CONTRIBUCION GEOQUIMICA EN EL ESTUDIO DE LAS AGUAS
SUBTERRANEAS DE LA CUENCA DEL VALLE DE
MEXICO

INTRODUCCION.

SUBCUENCA DE CHALCO.

a.—Clase Geoquímica de las aguas.
b.—Temperaturas de las aguas.
c.—La distribución Geoquímica del Zinc en las aguas de la
 Subcuenca de Chalco.
d.—Distribución Geoquímica del Boro en las aguas de la Sub-
 cuenca de Chalco.
e.—El origen de las aguas subterráneas existentes en la Sub-
 cuenca de Chalco.

SUBCUENCA DE TEXCOCO

a.—Clases Geoquímicas de las aguas.
b.—Distribución Geoquímica del Zinc en las aguas subterráneas
 de la Subcuenca de Texcoco.
c.—Distribución Geoquímica del Boro en las aguas subterrá-
 neas de la Subcuenca de Texcoco.
d.—Origen de las aguas subterráneas existentes en la Sub-
 cuenca de Texcoco.

SUBCUENCA DE SAN JUAN TEOTIHUACAN.

a.—Clases Geoquímicas de las aguas.
b.—Distribución Geoquímica del Zinc en las aguas subterráneas
 de las Subcuenca de San Juan Teotihuacan.
c.—Distribución Geoquímica del Boro en las aguas subterráneas de la Subcuenca de San Juan Teotihuacán.

d.—Origen de las aguas subterráneas de la Subcuenca de San Juan Teotihuacán.

COTRIBUCION GEOQUIUMICA EN EL ESTUDIO DE LAS AGUAS SUBTERRANEAS DE LA CUENCA DEL VALLE DE MEXICO. *

Rafael Molina Berbeyer. Instituto de Geofísica. U. N. A. **

INTRODUCCION.

En este trabajo se trata de demostrar en pocas palabras la utilidad que la Geoquímica Aplicada, puede proporcionarnos en la diferenciación de acuíferos dentro de Cuenca del Valle de México.

Desde hace varios años ha sido este un serio problema. Se usaron los métodos geológicos y solamente se llegó a resultados parciales; después se usaron los métodos geofísicos los cuales basados en sus propias observaciones y combinadas con las geológicas se logró tener resultados más cercanos a la realidad. En estos últimos años de adelantos científicos tocó a la Geoquímica contribuir dentro de sus posibilidades para solucionar parcialmente este problema.

Durante el estudio geoquímico de las aguas subterráneas de la cuenca del Valle de México, surgieron distintos problemas de carácter técnico de gabinete y de campo.

Los problemas de carácter técnico de gabinete consistieron:

1°—En buscar métodos químicos analíticos de precisión, con el fin de tener buenos resultados en los análisis químicos de las aguas problema. Por ser ésto, la base para el cálculo de interpretación geoquímica de las mismas.

2°—Se buscó toda la literatura correspondiente a los estudios y trabajos hechos sobre la Cuenca del Valle de México y el material de gabinete quedó completo con una buena colección cartográfica de la Cuenca del Valle de México y lugares adyacentes.

3°—Los problemas de campo consistieron principalmente en los medios de transporte y ésto quedó solucionado al conseguir un vehículo permanente para esta clase de trabajo.

* Manuscrito recibido el 4 de junio de 1954.
** Geoquímico del Instituto de Geofísica de la U. N. A. M.
Solucionados los problemas antes indicados, se procedió a seleccionar las zonas de muestreo y estudio, ésta selección se efectuó teniendo en cuenta la división en Subcuenas, que se hizo de la Cuenca del Valle de México, de acuerdo con el trabajo presentado por el autor en el Congreso Científico para la celebración del IV Centenario de la fundación de la Universidad Nacional de México.

Las zonas seleccionadas para esta primera investigación Geoquímica de las aguas subterráneas fueron:

1. — La Subcuenca de Chalco, que se encuentra al Sureste de la Cuenca del Valle de México.

2. — La Subcuenca de Texcoco, que se encuentra en toda la parte central y Este de la Cuenca del Valle de México.

3. — La Subcuenca de San Juan Teotihuacán, que abarca toda la parte central de la porción Noroeste de la Cuenca del Valle de México.

A continuación haré un pequeño resumen de las condiciones geoquímicas de las aguas subterráneas de cada una de estas Subcuenas:

SUBCUENCA DE CHALCO.

a. — CLASE GEOQUIMICA DE LAS AGUAS.

En esta Subcuenca de Chalco geoquímicamente han sido encontradas dos Clases geoquímicas de aguas y que son: aguas de la Clase I y de la Clase III de Chase Palmer.

Esta diferencia geoquímica de las aguas nos indica el modo de comportarse el agua en áreas de distinta condición geológica. Las aguas de la Clase I, han sido solamente encontradas en las áreas de origen lacustre y se caracterizan por ser ricas en álcalis y pobres en ácidos fuertes.

Las aguas de la Clase III, se caracterizan por su alto contenido en ácidos fuertes y bajo contenido en álcalis, correspondiendo al tipo de aguas que circulan por áreas montañosas de origen volcánico.

La relación de Mg/Ca, en estas aguas de la Subcuenca de Chalco, varía de 2:1 a 3:1. Esta relación nos indica que las aguas subterráneas circulan por materiales ricos en Mg, tal como sucede en esta parte de la Cuenca del Velle de México.
b.—TEMPERATURAS DE LAS AGUAS.

La distribución de temperaturas en las aguas de la Subcuenca de Chalco nos demostró la existencia de una íntima relación con las condiciones orohidrográficas que existen en esta Subcuenca.

Por medio de la construcción de curvas de igual temperatura se llegó a localizar valores de 17 a 18° C., principiando en San Rafael Atlízco para seguir por Chalco y terminar en Temamatla. Indicando esto, que, el área abarcada por esta serie de curvas térmicas, está influenciada por aguas frías procedentes de los deshielos de las nieves del Ixtaccíhuatl.

La variada diferencia de temperaturas en la parte Norte, nos indica la proximidad de focos térmicos, tal como sucede cerca de las estribaciones Sur del Cerro Pino y al Sureste del Cerro de la Caldera en donde la temperatura máxima es de 23° C.

c.—LA DISTRIBUCION GEOQUIMICA DEL ZINC EN LAS AGUAS DE LA SUBCUENCA DE CHALCO.

Todas las aguas muestreadas en la Subcuenca de Chalco fueron analizadas por método colorimétrico especial, para saber el contenido y la distribución geoquímica del zinc en esta área de la Cuenca del Valle de México.

Los valores obtenidos fueron de 0 a 60 gamas/litro y la interpretación geoquímica de esta distribución indica que, en la parte Norte de la Subcuenca de Chalco es donde hay mayor concentración del zinc, y que esta concentración va disminuyendo hacia el Sur hasta llegar a tener un valor de 0 gamas/litro, siendo el límite geográfico de este valor el cerro de Tlapacoya.

Por lo antes expuesto y por el agrupamiento de los valores obtenidos, se deduce que, en esta parte existe un receptáculo de aguas subterráneas independiente de la parte sureste de la Subcuenca de Chalco.

En la parte Sureste de la Subcuenca de Chalco, se obtuvieron bajos valores de zinc, correspondientes a 0 a 10 gamas/litro. Llegándose a deducir de esto, que en esta zona existen aguas subterráneas procedentes de las aguas que se infiltran de los deshielos de las nieves del Ixtaccíhuatl.
El cuadro a continuación nos indica la distribución geoquímica del elemento zinc en la Subcuenca de Chalco.

CUADRO Nº 1

DISTRIBUCION GEOQUIMICA DEL ZINC EN LAS AGUAS SUBTERRANEAS DE LA SUBCUENCA DE CHALCO

<table>
<thead>
<tr>
<th>Origen del agua</th>
<th>Material por donde circulan las aguas</th>
<th>Contenido de Zinc (gamas/litro)</th>
</tr>
</thead>
</table>
| **Aguas Meteoricas**
 deshielo (infiltración) no mezcladas con aguas de origen magmatico. | Productos de acarreo de origen andesítico con hornblenda o hiperstena. Ejemplo—Estrichaciones poniente de la Sierra Nevada (Ixtaccihuatl). La profundidad de los pozos es de 80 a 100 m. | 0 a 10 |
| **Aguas Meteoricas**
 lluvias (infiltración) mezcladas parcialmente con aguas de origen magmatico. | Productos piroclásticos de origen basáltico, en contacto con material igneo de reciente emisión. Ejemplo—Zona Norte de la Subcuenca de Chalco y cerca de grietas o fallas a profundidad. Profundidad de los pozos de 80 a 100 metros. | 11 a más de 60 |
Por medio del cuadro anterior se llega a las conclusiones siguientes:— Que las cantidad existente de zinc en las aguas subterráneas que tienen como origen el deshielo de las nieves del Ixtaccihuatl, varía de 0 a 10 gamas/litro. Este zinc puede proceder de la disolución de productos de alteración de las rocas ígneas o sedimentarias de origen piroclástico. Por donde circulan, las aguas procedentes de los deshielos antes mencionados.

d.— DISTRIBUCION GEOQUIMICA DEL BORO EN LAS AGUAS DE LA SUBCUENCA DE CHALCO.

Geoquimicamente el elemento boro es considerado un elemento de profundidad, el cual solamente se encuentra en minerales cuyo punto de fusión es muy alto y quedan como residuo en la diferenciación geoquímica de un magma.

Los minerales ricos en boro como la turmalina solamente se encuentran en rocas ricas en silice. El boro es también producido en acción fumarólica y este elemento no puede ser directamente separado del magma.

Se ha observado una relación muy íntima entre el contenido de amonio y el alto contenido de boro en la acción fumarólica (Italia). Esto indica que mucho del amonio encontrado en las aguas no solamente puede ser de origen orgánico sino también de origen inorgánico.

Por tal motivo el boro puede ser considerado de origen magmático y se manifiesta este elemento en la superficie por medio de las aguas cuyo origen es magmático. Las aguas de origen magmático solamente pueden surgir a la superficie por medio de fallas o de grietas.

Geoquimicamente el boro nos indica por medio de su distribución en las aguas subterráneas, la situación, rumbo y forma de una grieta o falla que se encuentre a profundidad.

El cuadro que a continuación se presenta nos indica la distribución del boro en las aguas subterráneas de la Subcuenca de Chalco.
CUADRO N° 2

DISTRIBUCION GEOQUÍMICA DEL BORO EN LAS AGUAS SUBTERRANEAS DE LA CUENCA DE CHALCO.

<table>
<thead>
<tr>
<th>Origen del agua</th>
<th>Material por donde circulan las aguas</th>
<th>Contenido de Boro. gamas/litro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguas Meteóricas deshielos (infiltración) no mezcladas con aguas de origen magmático</td>
<td>Productos de acarreo de origen andesítico con hornblenda o hiperstena. Ejemplo.— Estribaciones poniente de la Sierra Nevada (Ixtaccihuatl). Profundidad de los pozos de 80 a 100 metros.</td>
<td>0 a 3</td>
</tr>
<tr>
<td>Aguas Meteóricas lluvias (infiltración) mezcladas parcialmente con aguas de origen magmático</td>
<td>Estos pozos se encuentran alejados de zonas mineralizadas y de grietas o fallas profundas. Las aguas circulan por material perfectamente estratificado. Productos piroclásticos de origen basáltico en contacto con material ígneo de reciente emisión. Ejemplo.— Zona Norte de la Subcuenca de Chalco, cerca de grietas o fallas profundas. La profundidad de los pozos es de 80 a 100 metros.</td>
<td></td>
</tr>
</tbody>
</table>

La interpretación de este cuadro nos indica que en la parte Norte de la Subcuenca de Chalco, existe una zona en la cual se manifiesta una grieta o falla a profundidad y el agua magmática que asciende
por ella contamina o se mezcla parcialmente con las aguas de origen meteorico.

Especialmente en la parte Sureste de Chalco, las aguas no contienen boro y esto confirma que en esta zona existe un acuífero que tiene como origen las aguas de los deshielos de las nieves del Ixtaccihuatl.

En la parte central de Chalco se encuentran tres curvas isoboro que varían de 13 a 43 gamas/litro. Esta acumulación de boro se debe principalmente a las plantas que actualmente se encuentran en proceso de carbonización; pero a la vez nos indican que cerca y a profundidad se encuentra una grieta o falla por la cual ascienden aguas magmáticas.

e.—EL ORIGEN DE LAS AGUAS SUBTERRANEAS EXISTEN-TES EN LA SUBCUENCA DE CHALCO.

Los estudios geoquímicos anteriormente citados, dan la base para deducir de ellos cuál es el origen de las aguas subterráneas de la subcuenca de Chalco.

Estas aguas por regla general son de origen meteorico. En la parte Norte se encuentran aguas de lluvias infiltradas hasta profundidad y estas aguas se ponen en contacto con aguas magmáticas que ascienden a la superficie por medio de alguna grieta o falla y a la vez estas aguas surgen con aumento de temperatura.

Estas aguas subterráneas se encuentran localizadas entre los 60 y 100 metros de profundidad. Por tal motivo debe de considerarse que este acuífero comienza a los 5 metros de profundidad y se continúa hasta los 100 metros de profundidad, ya que las características geoquímicas de estas aguas son iguales a las profundidades antes citadas.

En esta parte de la Subcuenca de Chalco, se encuentran materiales de relleno no perfectamente estratificados, la forma de los sedimentos es lenticular más o menos alargadas y en agrupamiento heterogéneo. Estos sedimentos consisten de arcillas, arenas, limos y gravas de distinto espesor.

En la parte Sureste de la Subcuenca de Chalco, se encuentran acuíferos que debido a sus condiciones geoquímicas y reforzando esto con la temperatura tan baja que tiene, se ha llegado a deducir que tienen como origen las aguas procedentes de los deshielos de las nieves del Ixtaccihuatl. Estas aguas al infiltrarse en las partes altas de la montaña siguen una circulación de Este a Poniente y cerca de Chalco cam-
bian su rumbo hacia el Sureste para buscar salida subterránea hacia el valle de Cuautla.

La temperatura observada en este conjunto de acuíferos es de 17 a 180°C., el contenido de boro en ellos es de 0 gamas/litro y el contenido en zinc es de 0 a 10 gamas/litro, esto confirma todo lo anteriormente indicado con respecto al origen de este acuífero.

SUBCUENCA DE TEXCOCO.

a.—CLASES GEOQUÍMICAS DE LAS AGUAS.

De los datos recabados se infiere que en la subcuenca de Texcoco existen geoquímicamente tres Clases de aguas y que son: Clase I, Clase II, y Clase III, según la clasificación geoquímica de Chase Palmer.

La Clase I, se encuentra distribuida principalmente en la parte baja de la Subcuenca de Texcoco, indicando ésto la íntima relación que existe entre la petroquímica de los sedimentos lacustres con la composición química de las aguas que circulan por ellas.

La Clase II, se encuentra distribuida en una pequeña área en la parte Este de la Subcuenca de Texcoco, e indica que en este lugar se efectúa una mezcla de aguas de la Clase I y de la Clase III. Esta mezcla de aguas geoquímicamente nos indica una pequeña zona de depresión.

La Clase III, se encuentra distribuida principalmente en las laderas de las montañas (parte Poniente y Norte de la Sierra Nevada); en su infiltración y recorrido subterráneo, el agua de lluvia adquiere características químicas especiales que la hacen agruparse en la Clase III de Chase Palmer. Estas aguas se encuentran principalmente localizadas en la parte Este de la Subcuenca de Texcoco.

Geoquimicamente estas aguas nos pueden enseñar lo siguiente:

Las aguas de la Clase I, que se encuentran localizadas en la parte Norte, Sur y Surponiente de esta Subcuenca, nos indica que parcialmente se encuentran mezcladas con aguas de origen magmático.

(La presencia de las aguas de origen magmático existentes en esta Subcuenca han sido evidenciadas por medio del Boro).

b.—DISTRIBUCION GEOQUIMICA DEL ZINC EN LAS AGUAS DE LA SUBCUENCA DE TEXCOCO.

Del estudio efectuado para la distribución geoquímica del zinc en las aguas subterráneas en la Subcuenca de Texcoco, se obtuvieron datos que varían de 0 a 500 gamas/litro.
La interpretación geoquímica de estos datos nos indica que en la parte Este y Norte de la Subcuencas de Texcoco existe una pequeña concentración de zinc. Y esta concentración de zinc aumenta de Norte a Sur, lo mismo este pequeño aumento se observa de Oeste a Este de la Subcuenca de Texcoco.

En la parte Sur de esta Subcuenca, se observan una serie de valores anormales de zinc, indicando que en esta parte existe una condición anormal en el subsuelo y que las aguas circulan por una zona altamente accidentada, confirmándose ésto, por medio del área de falla que existe a profundidad en la parte Sur y Poniente de esta subcuenca de Texcoco tiene una dirección que puede ser considerada Northe-norponiente a Sur-sureste.

El acuífero salado encontrado entre los 40 y 50 metros tiene 4,000 gamas/litro de Zinc.

Por medio de la interpretación de las cantidades de zinc contenido en las aguas de esta subcuenca, se puede diferenciar la existencia de los acuíferos subterráneos que contienen aguas de distinta procedencia. El primero se encuentra entre los 40 y 50 metros de profundidad y contiene aguas dulces, este segundo acuífero se encuentra parcialmente mezclado con aguas saladas procedentes del acuífero superior.

El cuadro que a continuación se presenta nos indica la distribución geoquímica del zinc en la Subcuenca de Texcoco.

CUADRO N° 3

DISTRIBUCION GEOQUIMICA DEL ZINC EN LAS AGUAS SUBTERRANEAS DE LA SUBCUENCA DE TEXCOCO

<table>
<thead>
<tr>
<th>ORIGEN DEL AGUA</th>
<th>MATERIALES POR DONDE CIRCULAN LAS AGUAS</th>
<th>CONTENIDO DE ZINC, GAMAS/LITROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONA OCCIDENTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.—Parte Norte.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua Meteorica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lluvias (infiltración)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mezcladas parcialmente con aguas de origen magmático.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productos piroclásticos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de origen basáltico en contacto con material ígneo de reciente emisión, cerca de grietas o fallas a profundidad.</td>
<td></td>
<td>0 - 80</td>
</tr>
<tr>
<td>Profundidad de los pozos de 20 a 90 metros.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIGEN DEL AGUA</td>
<td>MATERIALES POR DONDE CIRCulan LAS AGUAS</td>
<td>CONTENIDO DE ZINC, GAMAS/LITROS</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Aguas Magmáticas
ascenso mezcladas parcialmente con aguas de origen meteórico (infiltración).</td>
<td>B.—Parte Poniente.
Productos piroclásticos de origen andésitico en contacto con material sedimentario, sobre de grietas o fallas a profundidad.
Profundidad de los pozos de 50 a 150 metros. (Pocito de la Villa y Peñón de los Baños).</td>
<td>40 - 200</td>
</tr>
<tr>
<td>Aguas Magmáticas
ascenso mezcladas parcialmente con aguas de origen meteórico (infiltración).</td>
<td>C.—Parte Sur.
Productos piroclásticos sedimentarios de origen basáltico, en la parte superior y de origen andésitico en la parte inferior, en contacto con rocas ígneas de inferior, en contacto con rocas ígneas de origen andésitico y basáltico, sobre de fallas o grietas a profundidad (Peñón de los Baños y Pocito de la Villa).
Profundidad de los pozos 50 a 150 metros.</td>
<td>40 - 500</td>
</tr>
<tr>
<td>Aguas Meteóricas
lluvias. (infiltración). Mezcladas parcialmente con aguas magmáticas.</td>
<td>ZONA ORIENTAL
Productos sedimentarios de relleno de origen andésitico, material eólico y de acarreo pluvial, alejados parcialmente de grietas y fallas profundas.
Profundidad de los pozos de 50 a 80 metros.</td>
<td>80 - 100</td>
</tr>
</tbody>
</table>
c. - **DISTRIBUCION GEOQUIMICA DEL BORO EN LAS AGUAS DE LA SUBCUENCA DE TEXCOCO.**

En este trabajo el boro ha sido usado únicamente con el fin de encontrar la áreas de invasión o mezcla de aguas de origen magmático que solamente tienen acceso al exterior por medio de grietas o fallas.

Los valores obtenidos para el boro e interpretados de acuerdo con su distribución, nos indican la forma de la falla o grieta por donde ascienden las aguas de origen magmático.

La distribución geoquímica del boro se encuentra explicada en el cuadro siguiente:

CUADRO Nº 4

DISTRIBUTION GEOQUIMICA DEL BORO EN LAS AGUAS SUBTERRANEAS DE LA SUBCUENCA DE TEXCOCO

<table>
<thead>
<tr>
<th>Origen del agua</th>
<th>Materiales por donde circulas las aguas</th>
<th>Contenido de Boro gamas/litro</th>
</tr>
</thead>
<tbody>
<tr>
<td>aguas meteoricas lluvias</td>
<td>ZONA OCCIDENTAL</td>
<td></td>
</tr>
<tr>
<td>(infiltracion)</td>
<td>A.- Parte Norte.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Productos piroclásticos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de origen balsático</td>
<td></td>
</tr>
<tr>
<td></td>
<td>en contacto con material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>igneo de reciente emisión, cerca de grietas o fallas a profundidad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profundidad de los pozos de 20 a 90 metros.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - 70</td>
<td></td>
</tr>
<tr>
<td>Origen del agua</td>
<td>Material por donde circulan las aguas</td>
<td>Contenido de Boro (gamas/litro)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Aguas Magmáticas. ascenso
Mezcladas parcialmente con aguas de origen Meteórico (infiltración)</td>
<td>B. — Parte Poniente.
Productos piroclásticos de origen andesítico en contacto con material sedimentario, sobre de grietas o fallas a profundidad.
Profundidad de los pozos de 50 a 150 metros.
(Pocito de la Villa y Peñón de los Baños).</td>
<td>71 - 3,00</td>
</tr>
<tr>
<td>Aguas Magmáticas. ascenso
mezcladas parcialmente con aguas de origen Meteórico (infiltración)</td>
<td>C. — Parte Sur.
Productos piroclásticos sedimentarios de origen basálticos en la parte superior y de origen andesítico en la parte inferior en contacto con rocas ígneas de origen andesítico y basáltico. Sobre fallas o grietas a profundidad (Peñón de los Baños y Pocito de la Villa).
Profundidad de los pozos 50 a 150 metros.</td>
<td>500 - 1,000</td>
</tr>
<tr>
<td>Aguas Meteóricas lluvias (infiltración)
mezcladas parcialmente con aguas magmáticas</td>
<td>ZONA ORIENTAL
Productos sedimentarios de relleno de origen andesítico, material de acarreo pluvial y de origen cólico, alejados parcialmente de grietas y fallas profundas.
Profundidad de los pozos de 50 a 80 metros.</td>
<td>80 - 100</td>
</tr>
</tbody>
</table>
La interpretación del cuadro anterior nos indica que:

a.—En la parte Norte de la Subcuenca de Texcoco existe una entrada subterránea de aguas parcialmente mezclada con aguas de origen magmático.

b.—En la parte Poniente y Sur se tienen aguas que en su mayor parte son de origen magmático, debido a su alto contenido de boro.

c.—El agua del Peñón de los Baños y así como el agua del Pocito de la Villa, deben de ser consideradas como aguas de origen magmático.

d.—En el Peñón Viejo o del Marqués, se encuentran aguas de origen magmático altamente mezcladas con aguas de origen meteórico (infiltración).

e.—Las aguas de la parte oriental de la Subcuenca de Texcoco, deben ser consideradas totalmente de origen Meteorico (infiltración), aunque sufran una ligera mezcla con aguas de origen magmático.

Puede ser considerada esta parte de la Subcuenca de Texcoco, como una zona acuífera para el abastecimiento de agua para usos Municipales o Industriales.

d.—ORIGEN DE LAS AGUAS SUBTERRÁNEAS EXISTENTES EN LA SUBCUENCA DE TEXCOCO.

Las aguas subterráneas de esta subcuenca, tiene dos orígenes y que son: el primero es magmático (aguas saladas) y el segundo meteórico (aguas dulces).

Las aguas de origen meteórico quedan localizadas en toda la parte Sur, Sur poniente y Nor-poniente de la Subcuenca. La mayor concentración de aguas magmáticas está localizada en la zona comprendida entre el Cerro del Tepeyac al Cerro del Peñón de los Baños y de aquí al Cerro del Peñón Viejo o Marqués.

Las aguas del Pocito de la Villa y del Peñón de los Baños, deben de ser consideradas en su totalidad como de origen magmático.

El acuífero de agua salada abarca un área que corresponde a una tercera parte del área total del vaso del Lago de Texcoco y se encuentran principalmente localizada en la parte Poniente. Este acuífero de agua salada se encuentra a una profundidad de 40 a 50 metros.

El acuífero de aguas dulces, está parcialmente mezclado con aguas saladas. Este acuífero se encuentra localizado en toda la porción media del Lago y con dirección al Poniente hasta llegar a la Sierra de Guadalupe. Este acuífero se encuentra entre los 75 y 85 metros de pro-
fundidad y tiene presión artesiana con alturas hidrostáticas que variaban de 3, 4 y 7 metros.

Geoquímicamente el acuífero de aguas saladas debe de ser considerado de origen magmático con un alto contenido de agua de origen meteórico.

El acuífero de aguas dulces que se encuentran en la parte inferior del acuífero salado, debe de ser considerado como de origen meteórico. Lo mismo el acuífero que se encuentra en la parte Este de la Subcuenca de Texcoco.

SUBCUENCA DE SAN JUAN TEOTIHUACAN.
A.—CLASES GEOQUÍMICAS DE LAS AGUAS.

De los datos recabados se infiere que en la Subcuenca de San Juan Teotihuacán, existen geoquimicamente tres Clases de aguas y que son:

La Clase I, que se encuentra distribuida parcialmente en la Subcuenca de San Juan Teotihuacán y nos indica que su origen lo tiene en la zona lacustre de Apam (topográficamente más alta).

La Clase II, se encuentra distribuida en la zona Este del valle de San Agustín Aculman, y indica que en este lugar se efectúa una mezcla de aguas de la Clase I y de la Clase III, confirmándose con esto la existencia de una pequeña depresión a profundidad.

La Clase III, solamente se encuentra en una pequeña área de la zona Sur del Valle de San Martín de las Pirámides.

Las aguas de la Clase I son las que predominan en la Subcuenca de San Juan Teotihuacán.

b.—DISTRIBUCION GEOQUIMICA DEL ZINC EN LAS AGUAS SUBTERRANEAS DE LA SUBCUENCA DE SAN JUAN TEOTIHUACAN.

Por medio del estudio efectuado para saber la distribución geoquímica, se obtuvieron resultados que variaban de 0 a 510 gamas/litro.

La interpretación geoquímica de estos datos nos indica que en la parte poniente y oriente hay mayor concentración de este elemento y que la circulación del acuífero se encuentra en la parte central del valle de San Martín de las Pirámides.

Dentro de este valle, se pueden observar tres valores de zinc que variaban de 240, 270 y 300 gamas/litro, quedando con esto indicada una condición geoquímica anormal.
En el Valle de San Agustín Acolman, se encuentran los siguientes valores de 100, 200 y 510 gamas/litro e indican también condiciones geológicas anormales.

El cuadro que a continuación se indica, nos da la distribución geoquímica del Zinc en las aguas subterráneas de la Subcuenca de San Juan Teotihuacán.

CUADRO Nº 5

DISTRIBUCION GEOQUIMICA DEL ZINC EN LAS AGUAS DE LA SUBCUENCA DE SAN JUAN TEOTIHUACAN

<table>
<thead>
<tr>
<th>Origen del agua</th>
<th>Materiales por donde circulan las aguas</th>
<th>Contenido de Zinc gamas/litro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguas Meteoricas lluvias (infiltracion) mezcladas parcialmente con aguas de origen magmatico.</td>
<td>VALLE DE SAN MARTIN DE LAS PYRAMIDES. Productos Piroclasticos de origen basaltico en contacto con material igneo de reciente emision, cerca de grietas o fallas profundas. Profundidad de los pozos de 40 a 80 metros.</td>
<td>20 - 300</td>
</tr>
<tr>
<td>Aguas Magmaticas, lluvia (infiltracion) mezcladas parcialmente con aguas de origen magmatico.</td>
<td>VALLE DE SAN AGUSTIN ACOLMAN Productos piroclásticos de origen basáltico en contacto con material ígneo de reciente emisión, cerca de grietas o fallas profundas. Profundidad de los pozos de 3 a 80 metros.</td>
<td>0 - 510</td>
</tr>
</tbody>
</table>

c.—DISTRIBUCION GEOQUIMICA DEL BORO EN LAS AGUAS SUBTERRANEAS DE LA SUBCUENCA DE SAN JUAN TEOTIHUACAN.

La distribución geoquímica del Boro nos indica cuál o cuáles son las áreas de estos valles que están contaminadas con aguas de origen magmático.
La distribución geoquímica del Boro en esta Subcuenca de San Juan Teotihuacán, se encuentra citada en el siguiente cuadro:

CUADRO Nº 6

DISTRIBUCION GEOQUIMICA DEL BORO EN LAS AGUAS SUBTERRANEAS DE LA SUBCUENCA DE SAN JUAN TEOTIHUACAN

<table>
<thead>
<tr>
<th>Origen del agua.</th>
<th>Materiales por donde circulan las aguas.</th>
<th>Contenido de Boro gamas/litro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGUAS METEÓRICAS
 lluvia (infiltración)
mezcladas parcialmente con aguas de origen magmático</td>
<td>VALLE DE SAN JUAN TEOTIHUACAN.
Productos piroclásticos de origen basáltico en contacto con material ígneo de reciente emisión, cerca de grietas o fallas profundas.
Profundidad de los pozos de 40 a 80 metros.</td>
<td>0 - 100</td>
</tr>
<tr>
<td>AGUAS MAGMÁTICAS
 lluvias (infiltración)
mezcladas parcialmente con aguas de origen magmático.</td>
<td>VALLE DE SAN AGUSTIN ACOLMAN.
Productos piroclásticos de origen basáltico en contacto con material ígneo de reciente emisión, cerca de grietas o fallas profundas.
Profundidad de los pozos de 3 a 80 metros.</td>
<td>10 - 100</td>
</tr>
</tbody>
</table>

La interpretación del cuadro anterior nos indica que:

a.—En la parte Norte-noroeste de la Subcuenca de San Juan Teotihuacán, existe una entrada subterránea de aguas meteóricas infiltradas que parcialmente se mezclan con aguas de origen magmático.

b.—En la parte Sur-surponiente de la Subcuenca de San Juan Teotihuacán, se encuentran aguas meteóricas infiltradas y altamente con-
taminadas con aguas de origen magmático, sin llegar a hacerlas in-
propias para los usos Municipales o Industriales.

d.—ORIGEN DE LAS AGUAS SUBTERRÁNEAS DE LA SUB-
CUENCA DE SAN JUAN TEOTIHUACÁN.

El origen de las aguas subterráneas de la Subcuenca de San Juan
Teotihuacán, se puede localizar en la llamada Cuenca de Apam.

La Cuenca de Apam, puede ser considerada como de origen la-
custre y las aguas meteóricas que se infiltran en ella, circulan subte-
rráneamente siguiendo la pendiente que existe entre Apam y la Sub-
cuenca de San Juan Teotihuacán.

Geoquímicamente ésto queda comprobado con la consanguinid-
de las aguas subterráneas de Apam con las de San Juan Teotihuacán.
La profundidad de este acuífero en Otumba es de 62 metros y en el
pueblo de San Juan Teotihuacán es de 0.2 a 1 metro de profundidad.

Químicamente estas aguas son adecuadas para el uso Municipal
y Industrial.

En el Valle de San Agustín Acolman, se ha encontrado geoqui-
micamente dos clases de Aguas y que son: Aguas de la Clase I y II
según la clasificación de Chase Palmer. Estas aguas tienen como ori-
gen las aguas meteóricas que se infiltran y contaminan con aguas de
origen magmático, este acuífero se encuentra de los 0.2 a 90 metros
de profundidad. El agua es químicamente adecuada para ser usada
en la Industria o en usos Municipales.

Este trabajo sobre la Geoquímica de las aguas en las Subcuenca
s de Chalco, Texcoco y San Juan Teotihuacán, se realizó con la ayuda
y concejos de los señores, Dr. Nabor Carrillo Flores, Dr. Rafael Illes-
cas Frisbie y Dr. Ricardo Monges López y ha sido presentado con au-
torización del Dr. Ricardo Monges López, Director del Instituto de
Geofísica.
NOTA

CONVENCION DE GEOLOGOS PETROLEROS EN NUEVA YORK,
QUE TENDRA LUGAR EN 1955

Las reuniones anuales de 1955, de las tres sociedades de explora-
ción petrolera de los Estados Unidos de América —la American Asso-
ciation of Petroleum Geologists, la Society of Economic Geophysicists,
y la Society of Economic Palentologists and Mineralogists— se veri-
ficarán conjuntamente en el Hotel Statler de la ciudad de Nueva York,
del 26 al 31 de marzo de 1955.

El tema de las reuniones será “El Medio Ambiente del Petróleo
en la Cuenca Sedimentaria” y de acuerdo con el tema han sido pre-
parados por especialistas, trabajos sobre la mayoría de las cuencas
productoras de petróleo del mundo y tratarán de explicar porqué el
petróleo ocurre en cada cuenca. El Comité de Investigación de la
AAPG está arreglando un symposium de medio día, por notables au-
toridades en la geología del Cuaternario Superior, de varias cuencas
de depósitos modernos en todo el mundo. Varios trabajos de los labo-
ratorios de investigación discutirán los resultados de los estudios que
extienden las fronteras del conocimiento científico. Se espera la cola-
boración de otros notables oradores. La S. E. G. y la S. E. P. M. están
arreglando excelentes programas de trabajos y symposia designados
para impulsar todo lo posible el tema de la reunión. Se está haciendo
un gran esfuerzo para evitar conflictos cronológicos al preparar el ho-
rario de los trabajos de interés general en los tres programas.

En las exhibiciones comerciales y educacionales se mostrarán los
más recientes equipos y técnicas usados en la exploración del petróleo
junto con mapas y secciones transversales preparadas por las socieda-
des geológicas, servicios gubernamentales y departamentos universita-
rios. Aquí, como en las secciones técnicas, se encontrará mucho que
será de interés general para los investigadores de las ciencias de la
tierra, no directamente dedicados a la exploración de petróleo.
Se arreglarán excursiones al Observatorio Geológico de Lamont, de la Universidad de Columbia, y a algunos laboratorios industriales donde se efectúan trabajos de investigación de interés para los geólogos.

Habrá una cena con baile para los que asistan a las reuniones y un programa completo de recorridos y entretenimientos para las señoritas visitantes.

Todas las solicitudes para las reservaciones de cuartos de hotel deben hacerse en la forma oficial que se está enviando por correo a todos los miembros de las tres sociedades. Los que no sean miembros también están cordialmente invitados a asistir. Pueden obtener las formas de reservación y datos adicionales escribiendo a C. W. Flagler, Gulf Oil Corporation, Box 35, Bowling Green Station, New York 4, N. Y.