PSEUDOFULGURITA EL ROSARIO: UN AGREGADO VÍTREO EXÓTICO EN EL ESTADO DE HIDALGO

Luis Enrique Ortiz Hernández1,2 e Israel Hernández Pérez1
1Consejo de Recursos Minerales, Gerencia de Investigación Aplicada. Bv. Felipe Ángeles s/n km 93.5 Col. Venta Prieto, C.P. 42080, Pachuca, Hgo.

RESUMEN

Varios fragmentos de pseudofulgurita, siendo el mayor denominado El Rosario de 6.475 kg, encontrados el día 21 de Mayo de 1995, en el Ejido El Rosario, cerca de Tepatepec, estado de Hidalgo. El sitio del hallazgo es un terreno de cultivo ubicado en las coordenadas geográficas 99° 05’ de latitud norte y 20° 15’ de longitud oeste. Gigantescamente el fragmento estudiado tiene un aspecto vitreo de color verde olivo y brilló resinoso con abundantes equidistancias y escorias esferas metálicas gris acero, rodeado por una coraza gris negruzca de aspecto escoroso, parcialmente brochada y conteniendo estructuras tubulares.

El peso específico promedio del agredado vitreo es de 2.548. Su análisis mineralógico muestra que la parte vitrea está formada de un vidrio silicatuminoso (n > 1.537), con estructura broadoho, conteniendo esferas metálicas de silicatos y microcristales subebdales de clinoepidoxeno. En la parte escofría que recubre la parte vitrea se identificó a polimorfos de la sílice (cuarzo, tridítita, cristobalita) y plagiolasa, así como impregnaciones de portlandita, calcita e hidróxidos de calcio.

Los análisis químicos de roca total muestran un enriquecimiento en componentes refractarios tales como SiO2, y Al2O3 y valores menos importantes de Na2O, K2O, CaO, FeO y TiO2, que representa la composición química del material arcilloso y limoso del suelo a partir del cual se formó la pseudofulgurita. La evidencia muestra que el origen de ésta se debió a la descarga eléctrica producida por la ruptura de una línea de alta tensión (13,000 volts) que impactó la superficie del terreno de cultivo.

Palabras clave: Pseudofulgurita, caracterización mineralógica, composición química, estado de Hidalgo, México.

ABSTRACT

El Rosario pseudofulgurita (6.475 kg) an other small vitreous fragments, were recovered May 21st, 1995, in Ejido El Rosario, near Tepatepec, Hidalgo state (99° 05’ N and 20° 15’ S). A brecciated and tubular structure formed by a green silicious and aluminous glass with n > 1.537 and a specific gravity of 2.548 are the characteristics of the biggest fragment. It include gray metallic spheres of silicates, and rare clinoepidoxeno microcrysts. In the scoriaceous part surrounding the glass, were identified silico polymorphs (quartz, tridímite and cristobalite), plagiolasa, portlandita, calcite and calcic hydrosides.

Whole-rock analysis of both glassy and scoriaceous phases show SiO2, and Al2O3 enrichment, and Na2O, K2O, CaO, FeO and TiO2 contents that represent the whole chemical composition of the argillic and silty precursor soil. El Rosario pseudofulgurite was produced when a broken high-power line (13,000 volts) fell to the ground.

Key Words: Pseudofulgurite, mineralogical characterization, chemical composition, Hidalgo state, Mexico.

INTRODUCCIÓN

Un agregado vitreo de 6.475 kg así como otros fragmentos pequeños vitreos y escoríaceos fueron recuperados el día 25 de Mayo de 1995, en el Ejido El Rosario, Mpio. de Francisco I. Madero, localizado aproximadamente 8 kms al oriente de Tepatepec, en el estado de Hidalgo. El agregado vitreo, que fue considerado por los habitantes del lugar como un fragmento de meteorito, contrasta notablemente con las formaciones geológicas circundantes constituidas por suelos arcillosos y limosos derivados de la meteorización de rocas ácidas y tobas carbonatadas, por lo que su origen se considera exótico. El sitio del hallazgo fue un terreno de cultivo, propiedad del señor Tomas Zamora Pérez, ubicado en las coordenadas geográficas 99° 05’ de latitud norte y 20° 15’ de longitud oeste (Fig. 1).
Los autores del presente trabajo acudieron en compañía de funcionarios municipales de Tepotepex y del Ing. Francisco Quijias Cruz, miembro de la Dirección General de Protección Civil del Estado de Hidalgo, ya que los habitantes de El Rosario solicitaron apoyo para detectar posible radiactividad en la zona del supuesto impacto del meteorito. Con objeto de tranquilizar a éstos, se procedió a medir ésta con un espectrómetro de rayos gamma SCINTREX GIS-4, obteniéndose mediciones del orden de 60-80 cuentas por segundo (cps) de cuenta total, lo que es una medida del valor de fondo del material que conforma el terreno (arcillas y limo).

Relata el señor Alfredo Zamora Vázquez, comisariado ejidal de El Rosario, que el día domingo 21 de Mayo, entre las 19:30 a 20:00 horas se encontraba en las afueras de su domicilio en compañía del señor Tomás Zamora Pérez, cuan- do de repente se percataron que en el sembradero de chiles propiedad de este último, los cables de alta tensión (13,000 volts) que cruzan éste habían sido rootos. Al acercarse al lugar, se percataron que un objeto incandescente yacía semienterrado en la tierra de cultivo, en una cavidad de forma ovalada de 80 X 60 cm y 10 cm de profundidad: Al otro día volvieron al sitio pero no pudieron desenterrar el objeto ya que estaba aún caliente, lo que se extendió al segundo día.

No fue sino hasta que los empleados de la Comisión Federal de Electricidad fueron a reparar los cables de alta tensión, el miércoles 24, que desenterraron el supuesto meteorito y lo trasladaron a sus instalaciones en la ciudad de Tepotepex. Acto seguido, el señor Alfredo Zamora Vázquez recuperó al otro día el fragmento vitreo, a instancias del ciudadano Presidente Municipal de Tepotepex, Lic. Francisco Morelos Fernández, quien se comunicó a la Dirección General de Protección Civil, en Pachuca, procediendo esta última a solicitar apoyo al Consejo de Recursos Minerales en lo tocante a transporte, medición de radiactividad y clasificación y análisis del agregado vitreo.

Los resultados obtenidos en la caracterización mineralógica y química de este agregado vitreo, así como la discusión acerca de su origen, constituyen el objetivo principal de este trabajo.

Descripción Megascópica.

El fragmento vitreo mayor tiene una forma elipsoïdal y en parte cilíndrica, con longitud aproximada de 35 cms, un aspecto vitreo de color verde olivo y brillo resinoso, rodeado por un coraza (2 a 3 cms de espesor), gris negruzco de aspecto escoriáceo, parcialmente brechada y conteniendo estructuras tubulosas (Fig. 2). La parte vitrea presenta abundantes oquedades parecidas a vesículas en forma de gota de tamaño variable (0.5-3 cms), en ocasiones intercomunicadas por medio de canales y escasos esferas metálicas gris acero de 1 cm hasta 3 cm de diámetro se
observan diseminadas (Fig. 3). En la coraza gris negruzca se reconoció también escasas impregnaciones de un material de color blanco mate.

Otras fragmentos pequeños vitreos de color verde y escoriáceos de color gris negruzco, semejantes a las estructuras tubulosas del fragmento mayor y de la misma composición también fueron encontrados esparcidos en el terreno de cultivo (Figs. 4 y 5).

MÉTODOS ANALÍTICOS UTILIZADOS

Los análisis necesarios para caracterizar químicamente el agregado vitreo fueron desarrollados en el Centro Experimental Tecamachalco del Consejo de Recursos Minerales, en la ciudad de México.

Después de efectuar cortes de la parte vitrea, escoriácea de rayos X, con el objeto de identificar las fases mineralógicas presentes. Las muestras fueron analizadas empleando los tubos de cromo y tungsteno, en un difractómetro de rayos X marca RIGAKU. Acto seguido, se envió otra parte vitrea y otra escoriácea para su análisis de roca total mediante fluorescencia de rayos X, utilizando un espectro-fotómetro de fluorescencia de rayos X marca RIGAKU DENKI. También se realizó la medición del peso específico de la muestra mediante picnómetro al alcohol 150-propílico a temperatura ambiente (24°C) y se estudiaron tres láminas delgadas al microscopio petrográfico. Dos superficies pulidas fueron preparadas para el estudio de la parte metálica a la microsonda electrónica (marca JEOL-JSM-35C) en el Instituto de Geología de la UNAM. Las condiciones analíticas utilizadas para los análisis cuantitativos a la microsonda electrónica fueron 15 kV de potencial de aceleración y 100 μA de intensidad de corriente. Los análisis obtenidos en porcentaje en peso fueron recalcados a 100% con el programa de corrección ZAF (número atómico, absorción y fluorescencia).
RESULTADOS OBTENIDOS

Dos mediciones del peso específico de la parte vitrea arrojan valores de 2.488 y 2.608, con un peso específico promedio de 2.548. Este peso específico medio es similar a la densidad media reportada para calizas y dolomitas secas (2.54 gr/cm³) y es mayor al de fülguritas descritas en la literatura (p.e. = 2.20; Frondel, 1962).

Al microscopio de luz transmitida se observa un material incoloro isotrópico, en ocasiones con tonalidades verdes, el cual se identificó como un vidrio de composición silicoaluminosa (n > balsamo > 1.537). Este vidrio está relle- nado en sus partes breehoideas por hematía e hidróxidos de fierro, presentando abundantes oquedades y burbujas rodeadas, exsosoluciones vermiformes con extinción ondulante de plagioclasas y tridimita, así como raras disminuciones de microcrisales subderales de clinopiroxeno y esferas con lustre metálico. Dada la rareza y el tamaño tan pequeño de los microcristales de clinopiroxeno (≤ 5 mm) no fue posible determinar su composición exacta.

Por no tener una estructura atómica bien definida, mediante difracción de rayos X no pudieron determinarse los componentes de la parte vitrea, la cual forma un 87% modal de la muestra. En la parte escoriácea se encontraron polimorfos de la sílice (cuarzo, tridimita y cristobalita), así como plagioclasas (Fig. 6), mientras que en las impregnaciones blancas se reconoció la presencia de calcita, portlandita, óxido de calcio y feldespato (Fig. 7). El análisis por difracción de rayos X de las esferas metálicas incluidas en el vidrio indica que se trata de una aleación refractaria de Fe y Si acompañada de hematía.

Los constituyentes del agregado vitreo en porcentaje modal se muestran en la Tabla 1. Ellos son reportados subdividiéndolos en parte vitrea, escoriácea e impregnaciones blancas.

Quimicamente, en la parte vitrea (muestra MET-1A) y escoriácea (muestra MET-1B) del agregado vitreo se cons- tatan contenidos en elementos mayores casi similares, con la excepción del FeO que presenta un contenido mayor en la parte escoriácea, posiblemente debido a condiciones más oxidantes que prevalecieron en esta parte durante la forma- ción del agregado vitreo (Tabla 2). Este agregado está casi en su totalidad formado de SiO₂, Al₂O₃ y FeO*, ya que la suma de estos óxidos varía entre 90 y 88% en la parte vitrea y escoriácea respectivamente. La relación Na/Al de ambas partes es inferior a 1, lo que es característico de mezclas silicoaluminosas y vidrios (Mysen, 1988). Comparado con fülguritas reportadas en Australia (Frondel, 1962) y en Michigan, Estados Unidos (Essene y Fisher, 1986), la pseudo-fulgurita El Rosario es menos rica en sílice pero más rica en alúmina, fierro total y álcalis.
CaO y K2O del agregado. La hermatita e ilmenita también aparecen en la norma, lo que es indicativo del enriquecimiento en fierro y contenido en titanio (Tabla 3).

Los análisis cuantitativos a la microsonda electrónica de la fase vítrea y de la fase metálica de la pseudofulgurita corroboran los datos proporcionados por la fluorescencia de rayos X y permiten profundizar éstos. En efecto, se observan cristales fracturados de aleaciones de fierro-silicio (silicidos), conteniendo exsoluciones lamelares y vermiciformes de similar composición (Fig. 8). Estas exsoluciones presentan variaciones significativas en sus contenidos en Fe y Si del borde hacia el centro, con relaciones de 2:1 a 1:1 y trazas de Ti (Tabla 4). También se observan glóbulos metálicos de silicidos enriquecidos en Fe-Ti y de tamaño pequeño (<5 mm) embestidos en vidrio con contenidos en SiO2 variando entre 61-65% (Fig. 9).

CLASIFICACIÓN Y ORIGEN DEL AGREGADO

De acuerdo con la literatura geológica, las rocas vítreas se forman por enfriamiento súbito o por choque que induce destrucción de la estructura cristalina. De acuerdo a O’Keef (1984), los vidrios de origen natural son de varios tipos, a saber: volcánico, de impacto, diapléctico, tektita, fulgurita y combustión-metamórfico. El origen de estos vidrios es resumido en la Tabla 5. Los tres primeros tipos de vidrio han sido

Tabla 1. Composición mineralógica y porcentaje modal de la parte vítrea, escoriácea e impregnaciones blancas de la pseudofulgurita El Rosario.

<table>
<thead>
<tr>
<th>CONSTITUYENTE</th>
<th>COMPOSICION</th>
<th>% EN LA MUESTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTE VÍTREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidrio silicatosilicatos</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Cilindros de Forja</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hematita</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PARTE ESCORÍACEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corteja</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tridórica</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Brucita</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Plagioclasa</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IMPREGNACIONES BLANCAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcita</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Portlandita</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Calcedonía</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Feissilitas</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Análisis químicos de roca total (en % en peso) de la parte vítrea (MET-1A) y escoriácea (MET-1B) de la pseudofulgurita El Rosario. A título de comparación la composición química de una fulgurita de Australia (Frondel, 1962) y de fulguritas de Michigan (Essene y Fisher, 1966).

Tabla 3. Norma CIPW de la parte vítrea (MET-1A) y escoriácea (MET-1B) de la pseudofulgurita El Rosario.

<table>
<thead>
<tr>
<th>MINERALES NORMATIVOS</th>
<th>MET-1A</th>
<th>MET-1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>36.22</td>
<td>35.44</td>
</tr>
<tr>
<td>c</td>
<td>8.79</td>
<td>9.47</td>
</tr>
<tr>
<td>or</td>
<td>12.7</td>
<td>12.50</td>
</tr>
<tr>
<td>ab</td>
<td>20.21</td>
<td>19.54</td>
</tr>
<tr>
<td>am</td>
<td>11.44</td>
<td>10.75</td>
</tr>
<tr>
<td>ne</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ac</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ns</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>en</td>
<td>3.83</td>
<td>3.60</td>
</tr>
<tr>
<td>fs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ml</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cm</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>hm</td>
<td>4.65</td>
<td>5.02</td>
</tr>
<tr>
<td>il</td>
<td>1.85</td>
<td>0.8</td>
</tr>
<tr>
<td>ln</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nu</td>
<td>0.09</td>
<td>0.71</td>
</tr>
<tr>
<td>ap</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.I.</td>
<td>0.70</td>
<td>0.79</td>
</tr>
</tbody>
</table>

D.I.-Índice de diferenciación.
encuentras tanto en la superficie de la Tierra, como también en la Luna y algunos meteoritos, mientras que los tres restantes están restringidos a cuerpos planetarios con atmósfera.

Las evidencias encontradas en el terreno de cultivo, tales como la presencia de una cavidad de forma ovalada, una línea de alta tensión rota, fragmentos vitreos y escoriáceos de composición similar al fragmento mayor, así como las características megascópicas, microscópicas y la composición mineralógica y química del agregado vitreo, son compatibles con las de las fulguritas (Feldman, 1987), los productos terrestres resultantes de rayos impactando la superficie del suelo o rocas. Las fulguritas han sido producidas también artificialmente haciendo pasar una corriente eléctrica a través de arena u otro material, o cuando líneas de alta tensión han sido rotas sobre suelo arenoso. A estos últimos productos se les denomina pseudofulgurita, ya que no fue formada por fusión producida por el efecto de un rayo sino de una simple descarga eléctrica inducida por la ruptura de una línea de alta tensión (13,000 volts de tensión de aceleración; técnicas de la CFE, comunicación oral) impactando la superficie del terreno arcilloso y limoso. Según el Dictionary of Geology (Tomkeieff, 1983), las fulguritas (del latín fulgur igual a fundido) son tubos vitrificados de material sílico fundido producido cuando un rayo impacta la superficie del terreno. Los vidrios son de color blanco grisáceo, café, marrón, oscuro, negro o verdes amarillentos, bulbosos o con protuberancias alargadas, a veces bifurcadas. Su superficie exterior es rugosa con excesencias en forma de hilo y vesicular. Algunas de ellas libres de roquedas son parecidas megascópicamente a obsidiana negra, aunque la gran

Figura 8. Fotomicrografía obtenida a la microsonda electrónica mostrando una esfera metálica de silicidó (M) incluida en vidrio silícico (VI). Se observan exsinciones laminares y vermiculares de Fe-Si y el fracturamiento característico de los cristales. Los números indican la localización de los análisis puntuales.

Figura 9. Fotomicrografía obtenida a la microsonda electrónica mostrando globulitos de silicidos (M) de tamaño pequeño incluidos en vidrio silícico (VI). A la izquierda un cristal de silicido (Si) con estrías de pulido. Los números indican la localización de los análisis puntuales.

<table>
<thead>
<tr>
<th>OXIDOS</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>61.60</td>
<td>65.05</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Al2O3</td>
<td>23.7</td>
<td>23.30</td>
</tr>
<tr>
<td>FeO</td>
<td>2.85</td>
<td>1.75</td>
</tr>
<tr>
<td>MgO</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.72</td>
<td>0.68</td>
</tr>
<tr>
<td>K2O</td>
<td>0.65</td>
<td>0.63</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>34.60</td>
<td>34.60</td>
<td>34.60</td>
<td>34.60</td>
<td>34.60</td>
<td>34.60</td>
<td>34.60</td>
<td>30.64</td>
</tr>
<tr>
<td>Fe</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>3.75</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 4.- Análisis puntuales a la microsonda electrónica de la fase vitrea y de la fase metálica de la pseudofulgurita expresados en porcentaje en peso. 1 y 2 fase vitrea. 3 a 10 fase metálica. La ubicación de los análisis efectuados se indican en las figuras 8 y 9.
mayoría presentan tubos pequeños de vidrio pasando al interior de la roca. Estas rocas son comunes en arenas de luna del desierto o en planicies costeras. Ellas han sido reportadas por Frondel (1962) como vidrios naturales o artificiales de composición silícea (90-99% de SiO₂), formadas cuando un rayo golpea y mezcla arenas cuarcíferas, rocas o suelo. Un contenido en sílice variando de 85 al 99% ha sido reportado para fulguritas por Essene y Fisher (1986). Debe considerarse, sin embargo, que la composición química global de las fulguritas depende del protolito o del material a partir del cual se formaron estos agregados vitreos.

El impacto de rayos sobre el terreno produce varios efectos inusuales ocasionando cambios abruptos en la presión, temperatura, densidad y velocidad del medio impactado, provocando mezcla, vaporización, fundido y transformación mineralógica en su defecto fuertes deformaciones de los materiales rocosos (Brook et al., 1962; Hill, 1971; Uman y Knider, 1989; Newcott, 1963). La fulgurita resultante típicamente consiste de vidrio producido por el intenso calor inducido por la descarga eléctrica. Estas rocas son generalmente tubulares, con interior hueco y frágil y exterior poroso (Daly et al., 1993). Las fulguritas contienen fases que requieren altas temperaturas, excediendo en general 1000°C, siendo la temperatura de mezcla antes de la formación del vidrio estimada entre 1900 a 2700°C (Essene y Fisher, 1986), reflejando las condiciones extremas producidas localmente por el rayo. Esto se produce cuando la descarga eléctrica causa que el campo eléctrico rebase el límite de rompimiento del aire adyacente produciendo mezcla y vaporización. Este rompimiento causa una descarga convectiva formada partir del objeto impactado hacia arriba. La energía liberada y los voltajes y temperaturas involucradas son verdaderamente extraordinarias para alcanzar la mezcla de materiales.

Los minerales encontrados en las fulguritas son polimorfos de la sílice, rara vez ZrO₂, multia (Si₃Al₂O₉) (Frondel, 1962) y recientemente se ha señalado la presencia de grafito, fullerens (C₆₀ y C₇₀, Daly et al., 1993), silicidos (Fe₃Si₄), compuestos de hierro, titanio y fósforos (Essene y Fisher, 1986), todos ellos formados a altas temperaturas y bajas presiones.

En rocas terrestres, la presencia de tridimita y cristobalita es común en las cavidades de rocas volcánicas vitreas. Estos minerales se supone se formaron tardíamente por emanaciones de gases calientes actuando sobre la roca aún no del todo solidificada. Según Deer et al. (1993), la tridimita se forma arriba de los 870°C y cuando esta se calienta a ±1470°C se transforma en cristobalita. La presencia de estos polimorfos sugiere altas temperaturas alcanzadas por la pseudofulgurita El Rosario. Esta temperatura alta es también sugerida por la presencia de cinoxipreno, ya que piroxenos del tipo clinoespatita coexisten con cristobalita a temperaturas de alrededor de 1570°C (Mysen, 1988) y se sabe también que para que la arena se convierta en un vidrio se necesita una temperatura de alrededor de 1370°C. Por otra parte, se sabe que una descarga de 28000 volts de tensión de aceleración afectando un terreno blando y conductor de electricidad, puede producir una temperatura de aproximadamente

Tabla 5. Tipos de vidrios de origen natural (según O'Keefe, 1984).
2500° C (técnicos de la CFE, comunicación oral), lo cual es suficiente para fundir localmente el terreno y producir vaporización.

El hervimiento del agregado vitreo está evidenciado por la abundancia de vesículas y los canales que intercomunican éstas. La vaporización del oxígeno durante el hervimiento proporcionó las condiciones idóneas para el desarrollo de los silicidos.

Estos silicidos, que consisten de tetraedros de silice ocupados por otros elementos tales como Fe, Al, Ti, B, P, Sn y otros (Feldman, 1987), han sido encontrados en fulguritas que han experimentado una extrema reducción y denotan una inmiscibilidad entre fase vitrea y metálica (Essene y Fisher, 1986). Estas condiciones son sugeridas también por las exsoluciones de plagioclasa y tridimita en la parte vitrea que dan evidencia de inmiscibilidad y también por la forma esferoidal de las esferas metálicas y glóbulos que sugieren desmezcla de líquido metálico a partir de un líquido silicatado (Essene y Fisher, 1986).

La composición química predominante en silice y alúmina de la pseudofulgurita es un reflejo del material original a partir del cual ésta se formó, que son suelos del tipo Vertisoles péllicos y Feozems con propiedades véticas con contenidos en arcilla superiores al 56%, contenidos variables en carbonatos (0.5-8%) y bajos en materia orgánica (Detenal, 1982). Este tipo de suelo presenta una composición predominante de arcillas del tipo de la montmorillonita (Al_{1.67}Mg_{0.33} (OH)_{2}(SiO_{2})), Na_{0.33}(H_{2}O)), También se sabe que la composición de las líneas de alta tensión es aluminio, acero, plástico y partes cerámicas. Estos materiales pudieron fundirse con el suelo para dar origen a un agregado vitreo silicoaluminoso con predominio de materiales refractarios.

CONCLUSIONES

La pseudofulgurita El Rosario constituye un fragmento vitreo exótico en el estado de Hidalgo. Sus características sugieren que se formó por mezcla producida por la descarga eléctrica de una línea de alta tensión (13000 volts de tensión de aceleración) con la superficie del terreno de cultivo arcilloso-limoso que indujo vaporización, fundido, transformación mineralógica y solidificación del material impactado. Su peso específico es 2.548. El vidrio refractario que la constituye es de composición silicoaluminosa con n=1.537 conteniendo escasas disminuciones de clinopiromeno, así como esferas y glóbulos de silicidos con trazas de titanio. En su parte escorriente se identificaron polímeros de la silice (cuarzo, tridimita y cristobalita) y plagioclasa. La parte vitrea y escorriente están constituidas esencialmente de refractarios que expresan químicamente su abundancia en SiO₂, Al₂O₃ y FeO*, y contenidos bajos en Na₂O, CaO, K₂O y TiO₂. Las impregnaciones blancas formadas de calcita, óxido de calcio, portlandita y feldespatos, sugiere adición de calcio posiblemente suministrado por las raíces de la vegetación existente en el terreno de cultivo o por la carbonatación de las tobas del cual procede el suelo arcilloso y limoso implicado. Se sabe, en efecto, que los productos formados por la silicificación de raíces de plantas están compuestos de carbonato de calcio, limonita y calcedonia (Friden, 1962).

Las características similares de la pseudofulgurita y de los fragmentos vitreos y escorriaces pequeños encontrados en el terreno de cultivo sugieren que estos son fragmentos disgregados del agregado mayor o que ellos fueron formados por el mismo fenómeno que produjo este.

La pseudofulgurita El Rosario daria evidencia de un origen exótico, aunque terrestre, ya que es completamente ajena a las formaciones geológicas adyacentes y fue formada por procesos poco usuales en la naturaleza (fig. 10).

AGRADECIMIENTOS

Los autores manifiestan su agradecimiento a las autoridades del Consejo de Recursos Minerales por las facilidades otorgadas para la publicación del presente trabajo. Se agradece asimismo al personal del Centro Experimental Tecamachalco, Ings. Ma. de la Luz Rivas, Alfonso Cruz y Rolando Nieto por el análisis de las muestras, así como también a los Ings. Gregorio Medina García y José Cárdenas Vargas, por su apoyo logístico. Se agradece asimismo a la Bióloga Margarita Reyes Salas del Instituto de Geología de la UNAM por su apoyo en los análisis cuantitativos de la fase metálica y vitrea en la microsonda electrónica.

BIBLIOGRAFÍA

