516573 45.1851515 345.1851515 45.1851555 45.1851555 45.185155555 45.1851555555555555555555555555555555555	k 01.63.2157 01.63.2157 65.0903801 371.105.45701 371.105.321 114.82315 371.105.467933 54.547933 54.547933 396.783044 125.80139 396.783044 103.386585 396.06583 395.60583 347.88004 272.56.05835 347.88004 347.
51	67.2718824 65.340183 55.4401876 4.8713108 4.8713108 4.8713108 4.8713108 4.8713108 4.8713108 4.8713108 4.8713108 4.8713108 4.8713108 37.92108 37.92108 37.92108 37.92108 39.04523 2.9213408 39.05523 39.05523 2.034001 89.57522 39.05523 2.034001 89.57522 2.034001 89.57522 2.034001 2.022539 2.0255539 2.0255539 2.0255539 2.0255539 2.02555555555555555	15 05 05 05 05 05 05 05 05 05 0	5 53.62686724 3.62686724 3.5268953 3.258958 3.258958 3.258958 3.258958 3.258858 3.258687231 3.25867231 3.243867231 3.2438678 4.12386778 4.1238678 4.1238678 4.12386799 4.12386799 4.12386799 4.12386799 4.12386799 4.1238679
207Pb/	445.94476 45.235703 16.7385462 16.738462 21.611208 21.611208 42.611208 42.611208 42.611208 42.61209 42.612009 42.612009 42.61200000000000000000000000000000000000	2079/ 2066 345.944776 42.335703 42.335703 42.335703 42.335703 42.335703 42.33704 42.33703 42.3471208 42.4465 100.8634 42.113765 100.8634 4657 100.8634 4657 101.8634 100.8634 100.8634 100.8634 100.8634 100.86366 100.86366 100.86366 100.86366 100.86366 100.86366 100	20776/ 1 20766/ 1 27.242554 165.100143 165.100143106 25.2803278 31.242528 31.242528 31.242528 31.245535 32.343535 32.345535 32.345545 33.365535 33.365535 33.365432 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 33.36542 34.5755 34.5755 35.57555 35.57555 35.57555 35.57555 35.57555 35.575555 35.575555 35.575555555555
Va) [S	18.1.673,43 16.1867394 16.4.887967 16.1312792 18.1312792 18.131292 18.1341506 14.4.289550 14.6.223550 14.6.223550 14.6.223251 14.6.223251 14.6.253232 14.6.22325 14.6.253232 15.0.562232 15.0.562232 15.0.562232 15.0.562232 15.0.562232 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.562325 15.0.56255 15.0.56255 15.0.56255 15.0.56255 15.0.5655 15.0.55555 15.0.55555 15.0.55555 15.0.55555 15.0.55555 15.0.55555 15.0.55555 15.0.55555 15.0.555555 15.0.555555 15.0.5555555 15.0.555555 15.0.5555555555	Mo) 15 15 16:167344 16:167344 16:167344 16:167345 15:15667 14:2866306 13:5454306 14:2866306 13:5454306 14:2866306 14:2865306 14:2855506 14:2855	10) 14.2561105 14.2561105 14.2561105 16.044835 16.044835 16.41138208 16.41138208 16.41138208 16.41138208 16.523967 16.523967 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2801739 15.2501778 15.2501788 15.2501778 15.250178 15.2501778 15.2501778 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.2501778 15.2501778 15.2501778 15.2501778 15.2501778 15.2501778 15.2501778 15.2501778 15.2501778 15.2501778 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178 15.250178
Ages(207Pb/	87.2634793 97.7989449 85.959106615 85.95910615 85.95910615 71.6893687 71.6893687 71.6893687 71.6893685 55.20548 75.3015797 76.30157707 75.3151967 75.3151967 79.588058 79.588058 81.3163878 79.588058 81.3163878 79.588058 79.588058 79.58058 79.58058 79.58058 79.58058 79.58058 79.58058 79.58058 79.58058 79.58058 79.58058 70.590473 70.590473 70.590473 70.59058 70.50058 70.50	Ages 22079/ 22079/ 97.7989449 97.7989449 97.7989449 97.798946 57.005529 57.005529 57.005529 57.005529 57.005529 57.005529 57.005529 57.005529 57.259056 86.971297 76.259057 86.971297 86.971297 86.971297 86.971297 76.259057 86.971297 86.971297 86.971297 86.971297 76.259057 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 86.971297 87.97129 87.97129 87.97129 86.971297 87.97129 87.	Aps (0 2077b) 1 2077b) 1 25.424518 25.424518 25.424518 25.424518 25.424518 25.424518 25.524568 4.1550266 4.1550266 4.1550266 2.2530568 2.2530568 2.2530568 2.2530568 2.2530568 2.2530568 2.2530568 2.2530568 2.2530579568 2.218618 2.221877 2.2218618 2.221877 2.2218777 2.2218777 2.22187777 2.22187777777777777777777777777777777777
15	8.1885-8405 8.2447796 8.2447796 8.2185-6611 11.43278 8.235687 8.235687 8.235687 8.235687 8.235687 8.235687 8.235687 9.2335246 9.217339 9.217339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317339 9.317547 8.20568716 8.305664 8.3056666 8.3056666 8.305666 8.3056666 8.3056666 8.3056666 8.3056666 8.3056666 8.3056666 8.3056666 8.3056666 8.30566666666 8.30566666 8.3056666666666666 8.305666666666666666666666666666666666666	15 15 16 15 15 15 15 15 15 15 15 15 15	\$ 3.7798238 4.062708 5.570128 4.029722 5.38776128 5.3877629 4.422545 4.4255545 4.4255545 4.4255545 4.4255545 4.4255555555 4.425555555 4.425555555555
206Pb/	78.094194 78.094194 78.15.955962 78.15.955962 78.197407 78.1197407 78.1197407 59.5337561 59.5375617 59.5375617 59.5375617 59.5375617 59.5375617 59.5375617 50.59737 51.27121425 51.059977 51.27121425 51.059975 51.27121425 51.0599515 51.266515 51.276515 51.266515 51.276515 51.266515 51.276555555555555555555555555555555555555	23669/ 2380 78.094194 78.094194 73.5670959 73.5670959 73.5670959 73.5670951 73.1033971 73.1033971 90.033975 91.033971 91.6039377 91.862159455555555555555555555555555555555555	2067b/ 1 20057b 2 2005779 2 2005779 2 3131108 2 3131106 2 3131106 2 3131106 2 3131106 2 3131106 2 3131106 2 3131106 2 3131107 2 3131107 2 31311338 2 35,521475 2 35,52145 2
15 147	18.005269 16.526546 16.52646 15.5247663 5.1844297 5.1844297 4.02274065 4.02274965 4.0227496 4.0227546 5.0527543 5.0527543 5.0527543 5.0527543 5.0527543 45.6130749 45.6130749 10.72457543 10.72454547 45.6130749 10.72457543 10.724545177 12.5256632117 11.21454175 23.555632117 11.21454175 23.555632117 11.21454175 23.555632117 11.21454175 23.555632117 11.21454175 23.555632117 11.21454175 23.555632117 11.21454175 23.555632117 23.555632117 23.555632117 23.555632117 23.555632117 23.555632117 23.555632117 23.555632117 23.555632117 23.555632117 23.55563217 23.555677 23.5556777 23.55567777 23.55567777777777777777777777777777777777	15 [6] 13.0005269 13.255546 13.255546 15.2274045 15.2274045 22.27859 25.2771342 25.2771342 25.277342 25.277342 25.272349 25.272349 25.272349 23.2599599 23.2599512 23.2599512 23.2599512 23.2599512 23.2599512 23.2599512 23.255512 23.2555512 23.255512 23.2555512 23.2555512 23.2555512 23.2555512 23.2555512 23.2555512 23.25555512 23.25555512 23.25555512 23.25555555555512 23.25555555555555555555555555555555555	\$ (1.15704631 6 (5.238009 (5.238009 (5.238009 (5.238009 (5.238009 (5.238009 (5.238009 (5.2328009 (5.2328009 (5.2328009 (5.2328009 (5.2328000 (5.2328000 (5.2328000 (5.2328000 (5.2328000) (5.2328000 (5.2328000) (5.23280000) (5.23280000) (5.23280000) (5.23280000) (5.23280000) (5.23280000) (5.23280000) (5.23280000) (5.23280000) (5.232800000) (5.232800000) (5.232800000) (5.232800000) (5.232800000) (5.232800000) (5.23280000000) (5.232800000000) (5.232800000000000000000000000000000000000
207Pb/	0.05340269 0.0559982 0.0559982 0.04584673 0.04546738 0.0446428 0.04446361 0.04367432 0.0336772 0.0336772 0.0336772 0.0336772 0.0336773 0.0336773 0.03377756 0.0336773 0.03377756 0.0336773 0.0336773 0.0327895 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.044829573 0.004486953 0.00448653 0.00448653 0.00448653 0.00448653 0.00448653 0.00448653 0.00448653 0.00448653 0.004485553 0.004485555 0.004485555 0.004485555 0.004485555 0.004485555 0.004485555 0.004555555 0.004555555 0.004555555 0.004555555 0.004555555 0.004555555 0.004555555 0.004555555 0.004555555 0.004555555 0.0045555555555	207744/ 2056962 0.005340269 0.005404583 0.005406218 0.00440528 0.00446363 0.00446363 0.00446363 0.03505825 0.03505825 0.03505825 0.03505825 0.03505825 0.03505825 0.03505825 0.03955753 0.03555555 0.0355553 0.03555553 0.03955555 0.0395555 0.0395555 0.039555555 0.039555555 0.03955555 0.03555555 0.03555555 0.03555555 0.03555555 0.035555555 0.035555555 0.03555555555 0.035555555555	077b/ 012 1 017b/ 01477569 1 01477569 2 01477569 2 01477569 2 01477569 2 014978187 2 014978185 2 014978185 2 014978185 2 01494072 1 01494072 1 01494072 1 014945578 0 0104745172 1 0104753173 0 0104753173 0 0104753173 0 0104777355 0 0104763179 0 0104763184 0 0104753144 0 01047531445 0 0104753145 0 0104753145 0 0104753145 0
4	0.50.42125 0.5934186 0.5593408125 0.5560286915 0.556024612 0.4604915 0.4604915 0.26802041 0.26802042 0.5855842 0.52658822 0.52658822 0.52658822 0.32468721 0.32468720 0.32414687 0.52175190 0.5745348 0.902565349 0.5765348 0.902565349 0.5765348 0.902565349 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57653243 0.57755324 0.57755324 0.57755324 0.57755524 0.57755554524 0.57755554555	FRA FRA 0.50242125 0.5024867 0.5934008 0.5934086 0.59346426 0.566444 0.2660301 0.2660301 0.2660301 0.2564426 0.258548243 0.3756960 0.32596200 0.32596200 0.32596200 0.32596200 0.32763496 0.32775396 0.227653243 0.2775324 0.2775324 0.2775324 0.2775324 0.2775324 0.277532 0.27752	2 3)96603492 6,67590323 6,6759032368 6,6759032468 0,8506882 0,8506882 0,8506882 0,850688 1,74561092 1,74561092 1,7596155 0,77308755 1,75961555 6,646755 1,55972853 1,55972853 6,646755 1,55972853 1,559728 1,
Isotoperatios 1 s	10.459873 9.83006443 9.83006443 10.97671368 10.97671368 11.661188 11.661188 11.661188 11.13562504 11.13562504 11.13562504 11.125632159 10.158612 11.125632159 11.158373158 11.158373158 11.158373158 11.158373158 11.2653735 9.69753356 9.697533058 9.69753058 9.69755656 9.697556566 9.697556566 9.697	11 15 15 16 10,4598737 10,4598737 10,4598737 10,1651188 10,1651188 10,1651183 10,15506431 10,256433 10,1556432 10,1556433 10,1556433 10,1556433 10,1556433 10,1557133 10,255713 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,255712 10,2557712 10,2557712 10,2557712 10,2557712 10,2557712 10,25575	50000000000000000000000000000000000000
206Pb/	0.0121806 0.012178509 0.01174846 0.01149466 0.01141946 0.01141946 0.01141946 0.01141946 0.011494538 0.01149738 0.01148748 0.01148748 0.01148748 0.01148748 0.01148748 0.01148748 0.01148748 0.01148748	2064/5 2380 2390 0 00121860 0 00134954 0 00134954 0 00134954 0 00134954 0 00134954 0 00134954 0 00134954 0 00134354 0 0013455 0 00134555 0 001345555 0 001345555 0 001345555 0 001345555 0 001345555 0 0013455555 0 0013455555 0 00134555555 0 0013455555555555555555555555555555555555	Image: 2014 bit image:
15 121	 [208.18931] [408.5510365 [415.5213452] [415.5213451 [514.1440966 [527.32351.1 [527.32551 [527.151355 [527.151555 [527.151555 [527.151555 [527.151555 [527.151555 [527.1515555 [527.1515555 [527.1515555 [527.15155555 [527.15155555555555555555555555 [527.151555555555555555555555555555555555	15 19 108189311 108189311 1081867450 108674505 1192530351248 1292532351 1192540555 129254505 1292540555 1207595 1207595 1207595 1207595 107418802 10741880 1074180 10741880 10741880 10741880 10741880 10741880	\$ 16.08692 (7.578492 (7.5784976 (7.558492476 (7.55849642 (7.558960
207Pb/	 0.0897425 0.10110831 0.0897425 0.101878396 0.00883454 0.01878395 0.011878395 0.071845385 0.075545389 0.07554539 0.075545389 0.075545389 0.075545389 0.075545389 0.075545389 0.075545389 0.055545399 0.055545399 0.05545369 0.05545469 0.0754548 0.0754548<!--</td--><td>2079/ 2010/2011/03 2010/2012/2012/2012/2012/2012/2012/2012</td><td>13774/ 13774/ 109119855 109119855 1091198556 109902168 10952751 10952751 10952751 10952751 10952751 10952751 10951280 10971639 10971639 10971639 10971639 10971639 10971639 10971639 10971639 10971639 10961280 10961508 10061508 10061508 10061508 10061508 10061508 10061508 10061508 1000000 1000000 10000000 100000000 1000000</td>	2079/ 2010/2011/03 2010/2012/2012/2012/2012/2012/2012/2012	13774/ 13774/ 109119855 109119855 1091198556 109902168 10952751 10952751 10952751 10952751 10952751 10952751 10951280 10971639 10971639 10971639 10971639 10971639 10971639 10971639 10971639 10971639 10961280 10961508 10061508 10061508 10061508 10061508 10061508 10061508 10061508 1000000 1000000 10000000 100000000 1000000
	8 0.5565469 5 0.4685379 2 0.7005282 2 0.7005282 8 0.4755688 8 0.4755688 9 0.455314662 6 0.45314662 6 0.4531552 6 0.4781552 6 0.47815752 6 0.47815752 6 0.7815752 6 0.7815752 6 0.7815752 7 0.243563 7 0.243563 7 0.243563 8 0.0526907 8 0.0526907 8 0.05269074 8 0.0526974 8 0.0526975 8 0.052675 8 0.0526755 8 0.0526755 8 0.05267555 8 0.0526755555555555555555555555555555555555	Th/Ub 8 0.5665469 5 0.485379 5 0.485370 6 0.485340 7 0.7005824 8 0.2565469 8 0.2565469 9 0.4853400 4 0.6573140 7 0.4554605 7 0.4554605 8 0.445540067748 9 0.445540067748 9 0.4451522 9 0.4451522 9 0.4451522 9 0.4451522 9 0.4451522 9 0.4451522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.4751522 9 0.475	X/Ub 2 3.3735847 3.3735847 3.3735847 3.3735847 3.3735847 3.3735847 3.3735847 3.323257 3.58564791 3.58564791 3.58564791 3.58564791 3.58564791 3.58564791 3.58564791 3.58564791 3.58564791 3.58564791 3.385647646 3.385647646 3.385647646 3.385647666 3.38775567 3.38775567 3.3877565 3.3877565 3.3877565 3.3877565 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387756 3.387757 3.397757777 3.39775777777777777777777777777777777777
	91.769674 4 15.37499 7 17.147.00 7 17.147.01 7 17.147.01 7 17.147.02 8 15.3.019.02 8 15.3.019.02 8 15.3.019.02 9 3.341.02 8 15.3.019.02 9 113.056618 113.056663 113.056663 9 113.056636 9 113.056563 9 113.056563 9 113.056563 9 113.056563 9 113.056563 9 113.056563 9 113.056563 9 170.25656 9 170.25656 9 170.25656 9 170.25657 9 170.25656 9 170.25656 9 170.25656 9 170.25656 9 170.25656 9 170.25656 9<	U 2011 01769674 11 01769674 11 01769674 11 01569674 11 01569674 11 0157696 12 010126908 12 010126908 10 10126908 10 10026908 10 10026908	7 2000 101111111111111111111111111111111
£	251.991831 871.562006 115.06206 115.06206 26.64.210607 26.65.06027 26.65.06027 26.65.06027 26.65.06027 26.65.06027 27.35.092165 27.35.092165 27.35.092165 27.35.092165 27.35.09265 27.35.092655 27.35.0926555 27.35.0926555 27.35.0926555 27.35.05065555 27.35.05065555 27.35.05065555 27.35.05065555 27.35.050655555 27.35.0506555555 27.35.050655555555 27.35.050655555555555555555555555555555555	76 70 71 71 71 71 71 71 71 71 71 71	6 (10) (10) (10) (10) (10) (10) (10) (10)
Pb	1.2713211 1.27132198056 24 1.15298256 25 1.2598064 25 1.2598064 26 1.2598064 26 1.2598064 26 1.2598041 21 2.998124 21 2.998124 21 2.998124 21 2.998124 21 2.974126 21 2.974126	Pb ppm 11 1.271321 11 2.293805 11 2.293805 26 1.393723 26 1.393723 29 0.39372 30 7.24958 30 7.24958 31 0.77672 31 0.77672 31 0.77672 31 1.380111 34 1.380711 34 1.380711 35 0.351355 35 0.351555 35 0.351555 35 0.351555 35 0.3515555 35 0.35155555 35 0.35155555555555555555555555555555555555	6 15.918,666 15.918,066 1.15,56064 1.15,56064 1.15,56064 1.15,580054 1.15,580054 1.46,489147 1.4439147 1.4439147 1.25,1737348 2.38956436 2.38956436 2.3139348 2.38956436 2.3133748 2.383766 2.3333719 2.3532719 2.353719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.355719 2.3557719 2.3557719 2.3557719 2.3557719 2.3557719 2.3557719 2.35577719 2.3557719 2.35577719 2.35577719 2.35577719 2.355777719 2.35577777777777777777777777777777777777
2003	0.039151 0.03011 0.023752 0.023490 0.023490 0.0524925 0.052857 0.0238551 0.0238551 0.016558 0.016558 0.016558 0.016558 0.016558 0.076885 0.076885 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.076882 0.0758552 0.0758552 0.0758552 0.0758552 0.07585555555555555555555555555555555555	1206 0.039151 0.030011 0.030011 0.032450 0.023450 0.023450 0.024959 0.024959 0.024939 0.024939 0.024939 0.024939 0.024939 0.036583 0.036583 0.036583 0.04493 0.036583 0.036583 0.036583 0.044939 0.036583 0.0365583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.036583 0.0365858 0.0365858 0.0365858 0.0365858 0.0365858 0.03658585858 0.0365858 0.036585858585858 0.03658585858585858585858585858585858585858	206 206 0.005361159 0.005361159 0.00596749 0.003197357 0.00380989 0.00380984 0.00386914 0.01287359 0.01287359 0.01287359 0.004358816 0.004358816 0.004358816 0.004358816 0.004358816 0.0038637359 0.004358816 0.0038637359 0.0038627359 0.0038627359 0.003562794 0.0035627748 0.0035627794 0.003562779 0.003562779 0.003562779 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.00356278 0.003562788 0.003562788 0.003562788 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562778 0.003562788 0.003562788 0.003562788 0.003562788 0.003562788 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.00356288 0.0035688 0.0035688 0.00356888 0.00356888 0.00356888 0.00356888 0.00356888 0.00356888 0.003568888 0.003568888 0.003568888 0.0035688888 0.003568888888 0.0035688888888888888888888888888888888888
Spot number	W TRCA -001 A W TRCA -002 A W TRCA -002 A W TRCA -003 A W TRCA -006 A W TRCA -006 B W TRCA -001 B W TRCA -001 B W TRCA -001 B W TRCA -001 B W TRCA -000 B	5 500 1 number WTRCA - 001 A WTRCA - 002 A WTRCA - 003 A WTRCA - 003 B WTRCA - 004 B WTRCA - 005 B WTRCA - 005 B WTRCA - 006 B WTRCA - 006 B WTRCA - 006 B WTRCA - 008 A	Spot number Spot number 003 - Sample 2 005 - Sample 2 005 - Sample 2 006 - Sample 8 003 - Sample 8 003 - Sample 8 003 - Sample 8 003 - Sample 8 005 - Sample 8 006 - Sample 8 007 - Sa

Anexo 1. (Continuación) Resultados isotópicos U-Pb en circones

/ Boletín de la Sociedad Geológica Mexicana / 73 (1) / A280520 / 2021

38