Boletín de la Sociedad Geológica Mexicana

Volumen 65, núm. 1, 2013, p. 71-82

http://dx.doi.org/10.18268/BSGM2013v65n1a6

Comportamiento hidrogeoquímico de flujos subterráneos en acuíferos cársticos fracturados, aplicando modelación inversa: Caso Huasteca Potosina

Janete Morán-Ramírez2, José Alfredo Ramos-Leal1,*, Briseida López-Álvarez2,3, Simón Carranco Lozada2, Germán Santacruz-De León3

1 Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), C. Presa San José # 2055, Lomas 4ª sección, C.P. 78216, San Luis Potosí, San Luis Potosí, México.
2 Posgrado en Geociencias Aplicadas. Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), C. Presa San José # 2055, Lomas 4ª. Sección, CP 78216, San Luís Potosí, SLP, México.
3 Programa Agua y Sociedad. Colegio de San Luis, A. C. (COLSAN). Parque de Macul No. 155, Fracc. Colinas del Parque, San Luis Potosí, S.L.P. México, C.P. 78299.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

The study area is located inside the Valles-San Luis Potosí platform, which belongs to the Sierra Madre Oriental (SMO), whose mountain portion, formed by anticlines and synclines, has a North-South preferential orientation and a very important system of faults and fractures with East-West orientation that control the groundwater flow into the Gulf of México. In order to demonstrate the hydraulic connectivity of the East-West system of faults and fractures, inverse modeling was applied to four sections. Other performed tests in possible connections between fractures were not able to reproduce these processes, which are interpretated as non-hydraulic connection points. Two main types of water were identified: one with calcium bicarbonate because of the interaction with carbonate rocks such as limestone, and other with calcium sulfate that is related with a process of water-rock interaction, mainly from evaporite origin such as plaster. On the flow path to Rioverde-Santa Anita, groundwater decreases its chemical composition due to a process of dilution by mixing with recent water infiltration or less evolved so their physicochemical parameters decrease. The flow path from Apesco to Huichihuayán shows an increase in their physicochemical parameters due to the dissolution of gypsum, chalcedony and dolomite, as well as precipitation of anhydrite, aragonite, calcite, halite and celestite. The hydrogeochemical evolution of Union de Guadalupe to Tambaque shows an increase in the physicochemical parameters for the dissolution of calcite, fluorite, halite, silica, sulfur, as well as precipitation of dolomite. The Salto-Minas Viejas flow section is related to the dissolution of calcite, pyrite and quartz, accompanied by the precipitation of celestite, dolomite, FeS, gypsum, halite, jarosite.

Keywords: hydrogeochemical modeling, inverse modeling, mass balance, hydraulic connectivity, saturation index, karst, hydrogeochemical facies, precipitation and dissolution.