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ABSTRACT

Cerro Quema (Azuero Peninsula, Panama) is
a high-sulfidation epithermal Au-Cu deposit
hosted by a dacite dome complex of the
Rio Quema Formation (late Campanian to
Maastrichtian). High-sulfidation mineraliza-
tion at Cerro Quema occurs within a lithocap
of vuggy quartz and advanced argillic alter-
ation, and comprises a first stage of dissemina-
tions and microveinlets of pyrite, chalcopyrite,
enargite, tennantite, and minor sphalerite.
This stage is crosscut by younger veins that
contain quartz, barite, pyrite, chalcopyrite,
sphalerite, and galena. Later weathering and
oxidation processes have produced two distinct
mineralized zones at Cerro Quema: (1) Sulfide
ore zone—a deeper zone of hypogene alteration
and sulfide mineralization with some second-
ary enrichment but unaffected by oxidation,
and (2) Oxide ore zone—a thick iron oxide-rich
zone that overprints the hypogene alteration/
mineralization in the upper ~150 m of the
deposit. To characterize the concentrations
and distribution of metals in the two ore zones,
and to develop geochemical tools for explora-
tion, we analyzed 34 samples of both oxide (n
= 23) and sulfide ore (n = 11) for Au, Ag, Cd,
Cu, Mn, Mo, Ni, Pb, Zn, S, As, Ba, Hg, Sb, and
W by INAA and ICP-MS. The results show
that the oxide ore has the highest concentra-
tion of Au (2.4 g/t), Ag (2.0 g/1), Pb (432 ppm),
and Sb (317 ppm), whereas the sulfide ore has
the highest concentration of Cu (> 1%), Zn
(403 ppm), As (2.74%), and Cd (15.2 ppm).
The enrichment factor calculation (oxide/
sulfide ore) indicate that Au, Ag, Pb, and Sb
are concentrated in the oxide zone whereas
Cu, Zn, Ba, Ni, As, and S are concentrated
in the sulfide zone. Exploration for Au should
target the oxide ore zone, in areas where the
Ba concentration is also high. Exploration for
Cu should target the sulfide ore zone, below
the oxidation boundary, where primary and
secondary Cu sulfides coexist.

Keywords: Exploration, Epithermal,
Cerro Quema, Gold-Copper, Panama.

RESUMEN

Cerro Quema (Peninsula de Azuero, Panamda) es un
depdsito epitermal de alla sulfuracion de Au-Cu hospe-
dado en el complejo de domos daciticos de la Formacion
Rio Quema (Campaniense Superior — Maastrichtiense).
La mineralizacion de tipo epitermal de alta sulfuracion
en Cerro Quema ocurre en un lithocap de cuarzo vuggy
y alteracion argilica avanzada, y estd compuesta por un
primer estadio de diseminaciones y microvelas de pirita,
calcopirita, enargita, lennantila y en menor cantidad
esfalerita. Este tipo de mineralizacion estd corlada por
un segundo estadio mds joven de velillas que contienen
cuarzo, barila, pirila, calcopirita, esfalerita y galena.
Posteriormente, los procesos de meleorizacion y oxidacion
produjeron dos zonas mineralizadas distintas en Cerro
Quema; (1) Zona de sulfuros: zona mds profunda del
yacimienlo, caracterizada por alleracion/mineralizacion
hipogénica, con menor grado de enriquecimiento secun-
dario pero libre de dxidos, y (2) Zona de dxidos: zona
superficial caracterizada por dxidos de hierro, desarro-
llada hasta ~150 m de profundidad y sobreimpuesta a la
alteracion/mineralizacion hipogénica. Para caracterizar
la concentracion y distribucion de metales en las dos zonas
mineralizadas, como también para desarrollar herra-
maentas de exploracion geoquimica, hemos analizado la
concentracion de Au, Ag, Cd, Cu, Mn, Mo, Ni, Pb, Zn,
S, As, Ba, Hg, Sb, y W mediante INAA e ICP-MS
en 34 muestras de ambas zonas mineralizadas, éxidos
(n = 23) y sulfuros (n = 11). Los resultados muestran
que la zona de dxidos liene la concentracion mds elevada
de Au (2.4 g/1), Ag (2.0 g/1), Pb (432 ppm), y Sb
(317 ppm), mientras que la zona de sulfuros tiene la
concentracion mds elevada de Cu (> 1%), Zn (403
ppm), As (2.74%), y Cd (15.2 ppm). El cdlculo del
Jactor de enriquecimiento (6xidos/sulfuros) indica que el
Au, Ag, Pb y Sb se concentran en la zona de dxidos,
maentras el Cu, Zn, Ba, Ni, As y S se concentran en la
zona de sulfuros. La exploracion de Au en este lipo de
depdsitos debe centrarse en la zona de dxidos, donde la
concentracion de Ba es también elevada. Por el contra-
rio, la exploracion de Cu en este tipo de depisitos debe
centrarse en la zona de sulfuros, por debajo de la zona de
oxidacion, donde coexisten lanto sulfuros primarios como
sulfuros secundarios.

Palabras clave: Exploracion, Epitermal,
Cerro Quema, Oro-Cobre, Panama.
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1. Introduction

The Cerro Quema deposit located in the Azuero
Peninsula (SW Panama) consists of several miner-
alized bodies. From west to east, these include La
Pava, Cerro Quemita, Mesita, and Cerro Quema
(Figure 1). Global measured, indicated, and in-
ferred resources for the Cerro Quema deposit
(four orebodies) include a total oxide resource of
24.60 Mt @ 0.71 g/t Au and 0.04% Cu, and a
total sulfide resource of 11.38 Mt @ 0.41 g/t Au
and 0.31% Cu (Sutcliffe et al, 2014). Ore grade
and tonnage are variable through the different
orebodies. This variability can be summarized as
follows (Sutcliffe et al., 2014):

* La Pava measured, indicated, and inferred
oxide resources: 18.28 Mt @ 0.66 g/t Au and
0.04% Cu. Measured, indicated, and inferred sul-
fide resources: 8.54 Mt @ 0.39 g/t Au and 0.36%
Cu.

¢ Cerro Quemita + Cerro Quema + Mesita
indicated and inferred oxide resources: 6.32 Mt
@ 0.83 g/t Au and 0.03% Cu. Indicated and in-
ferred sulfide resources: 2.84 Mt @ 0.47 g/t Au
and 0.15% Cu.

Additional orebodies have been discovered to the
east of Cerro Quema; however, their resources
have not yet been assessed.

Although several studies have been performed
on the geology of the deposit (Leach, 1992; Hor-
lacher and Lehmann, 1993; Torrey and Keenan,
1994; Nelson, 1995; Corral et al., 2011), on its or-
igin and evolution (Corral et al., 2016, 2017), and
on the metallogenic potential of the Azuero Pen-
insula (Del Giudice and Recchi, 1969; Ferencic,
1970; Kesler et al., 1977; Corral et al., 2016), there
is still a gap in the knowledge of the trace metal
composition of the Cerro Quema Au-Cu ore.
Lithocaps associated with high-sulfidation epith-
ermal deposits can have large extensions of ad-
vanced argillic altered rocks (> 20 km?). However,
typically only a small portion of the lithocap is
mineralized, and due to the lack of directional in-
dicators, exploration in this environment can be

difficult (Sillitoe, 1995; Corbett and Leach 1998;

Chang et al., 2011). The study of the concentra-
tions and distribution of metals in ore deposits is
an essential tool for greenfield and brownfield ex-
ploration. Many deposits may contain anomalous
concentrations of metals other than those of pri-
mary economic interest (Kesler ¢ al., 2003), and
these metals can be used as prospective guides to
high-grade mineralization. High-sulfidation epi-
thermal deposits commonly contain economically
important amounts of Au, Ag, and Cu, as well as
significant tenors of As, Sh, Hg, Sn, Te, and Bi
(e.g, Arribas, 1995; Arribas ¢t al., 1995; Kesler e
al., 2005). Although these elements are probably
of magmatic origin (e.g, Heinrich et al., 2004), they
may vary significantly in relative abundance with-
in individual deposits. This suggests that the fluid
composition changed throughout the lifespan of
the magmatic-hydrothermal system (Deditius et
al., 2009) possibly due to water-rock interaction,
or cooling/mixing processes.

Geochemical data of trace elements in high-sul-
fidation epithermal ores has been reported for
decades (e.g, Rodalquilar: Hernandez et al., 1989;
Nansatsu: Hedenquist et al., 1994; Pueblo Viejo:
Kesler et al., 2003, Sillitoe et al., 2006; Cerro de
Pasco: Baumgartner et al., 2008; Martabe: Sutopo,
2013). Here we present a case study of the metal
content of the Cerro Quema Au-Cu deposit. We
use whole-rock geochemical analysis of ore sam-
ples to better understand the deposit enrichment,
its metal distribution and association of metals
and minerals. Furthermore, we present useful cri-
teria for exploration of high-sulfidation Au-Cu
deposits.

2. Geologic setting

2.1. REGIONAL GEOLOGY

The Cerro Quema high-sulfidation epithermal
Au-Cu deposit covers an area of ~20 km? in the
center of the Azuero Peninsula (Figure 1). The
mineralization is hosted in the dacite dome com-
plex of the Rio Quema Formation (late Campa-
nian to Maastrichtian; Corral et al., 2013, 2016).
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Panama

Wicroplate Tonosi Formation: reefal limestones, calcarenites,

turbidites.

Late Eocene to Miocene

Valle Rico-like intrgsi_ons: quartz-diorites,
trachyandesites, diorites.
Late Paleocene to Middle Eocene

GEOLOGIC SETTING

Rio Quema Fm. Upper unit: dacite dome complex.
Maastrichtian

Rio Quema Fm. Upper unit: volcanic rocks,
conglomerates and volcaniclastic rocks.
Late Campanian to Maastrichtian

Rio Quema Fm. Limestone unit: pelagic to
hemipelagic limestones.
Late Campanian to Maastrichtian

volcaniclastic rocks.
Late Campanian to Maastrichtian

l:l Rio Quema Fm. Lower unit: volcanic and

Azuero Igneous Basement: basalts and pillow
basalts.
Aptian to Santonian
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(A) Plate tectonic setting of south Central America (Azuero Peninsula is shaded). (B) Simplified geologic map of central Azuero
Peninsula and location of the Cerro Quema Au-Cu deposit (after Corral et al., 2013, 2016).

As described in Buchs et al. (2010, 2011) and Cor- cene to Miocene). The Rio Quema Formation is a
ral et al. (2011, 2013), the Azuero Arc Group (late volcanosedimentary sequence that represents the
Cretaceous to Eocene) overlies the Azuero Igneous carliest calc-alkaline volcanism of the Azuero Arc
Basement (Conacian to Santonian) and is discor- Group. In the Cerro Quema area, this sequence is
dantly overlapped by the Tonosi Formation (Fo- bounded to the north by the Valle Rico batholith,
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a series of Eocene (55—49 Ma; Del Giudice and
Recchi, 1969; Kesler ef al., 1977; Lissinna, 2005;
Montes et al., 2012; Corral ¢t al., 2016) diorite and
quartz diorite intrusions with calc-alkaline affinity.
The Late Cretaceous Azuero Igneous Basement
(Aptian to Santonian; Kolarsky et al., 1995; Kerr
et al., 1997; Hoernle et al., 2002; Lissinna, 2005;
Buchs et al., 2010) comprises tholeiitic basalts and
pillow basalts with oceanic plateau affinity that
bounds the Rio Quema Formation to the south
(Figure 1). A complete geochemical characteriza-
tion of the igneous rocks of the Azuero Peninsula
is provided by Hoernle ez al. (2002, 2004), Lissin-
na, (2005), Worner et al. (2009), Buchs et al. (2010,
2011), Corral et al. (2010, 2011), and Wegner e/ al.
(2011). The main tectonic structures in the district
include the east-trending Agua Clara and Rio Joa-
quin Fault zones. An extensive network of minor
northwest- to northeast-trending subvertical faults
with normal dip-slip and minor strike-slip compo-
nents are observed. In addition, mesoscale south-
west-plunging open folds with moderately dipping
limbs are observed. Overall, the structures suggest
dextral transpression with dominant reverse dip-
slip motion during late Campanian to middle Eo-
cene time (Corral ¢t al., 2013).

2.2. GEOLOGY OF THE CERRO QUEMA DEPOSIT

2.2.1. EXPLORATION HISTORY

In 1965, a regional study of the geology and metal-
logeny of Panama financed by the United Nations
Development Program (UNDP) was undertaken
to evaluate Panama’s mineral resources potential.
Results in the Azuero Peninsula (eg, Del Giudice
and Recchi, 1969) revealed areas with significant
copper and gold anomalies that were related to
porphyry copper and epithermal deposits. These
findings were later confirmed by Ferenci¢ (1970,
1971) and Kesler et al. (1977). In 19861988, the
Compania de Exploracion Mineral S.A. (CEMSA)
further investigated the area and eventually dis-
covered Cerro Quema, which was considered a
potentially mineable target. From 1990 to 1994,
Cyprus Amax Minerals carried out several explo-
ration programs including both soil geochemistry

and drilling campaigns (4622 m of core drilling
and 17579 m of RC drilling). In 1996, Campbell
Resources Inc. carried out an infill drilling pro-
gram to further define the resources (1750 m of
core drilling), and completed a Project Feasibility
Study. By 2007, Bellhaven Copper & Gold Inc.
acquired the project, and completed a feasibility
study for the project together with metallurgical
tests. Pershimco Resources Inc. acquired the proj-
ect in 2010 and drilled 16939 m of core drilling
in 79 holes and 32728 m of RC drilling in 330
holes. Additionally, the company completed a lith-
ological and structural mapping of the area, and
performed channel sampling and geochemical
sampling. Several geophysical surveys have been
carried out including an Induced Polarization (IP)
survey as well as airborne radiometric, magnet-
ic, and VI'EM surveys (e.g, Kwan et al., 2016). In
2016 Pershimco Resources Inc. merged with Orla
Mining Ltd. to continue the exploration and de-
velopment of the Cerro Quema project under the
name Orla Mining Ltd.

2.2.2. HYDROTHERMAL ALTERATION

Hydrothermal alteration at Cerro Quema follows
an eastward trend that is parallel to secondary
faults related to the Rio Joaquin Fault Zone. It is
defined by several concentric alteration halos that
are mainly restricted to dacite domes of the Rio
Quema Formation, which have higher porosity
and permeability than other rock types of the vol-
cano-sedimentary sequence (Corral ¢t al., 2017).

According to Corral ¢ al. (2011, 2016), four dis-
tinct alteration zones can be identified at Cerro
Quema: several vuggy quartz centers (up to ~600
m in length) and local advanced argillic alteration
zones (up to ~250 m in length) are observed with-
in the central core of the deposit, enclosed by an
argillic alteration zone (up to ~1900 m in length).
The propylitic alteration forms an outermost halo
surrounding the argillic alteration zone. Vuggy
quartz alteration consists of a groundmass of mi-
crocrystalline anhedral quartz grains with dissem-
inated pyrite, chalcopyrite, enargite, tennantite,
barite, minor rutile, and trace sphalerite. In this
alteration, the morphology of the vugs varies from
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Examples of ore zones at Cerro Quema. (A) Oxidation boundary developed on the advanced argillic alteration zone. (B) Sulfide
ore in drill hole (sample 9343-77; 0.31 g/t Au, > 1.0% Cu). (C) Oxide ore in drill hole (sample 9210-37.50; 2.07 g/t Au, 0.11% Cu). (D)
Oxide ore in outcrop (sample LP-235; 0.51 g/t Au, 0.11% Cu). Mineral abbreviations according to Whitney and Evans (2010): hbl site =
hornblende site, hem/gth = hematite/goethite, eng = enargite, py = pyrite.

idiomophic (hornblende and feldspar shape) to ir-
regular, and their abundance generally reflects the
presence of hornblende and feldspar phenocrysts
in the volcanic host rock. The advanced argillic
alteration zone is characterized by quartz, alunite
supergroup minerals (e.g, alunite, natroalunite,
aluminum phosphate-sulfate minerals), dickite,
pyrophyllite, barite, illite, and minor diaspore and
rutile. Argillic alteration produced quartz, kaolin-
ite, illite, illite-smectite, and minor chlorite with
local disseminated pyrite. The propylitic alteration
zone contains chlorite, epidote, calcite, rutile, py-
rite, chalcopyrite, and minor hematite and mag-

netite. Stable isotope (S, O, H) geochemistry and
fluid inclusion studies revealed that hydrother-
mal alteration at Cerro Quema was produced by
magmatic-hydrothermal fluids that were variably
mixed with meteoric fluids (Corral ez al., 2017).

2.2.3. MINERALIZATION

Mineralization at Cerro Quema can be subdivid-
ed into two different zones: (A) hypogene miner-
alization, produced by magmatic-hydrothermal
fluids; and (B) supergene mineralization, produced
by oxidation of the hypogene mineralization as
well as by the precipitation of secondary sulfides.
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The different mineralization types and their dis-
tribution are fully described in Corral ¢t al. (2016,
2017), and can be summarized as follows.
HYPOGENE MINERALIZATION

Hypogene mineralization is generally developed
below the oxidized zone, but due to the rough
and steep topography, small (meter scale) outcrops
are locally found at the surface. Pyrite is the most
abundant sulfide, although there is a diverse group
of accompanying sulfides (e.g, enargite, tennantite,
chalcopyrite, sphalerite, and bornite) also associat-
ed with the Au-Cu mineralization.

Based on field and petrographic observations, hy-
pogene mineralization has been divided into five
stages, where stages 3 and 4 contain the majority
of the metals. Stage 1 consists of disseminated,
fine-grained, idiomorphic and subidiomorphic
pyrite, accompanied by rutile and barite in vugs
and disseminations, with minor enargite, tennan-
tite, and chalcopyrite at depth (figures 2B, 4A, 4C).
Sphalerite occurs as a trace mineral disseminated
in the groundmass. Stage 2 is composed of dissem-
inated pyrite in the cement of a hydraulic breccia,
associated with alunite-natroalunite, dickite, and
traces of chalcopyrite. Stage 3 consists of veinlets
of pyrite, chalcopyrite, enargite, and tennantite
that crosscut stages 1 and 2. Textures observed
in Stage 3 veinlets show that pyrite is replaced by
enargite, enargite is replaced by tennantite, and fi-
nally tennantite is replaced by chalcopyrite. Borni-
te occurs as a trace mineral. Stage 4 occurs as ~5
cm thick breccia bands, composed of pyrite, chal-
copyrite, and minor enargite. The Stage 4 brec-

of the high-sulfidation ore has developed a thick
quartz- and iron oxide-rich zone that overprints
the primary sulfide-bearing zone. Quartz is relict
of the hypogene hydrothermal alteration zone,
and was not directly produced by the weathering
or oxidation processes. This oxidized zone is devel-
oped in the upper part of the orebodies. It is char-
acterized by vuggy quartz containing abundant
hematite and goethite within the groundmass. The
hematite and goethite replace the cement of hy-
drothermal breccias, and fill the vugs. Hypogene
pyrite, barite, and rutile remain as trace minerals
in the oxidation zone. Gold has been found as
submicroscopic grains (< 1 pm), which prevented
quantitative analysis of its chemical composition.
Below the oxidation zone, supergene enrichment
has caused deposition of secondary Cu-bearing
minerals such as chalcocite and minor covellite.
The secondary Cu sulfides are found replacing
chalcopyrite, tennantite, and enargite as well as
filling small fractures.

2.2.4. AGE OF THE CERRO QUEMA DEPOSIT

The age of Cerro Quema has been constrained
from crosscutting relationships between the volca-
nic host rocks combined with biostratigraphic and
Ar-Ar geochronological data. Ore formation is es-
timated to be Eocene (~55—49 Ma) in age and it is
interpreted to be related to subvolcanic porphyry
intrusions contemporaneous with the Valle Rico

batholith (Corral et al., 2016).

cia bands crosscut all the previous stages. Stage 5 3. Results of the Cerro Quema metal
consists of 5 to 10 cm thick base metal sulfide-rich content
veins composed of pyrite, quartz, and barite to-
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gether with minor chalcopyrite, sphalerite, and 3.1. SAMPLING AND ANALYTICAL METHODS

galena. Gold occurs as submicroscopic grains and
as invisible gold within pyrite. Copper is associat-
ed with Cu-bearing sulfides and sulfosalts such as
chalcopyrite, enargite, bornite, and tennantite.
SUPERGENE MINERALIZATION

Intense weathering has affected fresh and hydro-
thermally altered rocks in the Cerro Quema area
down to depths of 150 m (Figure 2A). Weathering

To study the geochemical compositions of the dif-
ferent Au-Cu ores at Cerro Quema, the samples
have been subdivided into two groups according
to their origin and metallurgical properties:

1) Sulfide ore: Samples dominantly showing hy-
pogene mineralization and secondary enrichment
but unaffected by oxidation (Figure 2B).
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Table 2. Average enrichment factors for the oxide and sulfide ores with respect to the country rocks from Corral et al., (2011), and
average enrichment factors of the oxide zone with respect to the sulfide zone. Element concentrations are expressed in ppm except for
Au which is expressed in ppb.
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Country rock average (n = 06) 7.93 125.43 - 16.00 68.43 0.01
Sulfide Ore enrichment (n = 11) 36.55 9.59 - - 046 0.75 582.06
Oxide Ore enrichment (n = 23) 88.00 5.88 - - 0.17  0.08 26.10
Oxide/Sulfide Ore enrichment 241  0.61 124 1.8 037 0.11 0.04

2) Oxide ore: Samples with hypogene mineraliza-
tion strongly affected by weathering and oxidation
(Figure 2C, 2D).

A total of 34 representative samples of the sulfide
ore (n = 11) and of the oxide ore (n = 23) were
collected in different mineralized zones of Cerro
Quema. Most samples belong to the vuggy quartz
alteration zones; however, some samples from the
= 1; Table
1) alteration zones are also included. Whole rock

advanced argillic (n = 2) and argillic (n

geochemical analyses of Au, Ag, Cd, Cu, Mn,
Mo, Ni, Pb, Zn, S, As, Ba, Hg, Sh, and W con-
centrations were performed by INAA and with an
aqua regia digestion followed by ICP-MS analysis
on 30 g sample spits at Activation Laboratories,
Canada [Code 1 EPI (Au+14)]. Certain elements
such as Mn and Hg mostly show concentrations
below the analytical detection limit and therefore
we have not considered them in the statistical cal-
culations. Sample 9349-77 has a Cu content above
the upper limit of detection (10000 ppm), there-
fore this value has been used as the minimum Cu
content of the sample. Additionally, as samples
were reduced to powder using a tungsten carbide
mill, W concentrations should be regarded only as
semi-quantitative due to possible contamination
caused by the sample preparation method. The
complete dataset of the analyzed rock, including
the ore group and hydrothermal alteration zone, is
presented in Table 1.

3.2. WHOLE-ROCK DATA

The results show that the oxide ore has the high-
est concentrations of Au (2.4 g/t), Ag (2.0 g/t), Pb
(432 ppm), and Sb (317 ppm), whereas the sulfide

ore has the highest concentrations of Cu (> 1%)),
Zn (403 ppm), As (2.74%), Cd (15.2 ppm), and S
(10.12%).

The average concentrations of elements in the
oxide and sulfide ores divided by their average
concentrations in the genetically related country
rocks (z.e., diorites and quartz diorites; Corral et al.,
2011) has been used as an indicator of the depos-
it enrichment factor (Table 2). Certain elements
such as Ag, Cd, Pb, As, and Hg show concen-
trations below the detection limits in the country
rocks, and therefore they have not been considered
for the enrichment factor calculations. The enrich-
ment factor of the oxide/sulfide ore was calculated
by dividing the average concentration of elements
in the oxide ore with their average concentration
in the sulfide ore (Table 2).

The enrichment factors of mineralized rocks with
respect to the country rock are up to 88 for Au and
up to 9.59 for Cu. Although Au and Cu are the el-
ements of economic interest in the Cerro Quema
deposit, the highest enrichment factor with re-
spect to the country rock is shown by Sb (219),
Ba (97), and S (582). Other elements such as Zn
(0.08) and Ni (0.17) are depleted with respect to
the country rocks. The enrichment factors of the
oxide ore with respect to the sulfide ore show that
Au (2.41), Sb (2.11), Pb (1.86), and Ag (1.24) are
primarily concentrated in the oxide zone, whereas
Cu (0.61), Ni(0.37), As (0.30), Zn (0.11), Ba (0.10),
and S (0.04) are primarily concentrated in the sul-
fide zone.

Correlation coeflicients (Table 3) between ele-
ment pairs were used to define element affinities
and their mineral correlation. Due to the skewed
population shown by the element concentrations,
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Table 3. Correlation coefficients (r) of trace and major elements at Cerro Quema. Correlations were calculated for elements transformed %
to log values. Superindex indicates: a = strongly correlated, b = well correlated, c = poorly correlated. 'E
Au | Ag | cd | cu | Mo | Ni Zn | s | As Sb S
_OXide - | Au | Ag | Cd ] Cul Mo Ni| Pb| zn | S | As | Ba| Sb| -
Au 1.00 031 0.14 036 -0.04 037 -0.02 0.10 0.1 000 0.07 -0.08 =
Ag 1.00 -0.34 -0.31 043° -025 -032 0.09 -042 -0.11 0.06 -0.22
Cd 1.00 0.57° 0.27 0.58° -0.30 0.01 033 -0.05 0.22 -0.10
Cu 1.00 0.16 083" -0.01 053° 071° 032 030 0.10
Mo 1.00 024 -035 025 0.06 -024 028 -042°
Ni 1.00 -0.02 -0.14 048 0.18 034 0.13
Pb 1.00 031 -021 037 -0.13 0.35
Zn 1.00 0.62° 038 020 0.05
S 1.00  0.05 0.46° -0.16
As 1.00  -0.07 0.60"
Ba 1.00 -0.32
Sb 1.00

T e | o | Cu [ mo [ N | Po | zn | 5 | As | Ba | b |

Sulfide Ore
Au 1.00 0.82° 0.05 0.06 -033 -0.07 0.62° -0.05 -0.12 032 0.65° 0.40°
Ag 1.00 029 023 -048° -0.02 068" 0.07 0.00 040° 058 031
cd 1.00  0.79° -0.23 0.74° 0.43° 089" 0.72° 0.74° -0.43° 0.16
Cu 100 0.05 0.77° 0.40° 0.90° 0.90* 0.71° -0.12 0.00
Mo 1.00 -0.17 -0.67° -0.09 -0.10 0.13 030 032
Ni 1.00  0.30 0.41° 0.89"° 0.46° -0.36 -0.08
Pb 1.00  0.90* 0.40° 0.38 0.43° 0.08
Zn 1.00  0.92* 0.71° -0.35 0.01
S 1.00 051° -021 0.15
As 1.00  -0.11 0.52°
Ba 1.00 -0.14
Sb 1.00

calculations for element correlation were per-
formed after previous transformation to log values
as suggested by Kesler e/ al. (2003). In this study,
correlation coefficient ranges have been defined
as strongly correlated (r > 0.90), well correlated
(0.60 < r < 0.89), and poorly correlated (0.40 <r
< 0.59).

As shown in Table 3, the most significant correla-
tions in the oxide ore are as follows: As 1s well cor-
related with Sbh; S is well correlated with Cu and
Zn and poorly correlated with Ba. On the other
hand, the most significant correlations in the sul-
fide ore are as follows: Au is well correlated with
Ag, Pb, and Ba, and poorly correlated with Sh;
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m Correlation plots between element pairs. (A) Au-Ag. (B) Au-Ba. (C) Cu-Zn. (D) Cu-As. (E) As-Sb. (F) Au-Cu. (G) S-Cu. (H) S-Zn.

Symbols for all graphs: squares = sulfide ore; diamonds = oxide ore.

Ag is well correlated with Pb and poorly correlat-
ed with As and Ba; Cu is strongly correlated with
Zn, well correlated with Cd and As, and poorly
correlated with Pb; finally, S is strongly correlated
with Cu, Ni, and Zn.

4. Discussion on the trace element
distribution

According to Corral e/ al. (2016, 2017), field, pe-
trologic, and isotopic observations point towards a
magmatic-hydrothermal fluid as the precursor of

the mineralization and hydrothermal alteration.
Later processes such as weathering and oxidation
affected the hypogene minerals, leading to the de-
velopment of the oxide ore.

In the sulfide ore, Au is well correlated with Ag, Pb,
and Ba (Table 3; Figure 3A, 3B). Assuming that
Au is present as invisible gold associated with the
pyrite lattice (Corral ef al., 2011, 2016), the Au-Ba
positive correlation (0.65) suggests that Au-bear-
ing pyrite is associated with the presence of barite
(Iigure 4A, 4B). The high Ba enrichment in the
sulfide zone with respect to the country rocks (97
times; Table 2) indicates that Ba was introduced
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by the hydrothermal fluid. Minor amounts of
Ba could have also been liberated from feldspars
during advanced argillic alteration processes. This
contrasts with the Pueblo Viejo deposit (Kesler e/
al., 2003) where Au and Ba are not well correlated
(0.12).

Au and Ag are also well and positively correlat-
ed (Figure 3A) suggesting the presence of both
elements within the pyrite lattice. As the Ag con-
tent in the whole rock is up to 1.1 ppm (sample
9311-153), and up to 400 ppm in pyrite (Corral e
al., 2016), the Ag content in the mineralized rock
seems to be related to the presence of disseminat-
ed pyrite. Correlation of Au with Pb is not fully
understood; however, Pb could be related to the
presence of hokutolite (Pb-bearing barite), which
usually occurs in hot spring environments (Hokuto
and Peito hot spring, Taiwan and Tamagawa hot
spring, Japan; Okamoto, 1911; Sasaki and Minato,
1982; Momoshima et al., 1997) and in high-sulfi-
dation deposits (Mt. Carlton, Australia; Sahlstrom
etal., 2017). As previously mentioned, is related to
high gold grades. Cu is strongly correlated with
Zn, well correlated with Cd and As, and poorly
correlated with Pb (Table 3; Figure 3C, 3D), sug-
gesting that Ciu may be associated with cupriferous
pyrite (up to 3.67 wt% Cu and up to 311 ppm Cd;
Corral et al., 2016) and also likely with chalcopy-
rite containing sphalerite inclusions. The good
and positive correlation between Cu and As is
explained by the presence of enargite (figures 3D,
4C) and other Cu-bearing sulfosalts (e.g, tennan-
tite), which could also explain the correlation of
Cu and As with Zn and Ag and of Sb with As (I'ig-
ure 3E). The lack of strong correlation between
Cu and Au (Figure 3F) may be due to the presence
of these elements in different minerals such as Au
occurring within the pyrite lattice, whereas Cu is
associated with Gu-bearing minerals (eg, chalco-
pyrite, enargite and tennantite; Figure 4C, 4D).
The strong correlations of Zn with Cu, Pb, and
S, and Cu with S (Figure 3G, 3H), are caused by
the presence of disseminated sphalerite and/or as

sphalerite inclusions in pyrite/chalcopyrite, which
could also explain the good correlation of Zn with
Cd and As.

The element distribution and correlations ob-
served in the oxide ore strongly differ from those
in the sulfide ore. Weathering and oxidation of
the sulfide ore produced dissolution of cupriferous
pyrite, chalcopyrite, enargite, and tennantite, re-
sulting in the concentration of Au, Ag, Pb, and Sb
(likely immobile elements), and in the bleaching of
Cd, Cu, Zn, and As (likely more mobile elements).
In the oxide zone, Au and Ag are not well correlat-
ed with each other nor with other trace elements
(Table 3), which could be explained from the dif-
ference in element mobility during mineral disso-
lution/precipitation/remobilization (e.g, Andreu
et al., 2015). Contrary to the sulfide ore, Au and
Ba are not well correlated in the oxide ore (0.65
and 0.07, respectively). However, they still show an
overall positive slope in the correlation plots, indi-
cating that the highest Au concentrations match
with the highest Ba concentrations (Figure 3B).
Barite has been described as associated with gold
in other high-sulfidation epithermal deposits such
as El Indio-Tambo (Chile; Siddeley and Araneda,
1990; Jannas et al., 1990, 1999), Summitville (Col-
orado; Steven and Ratté, 1960; Stoffregen, 1987),
Chinkuashih (Taiwan; Huang, 1955, 1962), and
Furtei (Sardina; Ruggieri, 1992, 1993; Ruggieri e/
al., 1997). Anomalous concentrations of Ba could,
therefore, be a prospective guide to high-grade
Au mineralization in high-sulfidation epithermal
deposits.

As and Sb are strongly correlated (Figure 3E) and
do not correlate well with other trace elements,
suggesting that As and Sb could be present as ox-
ides/hydroxides in this ore. Gu is well correlated
with Ni and S suggesting they are associated with
relicts of disseminated pyrite of the sulfide ore (up
to 3.67 wt% Cu and 4300 ppm Ni; Corral et al.,
2016). S and Zn are well correlated, which is ex-
plained by the observed although scarce dissemi-
nated sphalerite.

DISCUSSION ON THE TRACE
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m Microphotographs of Cerro Quema ores. (A) Oxide ore: oxidized vuggy quartz altered dacite with barite and elevated gold
grade (sample 9322-34; 0.68 g/t Au, 21000 ppm Ba; cross-polarized transmitted light). (B) Oxide ore: massively oxidized vuggy quartz
altered dacite (sample 9210-121; 2.40 g/t Au, 1400 ppm Ba; cross-polarized transmitted light). (C) Sulfide ore: detail of a sulfide
microveinlet (Stage 3) constituted by pyrite, enargite, and minor chalcopyrite. Chalcocite replaces enargite. Host rock is a vuggy quartz
altered dacite (sample 0308-111.60; 1.68 g/t Au; reflected polarized light). (D) Sulfide ore: detail of a breccia band (Stage 4) constituted
by pyrite and chalcopyrite. Chalcocite replaces chalcopyrite. Groundmass is a vuggy quartz altered dacite (reflected polarized light).
Mineral abbreviations according to Whitney and Evans (2010): brt = barite, ccp = chalcopyrite, cct = chalcocite, eng = enargite, gth =
goethite, py = pyrite, qz = quartz phenocryst, vqz = vuggy quartz alteration.

Only two analyzed samples have Hg contents
above the detection limit (11 and 6 ppm). As Hg is

commonly partitioned into a rising vapor phase by 5. Summary and implications for
boiling (Barnes and Seward, 1997), the observed exploration

low concentrations of Hg may suggest that the

present day exposure at Cerro Quema represents Weathering and oxidation processes at the Cerro

a relatively deeper portion of the hydrothermal Quema deposit led to the development of two

system, and that the shallowest portion of the sys- distinct ore zones. An upper iron oxide-rich zone

tem has been eroded. (oxide ore), where Au, Ag, Pb, and Sb are concen-
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trated, is characterized by goethite-hematite, free
gold (Au £ Ag), relicts of disseminated pyrite and
sphalerite, and barite (associated with elevated
Au grades). A lower sulfide-rich zone (sulfide ore),
where Cu, Cd, Zn, Ni, and As are concentrated,
is constituted by auriferous pyrite (+ Cu-Ag), chal-
copyrite (t sphalerite inclusions), enargite-ten-
nantite, secondary copper sulfides (e.g, chalcocite,
covellite), and barite.

In terms of exploration, the most significant ob-
servation from the trace element distribution
and correlation factors is that exploration for Au
should target the oxide ore in areas showing high
Ba anomalies. On the other hand, exploration for
Cu should target the sulfide zone, below the ox-
idation boundary, where primary copper sulfides
and sulfosalts (e.g, chalcopyrite, enargite, tennan-
tite) and secondary copper sulfides (e.g, chalcocite,
covellite) are present.

Statistical calculations carried out in this study
show the potential of the correlation factors be-
tween different trace elements to target and
distinguish different ore zones with different met-
allurgical properties. This methodology may be
applicable to other deposits in similar geologic en-
vironments elsewhere.
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