LAS PEGMATITAS GRANITICAS DE SANTA ANA, TELIXTLAHUACA, OAX. MEXICO

JENARO GONZÁLEZ REYNA

GENERALIDADES

Santa Ana se encuentra en la porción oriental de la Loma del Maguey. Esos terrenos pertenecen al Municipio de San Francisco Telixtlahuaca, Estado de Oaxaca, cuyas coordenadas geográficas aproximadas son: 17° 30' de latitud norte y 96° 52' de longitud (Fig. 1).

La altura de Telixtlahuaca sobre el nivel del mar es de 1700 metros. El lugar es de muy fácil acceso; la distancia a Oaxaca, Oax., es de 39 kilómetros.

Las comunicaciones por ferrocarril se establecen por Telixtlahuaca y "Las Sedas".

La constitución orohidrográfica de la zona es sencilla, con relieve topográfico de formas armoniosas y suaves, sin barrancas profundas. Las elevaciones del terreno forman cerros de poca altura con formas redondeadas, mostrando una topografía vieja y modelada por prolongados ciclos de erosión.

Los cerros de la región constituyen una unidad orográfica, dividida por los arroyos principales: El Maguey y Cañón del Salto; el sistema de arroyos secundarios tiene poca importancia. En la Barranca del Ocotal, o donde terminan las Lomas de Santa Ana, pueden verse buenos ejemplos de un ciclo de erosión rejuvenecido.

GEOLOGIA

La geología del lugar es sencilla, constituida por gneisses graníticos donde se encuentran alojados cuerpos de rocas pegmatíticas con formas muy irregulares, o como diques. Cubriendo a las rocas metamórficas y ocupando superficies reducidas aparecen calizas en unos cuantos lugares.

(1) Original recibido en julio de 1961.
(2) Ayudante Técnico, Gerencia de Exploración de Petróleos Mexicanos.

39
En la cañada de El Salto y Lomas de El Salto, se encuentran caliches.

Ocupando dos pequeños afloramientos y sobre las calizas, hay un conglomerado rojo cerca del cerro Mogotillo.

Las formaciones recientes o actuales están representadas por aluviones y materiales que rellenan los valles (Fig. 2).

Las edades probables o ya establecidas de las formaciones citadas son como sigue:

Formaciones

Edades

PRINCIPIOS DEL PALEOZOICO (?)

PALEOZOICO (?)

MESOZOICO

Cretácico

CENOZOICO

Mioceno u Oligoceno

RECIENTE Y ACTUAL

Gneisses Graníticos

Diques Pegmatíticos

Pegmatitas

Calizas

Calizas y Conglomerados calizos

Caliches

Conglomerado rojo

Acarreos: Aluviones, Arenas, etc.

Gneisses graníticos.—Esta roca ocupa la mayor parte del área, que no es sino una porción pequeña de la gran extensión ocupada por gneisses graníticos en el Estado de Oaxaca, estimada en más de 15,000 kilómetros cuadrados en el centro y hacia la costa del Pacífico.

En la Mixteca Alta de Oaxaca también afloran los gneisses graníticos al sur, sur-oeste y nor-oeste de Tlaxiaco.

Las áreas cubiertas por gneisses presentan características muy semejantes, tanto estructurales como de alteración y composición y muestran bandeadamientos tan marcados y estructuras tan especiales, que indican claridad procesos de granitización en ciertas partes de la roca.

Los gneisses muestran con frecuencia una foliación que en lo general se orienta de noroeste a sureste con echados promedios de 60° al SW. La roca se aprecia muy alterada en sus partes inmediatas a la superficie y constituye la formación basal donde se apoyan todas las demás que existen dentro del área investigada.

La anfibola que abunda en la estructura bandeadada del gneiss, le imparte un color verde oscuro. Otros minerales accesorios: magnetita e ilmenita. En las arenas derivadas del gneiss se identificaron con luz ultra-
Vista panorámica desde las lomas de Santa Ana, Telfixtabuaca.
MAPA DE LOCALIZACIÓN DE LA ZONA DE TELIXTLAHUACA, EN EL ESTADO DE OAXACA
violeta pequeñas cantidades de zircon. El color general de la roca alterada: amarillo pardo o café claro, se debe principalmente a óxidos secundarios.

Los gneiss es son importantes económicamente, pues en ellos se alojan pegmatitas graníticas que contienen elementos raros, y radioactivos.

Hasta la fecha no ha sido posible determinar su edad, y solamente se cree que, dadas sus características, posición que guardan con respecto a otras rocas, su aspecto físico, estructura, y por comparación con formaciones semejantes cuya edad se ha determinado, que posiblemente corresponden a principios del Palaeozoico.

Pegmatitas y diques pegmatíticos.—Se localizaron ocho pegmatitas graníticas. Seis de ellas pequeñas. Las dos de “Santa Ana” presentan una morfología muy irregular y sus ejes mayores se orientan normalmente a la foliación de los gneisses.

Los diques pegmatíticos se desarrollan paralelos entre sí y separados por distancias más o menos considerables. Son generalmente angostos; desde unos centímetros hasta 0.60 m. y con una orientación generalmente de noreste a sureste; sus echados varían desde 50° hasta verticales. Sus desarrollos son cortos.

En el Arroyo de Santa Ana algunos de los diques están fallados.

Calizas.—En la región se encontraron pequeñas áreas cubiertas por calizas, que representan restos de una formación muy potente, según se ve en la región de Cerro Azul, al norte de Inutechi.

Forman casquetes con espesor máximo de cinco metros, descansando sobre el gneiss alterado y erosionado, existiendo una fuerte discordancia entre ambas formaciones.

En los lugares donde la caliza no ha sido muy afectada por la erosión, es compacta, de color azul-gris, y a veces muestra una fauna fósil abundante, aunque fragmentaria y bastante mal preservada, correspondiente al Cretácico.

Conglomerados calizos.—Se localizaron ocupando superficies reducidas y descansando directamente sobre el gneiss, existiendo entre ambas rocas una discordancia.

La formación está integrada por pedruzcos de caliza de tamaños hasta de 30 centímetros de diámetro, rodeados de arcilla. Los conglomerados calizos, muy alterados, se desintegran fácilmente. Su espesor varía de uno a diez metros.

Caliches.—En la Loma del Salto y en algunas partes del valle del Salto se encontró esta formación.
Los caliches deben su origen a las calizas, de las que se derivaron por su disolución y luego fueron depositados al evaporarse las aguas que los contenían, acumuladas en una cuenca cerrada.

Por su posición estratigráfica y relaciones con las calizas, corresponden al Eoceno.

Conglomerado rojo.—Aparece en dos lugares y ocupa unos cuantos metros cuadrados de superficie, teniendo un espesor máximo de dos metros. Está integrado por pedazos de caliza y gneiss, y descansa apoyándose sobre el gneiss. Entre ambas rocas existe una fuerte discordancia.

Por analogía con otros lugares de México y basándonos en los recientes descubrimientos de fósiles hechos por el Dr. Carl Fries Jr. en el conglomerado rojo de Guanajuato, creemos que los conglomerados rojos de Telixtlaahuaca corresponden al Oligoceno, o principios del Mioceno.

Aluviones.—El relleno de los valles está constituido por acarreos: aluviones, materiales fragmentarios y arenas.

Estructuras.—Las estructuras predominantes del área se orientan de noroeste a sureste, existiendo estructuras secundarias desarrolladas de noroeste a suroeste.

Las estructuras del primer grupo coinciden con la foliación del gneiss y rigen la orientación general de las cañadas principales y de los diques pegmatíticos. Las barrancas secundarias toman la orientación de las estructuras secundarias. La pegmatita de Santa Anna se desarrolla de noroeste a suroeste.

Las estructuras principales están señaladas por las cañadas del Maguay y de El Salto, y la primera tiene una serie escalonada de desviaciones, tal vez debidas a la combinación producida por la orientación de las estructuras descritas.

GEOLOGIA ECONOMICA

Las pegmatitas de Oaxaca son cuerpos con una morfología extraordinariamente irregular y generalmente de escasas dimensiones. Se aprecian con poca longitud, escasa anchura, y poca profundidad. Son alargadas, tabulares o lenticulares. Otras veces son diques con afloramientos interrumpidos.

En ciertos casos muestran características de textura que varía desde grano fino hasta grandes cristales.

En el Estado existe una porción de varios miles de kilómetros cuadrados, constituida por rocas antiguas. Esos terrenos quedan integrados por gneisses graníticos principalmente, esquistos, pizarras y cuarcitas, en su orden de abundancia. Su distribución cubre una zona orientada casi norte-sur, desde Teotitlán al norte del paralelo 18°, hasta Lachixio a los 17° 15'
FIG. 2 - PLANO TOPOGRÁFICO Y CROQUIS GEOFÍSICO PARCIALES. ZONA DE LAS CAÑADAS DE "EL Maguey" Y "EL Salto" TELIXTLAHUACAN, OAX.
de latitud norte, donde la zona toma un rumbo noroeste sureste, hacia la costa, prolongándose después por Pluma Hidalgo y Pochutla para seguir hacia el oriente por unos 80 kilómetros. La anchura del área varía entre 20 y 70 kilómetros.

En la porción occidental del Estado, a partir del meridiano 97° 30' de longitud y hasta más allá de los límites con los Estados de Puebla y Guerrero, existen también áreas considerables ocupadas por rocas metamórficas, principalmente gneisses. Este escudo de rocas antiguas ofrece amplio campo para buscar yacimientos de minerales de uranio y thorio en pegmatitas, puesto que, por lo observado hasta la fecha, con frecuencia se les encuentra en los gneisses. Algunos yacimientos muestran porciones mineralizadas con cantidades pequeñas de mineral de uranio de alta ley. Otras veces su contenido de uranio aparece como producto de poca importancia económica, y en muchos casos su contenido de U₃O₈ es tan escaso que no haría posible intentar su aprovechamiento.

Los minerales radioactivos se encuentran con frecuencia mezclados con tierras raras.

PEGMATITAS DE SANTA ANA

Estructura.—La orientación general de la pegmatita grande de Santa Ana (Fig. 3) se desarrolla con un promedio de 50° de nooreste a suroeste, magnético; coincide con fracturas que cortan al gneiss donde se aloja y que exhibe una foliación orientada de noroeste a sureste y echados entre 47° y 80° suroeste. Las fracturas cortan en ángulo casi recto a la foliación de los gneisses. En cambio, los diques pegmatíticos quedan controlados, aparentemente, por fracturas orientadas siguiendo sensiblemente la foliación y echado que muestran las rocas metamórficas (Fig. 2).

En la pegmatita chica de Santa Ana (Fig. 4) se ilustran con claridad los dos tipos de estructuras principales que rigen la orientación general de los cuerpos pegmatíticos de toda la región. En la porción nororiental de la figura se aprecia, con toda claridad, una pequeña falla orientada al S70° W. y echado vertical; tal rumbo podría considerarse aproximado al de las estructuras que se observan casi paralelamente al eje mayor de la pegmatita grande. La falla a que se ha hecho referencia queda cortada por otra secundaria, más joven, orientada casi norte-sur y echado paralelo a la foliación del gneiss.

Además, hacia la porción superior del cuerpo intrusado de la pegmatita se encontró un pequeño segmento de otra falla, paralelo a la que se desarrolla casi norte-sur. No se encontró evidencia de su continuación ni dentro del cuerpo de la pegmatita, ni en el gneiss, posiblemente debido a que en este último caso sus elementos geométricos coinciden precisamente con los de la roca metamórfica. En el caso de la falla inferior, paralela, sucede algo semejante, y su prolongación fuera de lo que se encuentra dentro de la pegmatita sólo puede inferirse en sus contactos con la roca.
metamórfica. Además, debe considerarse el resquebrajamiento notado en la pegmatita. La orientación de esta falla y su posible continuación hacia el surponiente coinciden con la disposición que guarda el dique pegmatítico encontrado en la Barranquilla de Santa Ana, a unos 80 metros al sureste de la pegmatita chica.

El escatón formado por la falla secundaria al intersecar la falla principal, es interesante porque a lo largo de la falla: S70° W y con echado vertical, se efectuó un movimiento posterior que desplazó al segmento dislocado de la pegmatita, por la falla norte-sur.

En el extremo sur de la falla norte-sur de la pegmatita chica se puede observar una serie de fracturas paralelas no muy conspicuas, próximas entre sí, orientadas N25° E; 78° NW, que posiblemente puedan considerarse relacionadas genéticamente a las fracturas NE50° y 70° SW, de la pegmatita grande, aunque con echado contrario.

Las fracturas paralelas o casi paralelas a los cuerpos de las pegmatitas posiblemente deban en parte su origen a fenómenos de enfriamiento en el cuerpo pegmatítico, principalmente aquellas fracturas próximas a los contactos con el gneiss.

Dentro de los cuerpos de las pegmatitas existen también fracturas en las zonas intermedia y de los respaldos, estando mineralizadas, y a las que se hará referencia posterior. Estas estructuras, en Santa Ana, están a veces dispuestas radialmente, entrecruzándose, y deben su origen a fenómenos de enfriamiento habidos en la pegmatita, que no alcanza mucha profundidad: posiblemente hasta 25 metros, como lo indican las obras mineras.

Las pegmatitas corresponden a cuerpos discordantes en relación con la estructura de su roca encajonante, a la que han afectado en grados variables en sus bordes. Así, en la porción inferior de la pegmatita grande, en el contacto del respaldo del noreste, se formaron fajas alternadas de feldespato y vermiculita, produciendo bandeamientos casi verticales y con anchuras máximas de diez centímetros. Otras veces la alteración se distingue por la formación de una zona hasta de 0.50 m donde abundan pequeñas plaquitas de flogopita y fragmentos de ortoclase, observable preferentemente en la pegmatita grande, donde alcanza su mayor anchura. En esta zona aparece también tourmalina negra, maciza, poco abundante; con cristales mal definidos que llegan a desarrollarse hasta alcanzar diez centímetros. Además, se encontró berilio.

Crestones.—Los afloramientos no siempre son conspicuos, dependiendo ésto del tamaño del cuerpo y de la erosión que ha sufrido. Los crestones quedan señalados por feldespatos y cuarzo en prominencias que aparecen destacándose un poco sobre el terreno. Otras veces los afloramientos han sido expuestos por las corrientes de agua en los arroyos.

Los afloramientos, ya sean de feldespatos o cuarzo, dependen exclusivamente de la zona de la pegmatita que ha quedado expuesta.
Hemos dicho que los cuerpos pegmatíticos son erráticos, de diversos tamaños y formas caprichosas. Para tener un concepto más claro de su posible desarrollo, origen y posibilidades económicas, se consideraron sus características de textura, mineralogía y demás peculiaridades que muestran en sus unidades, como se describe brevemente:

Textura.—Las pegmatitas de Santa Ana son generalmente de textura fina o mediana en sus zonas exteriores, notándose que los constituyentes minerales, sobre todo el feldespato y mica, aparecen con tamaños desde uno hasta 20 milímetros por lado; los fragmentos de cuarzo son del mismo orden de tamaño. Al alejarse uno de la zona del contacto, hacia el centro de la pegmatita, la textura de sus minerales cambia y sus tamaños aumentan considerablemente, siendo cada vez más toscos y grandes, hasta alcanzar los feldespatos cerca de cuarenta centímetros de largo. El cuarzo de la zona central aparece en masas.

En algunos lugares a poca distancia de los bordes de la pegmatita

Fracturas y reemplazamiento.—Las fracturas son de dos tipos: las se observa una textura gráfica, producida por el feldespato y cuarzo, desarrolladas durante los procesos de enfriamiento de la pegmatita y las originadas posteriormente. Las fracturas del primer grupo se formaron cuando la pegmatita no estaba aún totalmente sólida, sino que tenía porciones pastosas capaces de fluir para ocupar los huecos y fracturas que se fueron abriendo en las partes ya solidificadas. Creemos, dada la disposición de las fracturas: indistintamente orientadas, a veces formando rosetas, que también deben su origen a fenómenos de contracción. Estas fracturas aparecen principalmente en la ortoclase de los respaldos, cerca de la zona intermedia, constituida por feldespatos cálculos.

En Santa Ana se nota que en la ortoclase de los respaldos existen con más o menos frecuencia manchones aislados e irregulares de ilmenita, que al enfriarse en contacto con el feldespato produjo en él fenómenos de reemplazamiento en pequeña escala.

Las fracturas posteriores, o recientes, se orientan siguiendo el eje mayor de la pegmatita. En los estudios microscópicos de superficies pulidas se ve que en los feldespatos hay fracturas que se convirtieron en microfallas.

Mineralogía.—La mineralogía de las pegmatitas estudiadas no es complicada.

Los minerales encontrados son de orígenes primario y secundario. Los primeros, a su vez, deben considerarse en dos grupos: principales y accesorios. Los constituyentes principales de esas pegmatitas son aquellos que, como el cuarzo y los feldespatos, vienen a ser los minerales más abundantes, mientras que, entre los accesorios, deben incluirse minerales como ilmenita, altanita, fergusonita, etc., de origen primario, pero que por su abundancia sólo ocupan un lugar secundario.

Los minerales encontrados pueden agruparse como sigue:
MINERALES PRIMARIOS

Minerales Principales
- cuarzo
- ortoclasa
- perthita (granito gráfico)
- albita y clevelandita

Minerales Accesarios
- muscovita
- apatita
- berilo
- tourmalina
- espodumena
- ilmenita
- allanita
- tierras raras
- fergusonita
- columbita?
- tantalita?

MINERALES SECUNDARIOS

micas:
- flogopita
- vermiculita
- biotita
- sericita
- arcillas
- kaolín
- óxidos de fierro

UNIDADES PEGMATÍTICAS

Las pegmatitas de Santa Ana quedan formadas por cuerpos o zonas sucesivas (Figs. 3 y 4), que a continuación se describen:

Zona de los Bordes.—La zona de los bordes se distingue por su composición mineralógica y sus características físicas: los minerales que la constituyen son flogopita y vermiculita en escamas o plaquitas pequeñas, de menos de 2.5 milímetros de tamaño; junto con las micas aparecen también cuarzo y ortoclasa en fragmentos pequeños. Entre esta zona y el gneiss granítico que la limita hacia el exterior hay un contacto brusco y
FIG. 4 — PEGMATITA CHICA DE "SANTA ANA", CAÑADA DEL MAGUEY, TELIXTLAHUACA, OAX.
bien definido. No se nota una transición gradual, sino que parece que al quedar aprisionado el cuerpo de la pegmatita en el gneiss, la capa del contacto, donde es apreciable, marcó un enfriamiento brusco que determinó las características ya citadas. La zona de los bordes carece en Santa Ana de valor económico y se le puede ver con poco desarrollo y únicamente ocupando superficies de escasa consideración.

Zona de los Respaldos.—Se desarrolla ampliamente y se aprecia generalmente en contacto con el gneiss granítico.

Esta zona exhibe características mineralógicas, así como de textura y estructura de interés científico y económico. La zona de los respaldos generalmente aparece como girones alargados y de formas irregulares (ver Figura), y es continua al derredor de la pegmatita grande de Santa Ana con sus mejores exhibiciones en el extremo nor-este y en el centro. La zona de los respaldos se encuentra en contacto directo con el gneiss granítico, y considerando la orientación general del cuerpo pegmatítico, casi forma un ángulo recto con respecto al rumbo de la foliación del gneiss. Los contactos entre el gneiss y la zona de los respaldos no muestran ninguna transición gradual, y tampoco se notaron huellas de asimilación del gneiss por los constituyentes exteriores de la zona, formada por minerales con texturas finas que sucesivamente, hacia el interior de la pegmatita, pasan a tener texturas medianas y gruesas.

En porciones más interiores de la zona, o ya en partes próximas a la zona intermedia, siguiente, se encuentran fracturas que deben representar, seguramente, accidentes desarrollados durante los procesos del enfriamiento progresivo del cuerpo de la pegmatita. Esos accidentes a veces están dispuestos en forma de roseta y son siempre de poca magnitud, frecuentemente entrecruzándose. Esas fracturas muestran una mineralogía especial, depositada en las fracturas, donde, al presentarse las circunstancias físico-químicas adecuadas de temperatura, presión y concentración, se alojó en ellas una mineralización integrada por ilmenita y allanita. Esta última aparece invariablemente en forma de cristales tabulares, con longitud máxima hasta de veinte centímetros. Su anchura alcanza hasta ocho centímetros en los cristales mayores y su espesor varía entre menos de tres milímetros y hasta casi cinco centímetros. Su color es variable, según el estado de alteración en que se encuentre; por lo general en su superficie es de color café amarillento anaranjado, y bajo esa costra de poco espesor aparece el mineral fresco, de color negro y lustre submetalico. La allanita se distingue, además, por su pesadez y su fratura irregular y semi-conoidal.

En la zona de la pegmatita donde se encuentra la allanita se ha visto que sus cristales frecuentemente están dispuestos en forma de rosetas. Otras veces aparece dispuesta siguiendo líneas aproximadamente paralel...
las. En algunas ocasiones se nota que los cristales alterados de allanita quedan rodeando a un cristal de perthita.

La allanita contiene un porcentaje considerable de tierras raras.

Zona Intermedia.—El desarrollo visible de esta parte de la pegmatita es variable.

En la pegmatita grande de Santa Ana la zona intermedia es muy irregular en forma y magnitud, y su constitución mineralógica queda formada principalmente por plagioclasa, perthita y cuarzo. La proporción de este último va en aumento a medida que se acerca uno al centro de la pegmatita, hacia donde va siendo menor la cantidad de los feldespatos, minerales que van tomando una textura cada vez más gruesa.

La porción exterior de la zona intermedia participa limitadamente de las peculiaridades de la zona de los respaldos en lo tocante a su mineralización, integrada por allanita rellenando fracturas producidas por contracción durante los procesos de enfriamiento y cristalización.

Zona del Centro.—Esta división de las pegmatitas está constituyendo precisamente la porción central de ellas. Su tamaño es muy variable (ver figuras).

Está constituida exclusivamente por cuarzo lechoso, amorfo y macizo, al que, en ciertos casos, se adhieren pegaduras de otros minerales en sus bordes exteriores.

Desde el punto de vista económico, la importancia de la zona central reside precisamente en las pegaduras del mineral radioactivo: fergusonita, que aparecen en las porciones exteriores de la zona.

El mineral aparece con diversas coloraciones, aunque sus demás propiedades físicas son siempre semejantes; en general la forma más común de presentarse es con un color negro o negro-verde oscuro. Los otros colores con que se muestra son café oscuro o rojizo. En ambas formas el mineral tiene un peso específico alto y aparece como masas compactas, siendo quebradizo. Da el aspecto de un material vidrioso y brillante, como si estuviera untado con barniz. La fergusonita que hemos estudiado se encuentra a veces formando cristales y principalmente en masas que aparecen precisamente en la zona central de las pegmatitas, como pegaduras en la parte exterior del cuarzo, o bien se asocia al feldespato que caracteriza la zona del contacto. Las masas de fergusonita encontradas pesan desde cien gramos, hasta varios kilos.
Cristales alterados de allanita rodeando a cristales de perthita.

Cristal de mineral radio-activo: fergusonita, muy poco alterada y contenida en feldespatos (perthita).
ORIGEN Y RADIO-ACTIVIDAD DE LAS PEGMATITAS

Creemos que las pegmatitas estudiadas se formaron en los gneisses graníticos del área investigada en Telixtlahuaca como residuos magmáticos que fueron atrapados en los gneisses graníticos donde finalmente cristalizaron al enfriarse. Los cuerpos de magma atrapado se acomodaron estando plástico y semi-fluido, siguiendo accidentes desarrollados en la roca metamórfica como consecuencia de los fenómenos tectónicos que originaron las estructuras de la región.

Así pues, y considerando lo dicho en páginas anteriores, la radioactividad en las pegmatitas estudiadas tiene dos orígenes: en primer lugar, las radaciones emanadas del mineral allanita, de composición muy compleja; la radioactividad, en tal caso, procede de su contenido de torio. El segundo tipo de radaciones es producido por el uranio contenido en el mineral fergusonita.

Las emanaciones radioactivas son especialmente intensas en la parte frontal del gran reboque de Santa Ana, donde la allanita aparece con más o menos abundancia en las estructuras ya descritas, en los feldespatos. Otras veces las zonas de emanaciones radioactivas quedan marcadas por manchas de minerales que han tomado un color más oscuro, generalmente debido a la oxidación de los minerales primarios: allanita e ilmenita.

Algunas porciones donde aparecen los minerales radioactivos, y principalmente la ilmenita, muestran zonas en las que se produjeron fenómenos de reemplazamiento en los feldespatos de la zona de las respaldos.

Los análisis de las muestras investigando su contenido de uranio proporcionaron resultados sumamente variables, que van desde un mínimo de 0.051% hasta un máximo de 5.94% de uranio. Invariablemente los resultados con leyes pobres y muy pobres corresponden a mineral integrado por allanita. En el caso de las muestras con altos contenidos de uranio el mineral principal es fergusonita, mezclada con niobio o columbio, torio y tierras raras, además de óxidos y silicatos diversos.

Por lo que respecta al contenido de torio, en forma de óxido: ThO₂, en las muestras de fergusonita se encontró ser de 2.68%, mientras que la allanita acusó 0.68%; también se vió que este último mineral tiene 0.004% de uranio.

Las tierras raras en muestras típicas de allanita que se analizaron químicamente, dieron contenidos que van desde 1.2 hasta 22.30%.

De acuerdo con los análisis espectrográficos practicados, los contenidos de tres muestras de allanita fueron como sigue:
La mineralización de radioactivos en las pegmatitas, según hemos observado en todos los casos unitarios examinados hasta hoy en el Estado de Oaxaca, es limitada y a la vez errática. Es además, variable por lo que respecta a calidad del mineral, de acuerdo con la zona donde se encuentra y del estado de alteración de los minerales.

Indudablemente que en el futuro habrá que hacer mucho trabajo de exploración, en primer lugar dentro del Municipio de Telixtlahuaca, y después en el resto del Estado, así como en los de Guerrero y Puebla donde se tienen extensas superficies de terreno constituido por rocas metamórficas del tipo de los gneisises graníticos que encontramos en la región de que se ocupa este trabajo.

Como resultado de las investigaciones a que nos hemos referido y teniendo en consideración las evidencias disponibles hasta ahora, esperamos que dentro de estas grandes extensiones de terreno se encontrará un gran número de pegmatitas conteniendo minerales radioactivos. En tales rocas cabe esperar variaciones mineralógicas más o menos notables, pero creemos que posiblemente en Oaxaca, Puebla y Guerrero sus minerales sean semejantes a lo visto en Santa Ana. Es posible también que en el curso de las investigaciones de campo y laboratorio se encuentren otras especies mineralógicas de radio-activos.

No cabe pensar en la posibilidad de qué de la explotación de una sola pegmatita pueda obtenerse una producción comercialmente costeable de minerales radio-activos o de tierras raras y minerales de thorio. Así pues, una vez descubierto y estudiado un buen número de pegmatitas mayores, y ya considerada su importancia potencial, deben explotarse en conjunto.

Vista parcial que señala los lugares muestreados en el "rebaje de arriba" o número dos. Pegmatita de la mina de Santa Ana, Telixtlahuaca.