“EL SALTO DE SAN ANTON”, CUERNAVACA, MOR.

Por el ing. Ezequiel Ordóñez, M. S. G. M.

Guía para la Excursión de la Sociedad Geológica Mexicana
Febrero 1° de 1937.

Situación

Escasamente a 1000 metros de distancia en línea recta y justamente al oeste de la Catedral de Cuernavaca, está ubicado el bien conocido Salto de San Antón, que es una caída de agua de no gran volumen, pero de algo más de 40 metros de altura, cayendo por el lado norte de una profunda olla de paredes verticales practicada por las mismas aguas, las que después de formar un gran charco en el fondo, siguen su curso por un angostísimo cañón de paredes también acantiladas, con una altura de 50 metros.

Descripción del Salto

Esta hermosa cascada y otra más pequeña llamada el “Salto Chico”, se cuentan entre los muchos atractivos que tiene la ciudad de Cuernavaca. Lo agreste y bello del Salto de San Antón, en efecto, atrae continuamente visitantes, quienes para admirar esta obra de la naturaleza encuentran la comodidad de un fácil acceso por una amplia carretera que conduce hasta el borde mismo del gran tajo, y de allí por una escalera de mampostería bien trazada, se desciende hasta 20 metros arriba del
fondo, seguida de un amplio corredor en forma de anfiteatro que permite recorrer a nivel casi todo el perímetro de la olla, pudiendo pasar y estacionarse detrás de la caída de agua y admirar, no sólomente su fascinante movimiento al caer en chorro cristalino, sino también la masa de espuma que se forma en el fondo al precipitarse en el arroyo; los frecuentes arcoiris a los rayos del sol, fantásticamente visibles contra el fondo obscuro de una amplia cavidad que se ha formado en la pared, cerca del fondo, por efecto del golpe de las aguas y hacia arriba y de un lado los torcidos árboles enraizados y como suspendidos en las paredes cortadas a pico, hechas de lava maciza con espléndida estructura columnar aumentan el atractivo.

El Salto de San Antón es en realidad digno de verse, no únicamente por los que aman la naturaleza en su aspecto salvaje, sino también por quien ve en este sitio la obra de los siglos y observa los fenómenos geológicos que han preparado esta bella obra natural, cuyos fenómenos, no por ser muy simples, dejan de tener gran interés para la historia geológica de los alrededores de la ciudad de Cuernavaca.

Esta ciudad, fundada antes de la conquista del Anáhuac, está situada hacia la media altura de algo así como un gran plano inclinado, surcido por multitud de barrancas, que se extiende en parte del flanco meridional de una prolongación de la “Serranía de Ajusco”. Este plano, de moderada inclinación, que comienza al pie de las escarpadas pendientes de los altos cerros de Huitzilac, de Zempoala y de parte de los cerros de Ocuilan, se dilata bastante hacia el sur de Cuernavaca y va a terminar, confundiéndose con otros accidentes topográficos, hacia las tierras calientes por donde serpentea el río Grande o Amecusac, alimentado en buena parte por las aguas que bajan del apretado conjunto de montañas que acabamos de citar.

El Nudo del Ajusco

El Ajusco, como es bien sabido, con sus 3,900 metros de altura sobre el nivel del mar, es la cumbre de un importante nudo montañoso del que parten ramificaciones en diversas direcciones; desde luego la sierra de las Cruces y Monte Alto que
"El Salto de San Antón" - 41 mts. - Cuernavaca, Mor.

corre en dirección del norte, separando los valles de México y Toluca, siendo su cresta línea de división continental de aguas; las sierras de Jatatlaco y Tenancingo es otra rama de este nudo, que corren hacia el oeste, uniéndose a los largos desprendimientos del Nevado de Toluca. Otra rama, no menos importante, se
desprende hacia el este y termina casi al pie de las estribaciones del Popocatepetl y es la que se ha llamado propiamente la "Serranía de Ajusco", sembrada de cimas con cráteres volcánicos y numerosas corrientes de lava basáltica. Todavía otra ramificación importante se extiende hacia el sur, sirviendo de límbo a los Estados de México y Morelos, como una larga estribación desprendida de los cerros de Zempoala y montes de Ocuitlan, en forma de un gran arco al noroeste de Cuernavaca y que alimenta a muchos arroyos y ríos, siendo uno de tantos y pequeño, el que forma el Salto de San Antón y Salto Chico. El Ajusco mismo, que es el más alto, no es precisamente el centro del nudo montañoso, sino que este se forma con otras alturas, tales como los cerros de Magdalena, de San Miguel, de las Cruces, etc. El alto cerro del Capulín, los montes de Zempoala y sierra de Huizilac, que se divisan desde Cuernavaca al noroeste, casi se unen directamente al Ajusco por el espinazo llamado la sierra del Capadero, que corre en dirección norte-sur formando una cadena de altos cerros que tiene como 20 kilómetros de longitud.

No hay que olvidar que la Serranía de Ajusco y la sierra que lo une con el Nevado de Toluca, es parte de la alta barrera que separa la Mesa Central de la provincia fisiográfica de la Cuenca del Balsas; que el nudo del Ajusco, con sus magníficos bosques, ya muy mermados por inconcebibles y deplorables talas, que ponen en grave peligro el abastecimiento de aguas potables de la Capital de la República, es además un alimentador importante de los tres grandes ríos de México: del Motetzuma o Pánuco, con los manantiales de Xochimilco; del río de Lerma o Grande de Santiago, con los manantiales de Lerma y Almoloya, y del Balsas, con las corrientes que bajan de los flancos meridionales de este nudo. No se debieran aquí recordar estos hechos tan trascendentales, sino fuera por el deseo incontenible de insistir sobre la conservación y repoblación efectiva de esos bosques.

El nudo montañoso a que nos referimos, fue un centro eruptivo esencialmente andesítico, del que radiaron, quizás al finalizar el período Mioceno, las fisuras por donde surgieron las enormes masas de rocas que forman las sierras de ese núcleo, construidas éstas en verdad, no de una sola vez, sino en
paroxismos sucesivos que apilaban rocas, ganando las sierras en altura y extensión, con ligeras variantes en la composición mineralógica y textura de esas rocas, en el curso de las diversas emisiones. Poco a poco las largas grietas se van estrechan-
do rellenas de lavas que se enfriaban con relativa lentitud y van quedando solamente chimeneas aisladas de erupción, por donde salen a la vez que lavas fundidas, cantidades enormes de materiales cineríticos, acabando con estos últimos este largo ciclo volcánico, como acabaron parecidos episodios, en otras partes de nuestra Mesa Central. El Ajusco, ya lo hemos dicho otras veces, es tal vez una de las últimas chimeneas de erupción de ese ciclo y su mayor altura no parece ser debida a más continua actividad, sino a que en ese punto se concentró la fuerza impulsiva del material salido del interior. Hoy queda de aquel centro final de erupción, parte de su caldera y los restos de un colosal obelisco, que se irguió de su medio como un tapón. (El Pico del Aguila).

Debido al trabajo de erosión, a la vegetación forestal y a la gruesa cubierta de tierra vegetal, no es posible observar con suficiente detalle, los episodios volcánicos sucesivos, ni los efectos paroxismales que dieron origen a aquel gran conjunto de montañas, ni las más jóvenes chimeneas, excepto el Ajusco, ni como fueron acumulados originalmente los materiales cineríticos, que, posteriormente arrastrados, forman hoy extensos y gruesos mantos debilmente inclinados en la base de estas sierras, como lo veremos adelante.

La Serranía de Ajusco

Pero con lo expuesto no ha terminado el bosque de la historia volcánica del nudo del Ajusco. Después de un período largo de tranquilidad, aprovechado en desgastar y arredondear las cimas y en acomodar en su base en capas sobreponer, los materiales cineríticos, surge en la época reciente y hasta en los días prehistóricos, dos nuevos ciclos volcánicos, primero el de las andesitas basálticas, localizado en los cerros de Zempoala, en donde estas lavas han obstruido partes de angostos valles y antiguas barrancas, dando lugar a la formación de charcos y lagunas temporales y después el de los basaltos, los que como una formidable inundación, cubren los dos flancos de la Serranía de Ajusco, es decir, de toda la región montañosa que se extiende al oriente y suroeste del Ajusco y que separa al Valle de
México de los valles del sur y cuyas características fisiográficas, se ven con claridad en la carretera de México-Cuernavaca. La mayor parte de las cimas desparramadas sobre esta serranía son cráteres volcánicos, reposando sobre corrientes de lava, y son tantos estos cráteres, que desde el pie del Ajusco,
hasta el extremo oriental de la serranía, se pueden contar más
de sesenta de estas bocas.

Las corrientes basálticas, que cubren tan vasto territorio,
(como unos 2,000 kilómetros cuadrados) se derramaron su-
cesivamente durante un largo período de tiempo, que termina,
como es bien sabido, cuando ya las razas aborígenes y las tri-
bus históricas poblaban estas tierras, atraídas esas razas por la
benignidad del clima, por la fertilidad del suelo y por la abun-
dancia de aguas puras. Los basaltos cubrieron de mantos su-
cesivos las estribaciones orientales del Ajusco y de otras sierras
andesíticas, más o menos ya intensamente erosionadas y con sus
cursos de drenaje ya maduros; y hoy, por esos canales, siguen
corriendo subterráneamente las aguas, protegidas por las la-
vas basálticas o por los taludes de tobas volcánicas. A esta
protección y curso subterráneo, se debe la existencia de gran-
des manantiales en ambos flancos al pie de esta serranía, así
como la abundancia de aguas artesianas en el Valle de México.

Seguramente que para nuestro objeto, que es el dar una
descripción somera del Salto de San Antón, en Cuernavaca, he-
mos retrocedido demasiado lejos, pero no es tiempo perdido, si
queremos tener una buena idea de cómo se ha formado ese Sal-
to y en qué rocas han trabajado las aguas que forman la cas-
cada.

Origen del Salto. Tobas y Basaltos

Como hemos dicho al principio de esta nota, las aguas del
Salto se precipitan por el borde de una profunda olla de pare-
des verticales, excavada por las aguas. La olla tiene un con-
torno que se aproxima al de una pera, estando el eje mayor
orientado en dirección aproximada norte-sur, desde el lugar
donde las aguas caen hasta la desembocadura de la olla en el
acantilado cañón del arroyo. En esta dirección, la distancia es
de 56 metros y el eje menor en dirección perpendicular, tiene
41 metros. La pared occidental del arroyo tiene allí no menos
de 50 metros de altura cortada enteramente a pico.

El origen de este Salto, como el de otras muchas caídas de
agua naturales, es la diferente dureza de las rocas en las que
labran sus cauces, más duras las de arriba en nuestro caso. -el
basalto, más blandas las de abajo, las brechas y tobas andesíti-
cas en que descienden. Y todo es visible en el soberbio anfite-
tatro que se tiene enfrente al descender por la escalinata de ce-
mento que conduce al interior de la olla, con el amplio corredor
que la circunda; al frente el blanco chorro de agua, que ha ca-
vado en el basalto un angosto cañón, abajo del cual esta roca
muy compacta, tiene un espesor de 7 metros, viéndose la base
de esta corriente de lava inclinada, adelgazarse al ponerse
y engruesarse rápidamente al oriente y tanto, que ya en
la pared oriental de la olla, su espesor es de 40 metros admi-
rándose en este corte vertical de lava, la magnífica estructura
columnar de la roca. Desde el mismo observatorio, es decir,
desde la escalinata de bajada, se ven en la pared occidental de
la olla, las capas de tobas y brechas andesíticas con una incli-
nación muy débil hacia el sur, con pequeñas cuevas cavadas
por la erosión a lo largo de sus planos de juntura. Piedras de
todos tamaños asoman aquí y allá, sin ningún orden, sobresa-
liendo de las superficies ásperas o lisas de las brechas y las tobas,
éstas con aspecto más o menos terroso. Así pues, la pared orien-
tal de la olla es de basalto, la pared occidental está formada de
capas de brechas y tobas, y al frente, en la cascada se ve, el ba-
salto descansando sobre la superficie inclinada de las tobas, in-
dicando que la lava escurrió sobre una superficie ya erodada,
inclinada como unos 25° hacia el oriente. En la parte alta del
contacto, las tobas y brechas se ven un poco calcinadas por el
color de la lava y en otras partes, se ve que la misma lava co-
rrió por una superficie de piedras sueltas y aún sobre grueso
aluvión, según se advierte en la pared oriental, en la base de la
corriente de lava, en donde se han formado grandes y peque-
ñas oquedades por donde surgen algunos pequeños manantiales.
Seguramente que el antiguo cauce del arroyo antes de que
escurriera la lava, venía por la que es hoy la pared oriental de
la olla y hacia su medio, pues que en ese lugar dicha lava al-
canza su espesor máximo, adelgazándose rápidamente también
hacia el sur, pues así se ve con toda claridad al descender la es-
calinata. A la simple vista se puede seguir fácilmente el con-
torno de la base de la lava y aun observar en algunas partes
las tobas y brechas calcinadas. Un saliente de tobas en la parte
sur, indica que el antiguo cauce del arroyo era bastante siniestro.
Las características de la masa de lava descubierta en el cantil oriental de la olla, son dignas de observarse cuidadosamente. Es uniforme y ligeramente ampollosa en la parte superior, debido al enfriamiento rápido, lajada y semicolumunar en un poco más abajo; y hacia el medio, en un espesor de 12 metros presenta la más perfecta estructura columnar que pueda verse en un basalto, como resultado de un enfriamiento lento. Esta lava adquiere de nuevo, hacia la base de la corriente, la formación carente de toda estructura. En la base misma, al contacto de la toba, el basalto tiene un aspecto corroído y esponjoso debido al escurrimiento sobre una superficie relativamente blanda.

El basalto de San Antón procede de una corriente que baja desde los cerros de Hutzlács y puede seguirse desde esas alturas en partes destruidas por la erosión. En su escurrimiento tomó el cauce de la barranca llamada del Tecolote, que es la misma del Salto de San Antón, la que unida con otras barrancas y arroyos, forma más abajo, al suroeste de Cuernavaca, el río de este nombre o de Apatlaco.

La corriente de lava muy fluida, escurrió primero por una pendiente relativamente fuerte, después más abajo por pendiente suave y en cantidad no grande, pues que un poco abajo del Salto de San Antón termina la lava como una angosta lengua. En la última parte de su curso, la lava solamente escurrió por el fondo del arroyo, lo mismo que ahora las aguas, entre paredes de tobas más o menos altas y acantiladas. En las hondonadas de arroyo y de sus tributarios, la lava adquiría mayor espesor y en las partes planas se extendió, cubriendo una superficie más amplia y delgada.

Es muy interesante seguir el curso superior de esta corriente de basalto hacia el norte, arriba del Salto, aunque sea en un trayecto corto, por ejemplo hasta la altura del acueducto que alimentaba la antigua fábrica de La Carolina, o sea por unos 600 metros. De este trayecto hemos hecho un croquis el cual acompaña a esta nota. (Fig. 1).

Entre aquel acueducto y el Salto, se extiende una superficie angosta, casi plana, ocupada por el panteón de Cuernavaca, por un terreno fértil sembrado de hortaliza y por la huerta del rancho de Atzingo.
CROQUIS
DEL Poniente
DE
CUERNAVACA, MOR.
Mostrando la situación del
Salto de San Antonio, Salto
Chico y la corriente de la
orilla banderillada

ESCALA 1:5000
Este espacio plano, de unos 200 metros de anchura, está limitado al poniente, por lomas alargadas de brechasandesíticas bien recortadas en su base, indicando en efecto, que en el límite occidental de una hondonada o lugar bajo antes del escurrimento de la lava el arroyo corría como ahora, al pie de la alargada loma occidental, la más alta de las que forman el contorno de la hondonada. La corriente de lava siguió también el curso del arroyo después de haber cubierto parte de la hondonada. Las aguas del arroyo, en su trabajo posterior de excavación, han tajado las tobas justamente en el borde occidental de la corriente de basalto, viéndose en las paredes, las tobas andesíticas de un lado y el borde de la corriente lávica del otro, o bien escurrieron directamente sobre el basalto formando rápidas o caídas.

De éstas, la más bella, además de la de San Antón, es la llamada El Salto Chico, como 250 metros arriba del de San Antón, un remedo en pequeño del gran Salto, pero no menos hermoso. Igualmente ocurre en la pared norte de una olla en forma de pera, con paredes verticales de 10 metros de altura, de tobas y brechas al poniente y de basalto al oriente también con perfecta estructura columnar, no variando en nada el aspecto físico de la lava, ni las características de sus condiciones de enfriamiento. Como el charco que se forma al pie de la cascada de este Salto es hondo, se aprovecha por el público como excelente estanque de natación, teniendo igualmente acceso, desde el borde de la barranca hasta el fondo, por una buena escalera de manopostería. En automóvil se llega hasta el borde de la barranca por el camino que va junto a la barra norte del panteón, ya citado. Junto a la cascada, hacia el poniente, puede notarse, además de la superficie esponjosa de la lava en su base, la masa de escombros que la lava acarreó en sus bordes durante el escurrimiento.

Trescientos metros arriba del Salto Chico, en el mismo arroyo que se cruza por un puente, sobre el camino que va a Buenavista del Monte, hay otro pequeño salto en el basalto y que llamamos “El Saltito”, y todavía junto al acueducto que pasa junto al rancho de Atzingo hay otras rápidas en el mismo basalto, teniendo aquí la corriente de lava, en el fondo del arroyo, sólomente unos cuantos metros de anchura.
Todo el terreno plano, desde el panteón hasta la huerta de Atzingo, está cubierto de una gruesa capa de tierra vegetal. El basalto no asoma sino por accidente y sólomente hacia la parte occidental de la pequeña planicie. Sin embargo, en el panteón, los encargados de abrir las sepulturas, nos informan que a un poco más de un metro de profundidad y debajo de la tierra vegetal, se encuentra esta roca a veces acordelada, como en la superficie de corrientes de basalto muy fluidas.

Tobas y Brechas Volcánicas

Rástanos ahora, exponer nuestras ideas acerca de la manera cómo se depositaron las capas de brechas y de tobas volcánicas, sobre las que reposan las lavas basálticas de San Antonio. No es fácil dar una explicación satisfactoria del modo de formación de estas capas y aparece como un problema de difícil solución. Por otra parte, el estudio de estas capas tiene una importancia considerable, en vista de la gran área que cubren en los flancos meridionales de la Serranía de Ajusco en las laderas de Cuernavaca, así como en los flancos septentrionales de esta montaña y de las sierras de las Cruces y Monte Alto, en el Valle de México. (1).

Esta enorme cantidad de material tufáceno y brechiforme, que cubre centenares de kilómetros cuadrados de superficie y aun centenares de metros de espesor, debe su origen a erupciones explosivas que tuvieron lugar al fin del período volcánico andesítico, creador de las montañas del nudo del Ajusco y sus congéneres. Estos materiales delezables, lo repetimos, deben haber cubierto de gruesos mantos todas estas montañas al terminar las erupciones, cayendo sea en forma de polvos o cenizas, o bien escurriendo a manera de torrentes de lodos; y si así fue, entonces estas grandes masas de material suelto no adquirieron sino después, la disposición en capas débilmente inclinadas que ahora tienen al partir de un cierto nivel, en los flancos bajos de estas montañas. Al principio, estas acumulaciones cineríticas y toda clase de materiales proyectados por las explosiones, de-

bieron haber cubierto las montañas como masas informes, pero no han de haber quedado mucho tiempo así, tanto por su condición desechable, como por la fuerte pendiente de las masas rocosas duras sobre las que se depositaron, siendo copiosas lluvias las que debieron acarrear estos productos y extendiéndolos como capas gruesas en las superficies bajas de menor pendiente, en la base de los cerros, ya en parte rodeados de grandes abanicos aluviales, según se ha visto en algunos pozos profundos al pie de las lomas de tobas.

No es fácil explicarse el mecanismo de esta rápida sedimentación, si se atiende a la desigualdad en tamaño y densidad de los materiales individuales que componen la mayor parte de estas capas, pues en cualquier parte, en los alrededores de Cuernavaca, por ejemplo, en donde la erosión ha practicado tajos profundos, se puede ver que en la masa compuesta de materiales finos se encuentran piedras semiarredondeadas o angulosas de todos tamaños, desde las dimensiones de un chicharo, hasta de varias toneladas de peso, distribuidas sin ningún orden ni regularidad. Y no nos referimos a las capas superpuestas, hechas casi siempre de brechas, en las que las piedras pueden haber sido removidas por erosión retenidas al fin y sufrido toda la masa una cierta consolidación, sino a las capas a mediana profundidad, aunque en estas las grandes piedras y guijarros sean en menor número, pero siempre embutidas en desorden. No faltan dentro de estas capas algunas lentes de aluvión típico, ni tampoco algunas capas de arena y de cenizas volcánicas caídas en el lugar en que se encuentran.

Si se examinan al microscopio los materiales finos de estas capas, se ve que consisten de partículas de rocas andesíticas, de pedacitos de cristales de feldespatos y de minerales ferromagnesianos, de esquirlas de pasta vidriosa de las mismas rocas andesíticas; y por último de pequeños aglomerados arredondados de vidrio volcánico, con algunos microlitos feldespáticos graníticos de fierro y ferromagnesianos. No existe propiamente una pasta de cementación a no ser muy poca arcilla secundaria. El color de estas capas es el gris blanquizco o amarillento y en estas últimas, el color es debido a la oxidación de los graníticos de fierro negro que contiene la pasta de las rocas, y que tiene de amarillo a los granos feldespáticos y vidrio. En
todo caso, en esta aglomeración de materiales andesíticos de
todos tamaños, se nota un cierto arredondeamiento debido a la
abstracción ejercida durante su movimiento sin que este arredon-
deamiento llegue a ser el de las arenas. Además, en los granos
más pequeños no se nota el desgaste, conservando los granos o
pedazos de cristales sus formas esquinadas.

De estas condiciones físicas de las tobas y brechas andesí-
ticas de los taludes occidentales de Cuernavaca, parece deducir:
a) Que se trata de un transporte en forma de lodos espesos
que permitió el acarreo de grandes piedras con el material
fino; b) Que en general el movimiento de estos lodos se hizo
con alguna lentitud, toda vez que las capas tienen muy ligera
inclinación (de 2° a 4°) y por último; c) Que su depósito se ha-
chía de un modo uniforme y continuo, pues los planos de separa-
ción de estas capas son muy poco marcados variando su espesor
desde 1 hasta 6 metros. Aunque el modo de formación de tan
extensas capas, que aquí sugerimos, no parece enteramente con-
venciente, es el único que el que esto escribe les puede suponer,
quedando siempre el problema en pie.

Series de Capas

Aunque las capas de materiales andesíticos de Cuernavaca
no tienen una textura y aglomeración física uniforme, variando
su carácter de un lugar a otro, así como la continuidad de las
capas, es posible distinguir tres series de capas, a veces en insen-
sible transición: 1) Capas de tobas amarillas de grano fino, po-
co consistentes, con raras piedras semiesquinadas onduladas y
con relativa abundancia de granitos de pómex; 2) Capas de bre-
chas andesíticas, más consistentes que las anteriores y con muy
escasa pómex y casi sin materia terrosa de cementación. Las
capas de tobas amarillas se encuentran generalmente bajo de
las brechas y en los arroyos donde estas capas se descubren,
forman altas paredes verticales encajonando los arroyos. A
esta clase pertenecen las capas inferiores de las paredes de la
olla del Salto de San Antón y que forman el angosto cañón de
este arroyo. Las capas de brechas andesíticas tienen encima de
aquéllas y aunque a veces también forman paredes verticales,
tienen más la tendencia a desgastarse en formas arredondadas, con muy fuerte pendiente en las laderas. Este tipo de brechas se ve muy bien en la loma alargada que limita al oeste el cauce del arroyo del Salto de San Antón, Salto Chico, etc. Es también la roca superficial de todas las lomas al poniente de Cuernavaca y sobre estas mismas brechas está edificada la capital de Morelos.

Hay por último otro tipo: 3) De rocas arenosas y de brechas de color gris, que aunque tiene la tendencia a formar capas continuas más bien se presenta en la forma de alargadas lentes imbricadas. Me refiero a las pseudocapas, que en varias partes, al poniente de Cuernavaca, se explotan para extraer arena, ripio y grava para uso de morteros y concretos en las construcciones. A estas arenas se les llama, como en el Valle de México, “arena de mina” y a los lugares de donde se extraen “minas de arena”. Para hacer la separación de arena, ripio y grava, se cierra este material en los patios de las mismas “minas”. En los tajos y cuevas que se hacen para extraer estos materiales, se puede observar muy bien la designación posición de las arenas, gravas y grandes piedras que componen estas grandes y pequeñas lentes, teniendo generalmente en las superficies de juntura una delgada costra endurecida de color blanco rosado, de arena fina, probablemente con algo de caliche.

Aunque los lechos de “arena de mina” se entremezclan a veces con las brechas superiores, parece que los depósitos más importantes de estos materiales han sido los más recientes y que se han erizado después de su depósito con mayor rapidez. La hondonada alargada por donde escurrió la lava basáltica, entre los terrenos de Atzingo y Salto de San Antón, fue cavada en esta clase de arenas, pues las lomas bajas denudadas que limitan la hondonada al oriente de los terrenos sembrados y del panteón, están formados de esta roca y aun hay en estas lomas dos grandes minas de arena en actual explotación.

Los lechos de grava y arena de mina son físicamente diferentes a las capas de tobas y brechas andésiticas. Las arenas consisten casi exclusivamente de granos semiarredondados de andesitas de la misma naturaleza que el ripio, la grava y las grandes piedras. No contienen prácticamente materiales cine-
cíticos y cuando los hay se aíslan en lentes separadas. El origen de las "arenas de mña" es pues, distinto al de las otras capas arriba descritas y no parece ser otro que el de materiales de canchales arrastrados de los ventisqueros o glaciares que existieron en las cimas de las montañas del nudo del Ajusco, verdaderas títitas acarreadas durante el deshielo de los ventisqueros, al terminar un tiempo glacial. Aun es posible que las capas de brechas andesíticas tengan también semejante origen, pero acarreando también productos cinerílicos. Prister (1) ha emitido esta opinión, sobre el origen de los materiales de las minas de arena del Valle de México, que son enteramente semejantes a las de las lomas de las cercanías de Cuernavaca.

Las tobas, brechas y títitas que acabamos de describir someramente, ocupan un área muy bien definida y bien característica al NW., W. y SW. de Cuernavaca, tanto por la uniformidad de su constitución geológica, dentro de variantes regionales, como de su topografía, que consiste como hemos dicho de una superficie uniformemente inclinada, surcada por multitud de barrancas angostas y relativamente profundas que en el curso de su descenso se van uniendo unas o otras, para formar hacia el sur unos cuantos arroyos o pequeños ríos que forman en definitiva los ríos de Xochitepec y Tetlama, tributarios del río de Yautopec, después del Jojutla y éste finalmente del Amaceusac. Al norte y poniente, los límites son los flancos de las montañas y altos estribos de las sierras. Las lomas de Cuernavaca, que así las llamamos, siguen teniendo el mismo aspecto hacia la tierra caliente del valle del Amaceusac, pero no con la misma uniformidad, en vista de haber numerosos cerros aislados, cuyos materiales han contribuido también a la formación de lomas. Finalmente, ya muy atenuadas estas, se funden en las extensas terrazas fluviales y lacustres, en los que ha caído su actual curso, el valle del río Amaceusac.

Al oriente, noreste y sureste de Cuernavaca el aspecto del terreno cambia bruscamente, lo cual se nota claramente siguiendo la carretera de México. En esta región, de escasas corrientes de agua y de escasos accidentes, las brechas andesíticas.
cas están cubiertas por extensas corrientes de basalto, unas frescas y otras más o menos erodadas, corrientes que proceden de los altos cerros de la Serranía de Ajusco y de las que nos ocuparemos en un próximo estudio sobre Topoztlán, lugar que también se visitó durante la excursión de la Sociedad Geológica Mexicana.

El mapa del Estado de Morelos, publicado en 1910, expresa con alguna claridad la peculiar topografía de las lomas de Cuernavaca, que tienen, topográfica y geológicamente, gran similitud con las lomas del suroeste de la Cuenca de México, en los flancos norte y oriente del mismo nudo del Ajusco.