Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 545-586

http://dx.doi.org/10.18268/BSGM2015v67n3a16

Control temporal y geología del magmatismo Permo-Triásico en Sierra Los Tanques, NW Sonora, México: Evidencia del inicio del arco magmático cordillerano en el SW de Laurencia

Harim E. Arvizu1,*, Alexander Iriondo1

1 Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230, México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

Resumen

Sierra Los Tanques se localiza en el NW del Estado de Sonora, México y representa uno de los principales afloramientos de rocas graníticas permo-triásicas reportados en esa región. Geocronología U-Pb en zircón realizada en dos grupos de granitoides, los cuales afloran en el área de estudio y en diversas localidades del NW de Sonora, proporcionan un rango de edades entre 284 – 221 Ma. Las variedades litológicas predominantes son las granodioritas, seguido por las cuarzomonzodioritas y monzogranitos. Se pueden diferenciar dos suites principales: granitoides melanocráticos y leucocráticos. La relación de campo existente entre los dos tipos es que los melanocráticos son más antiguos ya que son intrusionados por los leucocráticos. Esta característica es corroborada, en la mayoría de los casos, por las edades U-Pb en zircón obtenidas de las muestras de ambas suites.

La mayoría de los zircones de los granitoides permo-triásicos indican altas concentraciones de U (~ 47 – 9508 ppm), pudiéndose así explicar las pérdidas de Pb apreciadas en muchos de los zircones analizados. Los zircones permo-triásicos muestran relaciones Th/U altamente variables (0.01 – 0.73). La morfología prismática típica, además de las zonaciones oscilatorias de crecimientos magmáticos observadas en las imágenes de catodoluminiscencia, sugieren un carácter ígneo para estos zircones. La presencia de edades proterozoicas, que corresponden a núcleos heredados como se muestra en las imágenes de catodoluminiscencia, se asocia al basamento meta-ígneo de ~ 1.7 – 1.6 Ga, ~ 1.4 Ga y ~ 1.1 Ga presente en la región, confirmado por las edades proterozoicas obtenidas de rocas de basamento para la zona de estudio.

Estos granitoides permo-triásicos asociados a subducción representan evidencia del inicio del magmatismo cordillerano en el SW de Laurencia instaurado a lo largo del borde oeste de Pangea, inmediatamente después de culminar la colisión entre Gondwana y Laurencia. Este magmatismo es importante para entender la evolución tectónica del NW de México, ya que regionalmente su ocurrencia se asocia tentativamente a una zona de debilidad cortical relacionada al basamento paleoproterozoico del Yavapai mexicano en el NW de Sonora. El entendimiento de este pulso magmático también es de particular importancia ya que representa una fuente regional de zircones detríticos permo-triásicos no reconocida anteriormente para cuencas sedimentarias mesozoicas y cenozoicas en Sonora y sur de Arizona.

Este pulso magmático, relacionado a los estadios iniciales de la subducción que propició el establecimiento de un arco magmático continental en el SW de Norteamérica, es parte de un gran evento a nivel cordillerano que se extiende desde el oeste-suroeste de Estados Unidos pasando por Sonora, Chihuahua y Coahuila a través del centro y sur de México y hasta el norte de Sudamérica.

Palabras clave: Sierra Los Tanques, permo-triásico, arco magmático continental, subducción, Laurencia.

 

Abstract

Sierra Los Tanques is located in NW Sonora, Mexico, and represents one of the main outcrops of Permo-Triassic granitic rocks reported in the region. U-Pb zircon geochronology conducted in two groups of granitoids from various locations in NW Sonora provide a range of ages between 284 – 221 Ma. Rock types are dominated by granodiorite, followed by quartzmonzodiorites, and monzogranites. There are two main granitic suites—leucocratic and melanocratic granitoids. Field relationships between the two types suggests that the melanocratic granitoids are older as they are clearly intruded by the leucocratic suite. This field evidence is supported, in most cases, by the U-Pb zircon ages obtained in samples of both granitic suites.

Most of the zircons from these Permo-Triassic granitoids have high U concentrations (~ 47 – 9508 ppm), suggesting significant Pb loss in their crystal structure. The Permo-Triassic zircons show highly variable Th/U ratios (0.01 – 0.73). These zircons have an igneous origin not only because of their prismatic morphologies, but also due to their oscillatory zoning characteristic of magmatic growth as observed in cathodoluminescence studies. The presence of inherited cores, as shown in cathodoluminescence images, can be associated with the ages of meta-igneous Proterozoic basement present in Sierra Los Tanques (~ 1.7 – 1.6 Ga, ~ 1.4 Ga and ~ 1.1 Ga) that could have been incorporated during magma-genesis in Permo-Triassic time.

These granitoids associated with subduction give evidence for the beginning of cordilleran arc magmatism in SW North America (Laurentia) established along the western margin of Pangea immediately following the latest stages of the collision between Laurentia and Gondwana. This Permo-Triassic magmatism is important for understanding the tectonic evolution of NW Mexico. Tentatively, the occurrence of this magmatism is associated with a zone of crustal weakness spatially associated with the Mexican Yavapai basement province in NW Sonora. Understanding this magmatic pulse is also of particular importance as it represents a regional source of detrital Permo-Triassic zircons previously unrecognized for Mesozoic and Cenozoic sedimentary basins in Sonora and southern Arizona.

Lastly, this Permo-Triassic subduction-related magmatic pulse present in NW Sonora is part of a larger magmatic arc event along the American Cordillera that extends from western–southwestern United States, passing through northern, central, and southern Mexico and reaching northern South America.

Keywords: Sierra Los Tanques, Permo-Triassic, continental magmatic arc, subduction, Laurentia.

 

1. Introducción

El arco magmático cordillerano del SW de Norteamérica es uno de los más conocidos e investigados, sin embargo, su inicio y evolución geodinámica regional son muy controvertidos. Hasta hace poco no se tenía conocimiento sobre el tiempo exacto del inicio de la subducción. Algunos estudios geológicos proponían que la convergencia a lo largo del margen continental pasivo del Paleozoico en el SW de los EUA se había originado durante el Permo-Triásico por la presencia de plutones graníticos con edades entre ~ 260 – 207 Ma (e.g., Burchfiel y Davis, 1972, 1975, 1981; Kistler y Peterman, 1973; Dickinson, 1981; Burchfiel et al., 1992), la mayoría de edad triásica intrusionando al Cratón Laurenciano (e.g., Barth y Wooden, 2006 y sus referencias). Sin embargo, algunos de estos plutones, en la parte norte y centro de California y en el oeste de Nevada, se piensa que están relacionados a un magmatismo de arco de islas formado paralelamente al margen continental, el cual a la postre se acreció contra el continente durante el Mesozoico (e.g., Snow et al., 1991; Bateman, 1992; Burchfiel et al., 1992; Miller et al., 1992, 1995; Dunne y Saleeby, 1993; Schweickert y Lahren, 1993; Barth et al., 1997). Por su parte, los plutones en la parte sur de California y en el oeste de Arizona se encuentran asociados a subducción y fueron emplazados dentro de basamento proterozoico e intrusionando su cubierta meta-sedimentaria paleozoica (Barth et al., 1997; Barth y Wooden, 2006).

La extensión de este cinturón plutónico hacia México dentro de Sonora había sido inferida pero no así localizada (e.g., Stewart et al., 1986; Riggs et al., 2003), sino hasta el descubrimiento de rocas graníticas de edad pérmica en la Sierra Pinta, en el NW de Sonora (Figura 1), en un rango de edad entre ~ 275 – 258 Ma (Arvizu et al., 2009a). De acuerdo a esto, Arvizu et al.(2009a) proponen que el inicio del margen continental activo del SW de Norteamérica está representado por la ocurrencia de este magmatismo pérmico en el NW de México.

Como resultado del trabajo exploratorio regional en el NW de Sonora se han localizado nuevos afloramientos de rocas plutónicas asociadas al pulso magmático pérmico (Figura 1). Estas ocurrencias de afloramientos de rocas graníticas de edad permo-triásica, que intruyen a rocas de basamento meta-ígneo paleoproterozoico (~ 1.7 – 1.6 Ga) de la provincia Yavapai mexicana (Iriondo y Premo, 2010) que forman parte del SW de Laurencia, han permitido contribuir y avanzar en el conocimiento geológico de este pulso magmático mediante su reciente estudio de caracterización geoquímica y temporal (e.g., Arvizu et al., 2009a; Arvizu-Gutiérrez, 2012; Velázquez-Santelíz, 2014).

En general, las características geoquímicas del magmatismo Permo-Triásico en el NW de Sonora, detalladas en algunos trabajos recientes (e.g., Arvizu et al., 2009a; Arvizu-Gutiérrez, 2012), indican una firma geoquímica de granitoides calco-alcalinos con alto potasio y de carácter peraluminoso a metaluminoso, típica de granitoides formados en un ambiente de arco magmático, aunque revelando la existencia de una contribución significativa de la corteza continental para su formación (Arvizu e Iriondo, 2011), específicamente del basamento meta-ígneo de edad paleoproterozoica presente en el NW de Sonora (e.g., Iriondo y Premo, 2010).

El área de estudio de la Sierra Los Tanques (Figura 1) representa geológicamente uno de los afloramientos de mayor extensión de rocas ígneas permo-triásicas encontradas hasta la fecha en el NW de México. En particular, representa una localidad interesante por la existencia de las rocas más jóvenes de este pulso magmático encontradas hasta el momento, comparadas con las localizadas en otros lugares del NW de Sonora donde únicamente se han reconocido rocas del Pérmico medio-tardío (e.g., Sierra Pinta, Sierra San Francisco, Sierra Blanca; Figura 1), permitiendo extender este pulso magmático en la región hasta el Triásico tardío (~ 221 Ma) de acuerdo a los resultados obtenidos en este estudio.

En este trabajo se presentan datos geocronológicos de U-Pb en zircón, además de cartografía geológica, de granitoides permo-triásicos de la Sierra Los Tanques. Estos nuevos datos, junto a los ya existentes en la región, permitirán documentar y constreñir, por ahora, el rango de edad de este importante pulso magmático de edad permo-triásica en el NW de Sonora asociado, tentativamente, al inicio de la subducción y formación del margen continental activo del SW de Norteamérica (e.g., Arvizu et al., 2009a).


Figura 1. Mapa geológico regional del NW de Sonora y SW de Arizona modificado de Iriondo et al. (2005).

 

2. Geología de la Sierra Los Tanques

2.1. Localización

La Sierra Los Tanques está localizada en la porción noroeste del estado de Sonora, a ~ 15 km al suroeste del poblado de Sonoyta y a ~ 100 km al noreste de la ciudad de Puerto Peñasco; específicamente se encuentra al este del campo volcánico El Pinacate de edad cuaternaria (Figura 1). Así mismo se encuentra ubicada dentro de la Reserva de la Biosfera El Pinacate, en la parte más oriental del Gran Desierto de Altar, justo al sur de la frontera con Arizona (Figura 2).


Figura 2. Mapa litológico sintetizado de Sierra Los Tanques (Sonora) a partir de la cartografía realizada en este estudio. La cartografía de Quitobaquito Hills (Arizona) y alrededores es a partir de mapas publicados por Campbell y Anderson (2003), Haxel et al. (1984) y SGM (2002).

 

2.2. Trabajos previos en el área de estudio

Los primeros estudios de cartografía geológica en Sierra Los Tanques fueron los realizados por el Servicio Geológico Mexicano (2002) y posteriormente los llevados a cabo por Campbell y Anderson (2003). Estos últimos estudios son los más detallados, los cuales demuestran la complejidad geológica de la zona de estudio que es avalada por las descripciones litológicas mostradas en las leyendas de los mapas geológicos presentados en su trabajo. El propósito de su estudio fue realizar una cartografía geológica-estructural que les permitiera describir las estructuras y cinemática presentes en las rocas mesozoicas y precámbricas milonitizadas que afloran en el área, sugiriendo que estas rocas se formaron a lo largo de una falla lateral izquierda, activa a finales del Jurásico (concepto de la hipotética Megacizalla Mojave-Sonora; Silver y Anderson, 1974; Anderson y Silver, 1979, 2005).

 

2.3. Descripción geológica y marco tectónico de las unidades litológicas

El área de estudio fue dividida en tres sectores principales: Sector NW, Central y SE (Figuras 2 – 5) con fines logísticos para llevar a cabo la cartografía geológica. A continuación se describen las unidades litológicas en orden cronológico.


Figura 3. Mapa geológico-litológico del Sector NW de Sierra Los Tanques a partir de la cartografía realizada en este estudio. La leyenda y explicación, además de la simbología, son las mismas que la Figura 2. En este mapa se observan, con estrellas de color verde, los puntos de muestreo para los análisis geocronológicos y geoquímicos, además el nombre de la muestra y su edad U-Pb en zircones.





Figura 4. Mapa geológico-litológico del Sector Central de Sierra Los Tanques a partir de la cartografía realizada en este estudio. La leyenda y explicación, además de la simbología, son las mismas que la Figura 2.

 

Figura 5. Mapa geológico-litológico del Sector Central y SE de Sierra Los Tanques a partir de la cartografía realizada en este estudio. La leyenda y explicación, además de la simbología, son las mismas que la Figura 2.

 

2.3.1. Proterozoico

2.3.1.1. Paleoproterozoico. Las rocas paleoproterozoicas presentes en la Sierra Los Tanques (Figuras 2 – 5) se encuentran como unidades litológicas de diversas composiciones constituidas principalmente por gneises bandeados cuarzo-feldespáticos de biotita, gneises de clorita-biotita y, en menor cantidad, paragneises de biotita y de dos micas incluyendo algunos esquistos y filitas de clorita-biotita-epidota. En algunas ocasiones, estas rocas se encuentran con intercalaciones de anfibolitas con espesor variable.

Los afloramientos principales de esta unidad litológica se encuentran en el sector sureste de la Sierra Los Tanques, en donde se ubican los afloramientos de mayor extensión y algunas exposiciones aisladas afloran en el sector central y noroeste (Figura 2). En varias localidades, principalmente en el sector sureste, esta unidad gnéisica paleoproterozoica aflora casi siempre como remanentes en o dentro de las rocas más jóvenes (granitoides permo-triásicos) a manera de techos colgantes (roof pendants) o como grandes bloques o xenolitos (Figuras 6 A y B).

La relación que tiene esta unidad con las rocas graníticas más jóvenes presentes en el área es de tipo intrusivo ya que la mayoría de los granitoides y pegmatitas-aplitas de edad permo-triásica se encuentran cortando perpendicular y/o sub-paralelamente a la foliación del basamento precámbrico (Figura 6C). En ocasiones también se observan bandas cuarzo-feldespáticas abudinadas (Figura 6D). Aunque en algunas zonas aún se preservan las texturas ígneas de los protolitos de estas rocas gnéisicas, en algunos otros lugares muestran una foliación milonítica (Figura 6E).

La foliación, localmente, está plegada a escala centimétrica y en algunas ocasiones a escalas mayores (Figura 6F). Las foliaciones del sector noroeste (Figura 3) muestran un patrón de rumbos entre 30° – 40° NW con echados entre 50° y 70° preferentemente hacia el NE. Por otro lado, el patrón que presentan las foliaciones en el sector sureste (Figura 5) es más homogéneo en rumbos y echados. Los rumbos predominantes de las foliaciones varían entre 10° y 30° NW, algunas veces N-S y echados entre 60° y 80° hacia el NE, y en ocasiones llegando a ser verticales. En el sector sureste, cerca del contacto con las rocas jurásicas por discordancia, las foliaciones no son tan homogéneas variando ligeramente sus rumbos y echados en diferentes direcciones, encontrándose algunos hacia el SW y otros hacia el NE, incluso algunos hacia el NW y SE (Figura 5). Estas diferentes orientaciones son interpretadas como plegamiento de estas unidades previamente foliadas.

Edades U-Pb en zircón determinadas en gneises bandeados de varios afloramientos ubicados en diferentes sectores del área de estudio (estrellas verdes en la Figura 2) oscilan entre 1763 y 1682 Ma (Arvizu-Gutiérrez, 2012). Este rango de edades es similar al resto de las rocas del basamento paleoproterozoico presente en Sierra Los Tanques (1747 – 1720 Ma; R. García, com. pers., 2015) y consistentes y correlacionables con rocas en otras regiones en el NW de Sonora (e.g., Iriondo et al., 2004; Nourse et al., 2005; Izaguirre et al., 2008; Arvizu et al., 2009b).


Figura 6. (A) Fotografías mostrando afloramientos representativos y relaciones de campo de la unidad gnéisica paleoproterozoica de Sierra Los Tanques. (A) y (B) Vistas panorámicas de dos afloramientos representativos ubicados en el sector central y sur, respectivamente, de Sierra Los Tanques, en donde se observa a la unidad gnéisica paleoproterozoica aflorando como remanentes sobre las rocas más jóvenes a manera de techos colgantes (roof pendants) o como grandes bloques o xenolitos dentro de las unidades graníticas permo-triásicas. (C) Segregaciones leucocráticas de diques pegmatíticos cortando a la foliación de la unidad gnéisica. También se observan bandas de la misma composición paralelas a la estratificación. (D) Bandas leucocráticas con textura pegmatítica abudinadas compuestas principalmente de cuarzo. (E) Afloramiento representativo de la unidad de gneises bandeados. Nótese que la foliación define una fábrica general gnéisica. (F) La deformación presente en esta unidad gnéisica es muy alta mostrándose en algunos sectores un fuerte plegamiento.

 

2.3.1.2. Mesoproterozoico. El magmatismo mesoproterozoico en la Sierra Los Tanques está representado por un pulso granítico de ~ 1.1 Ga (Iriondo et al., 2008); uno de los dos episodios de actividad magmática mesoproterozoica (~ 1.4 Ga y ~ 1.1 Ga) asociados posiblemente a rifting, que son conocidos regionalmente en el SW de Norteamérica (e.g., Anderson y Cullers, 1999; Goodge y Vervoort, 2006 y sus referencias).

El afloramiento principal de granitoides mesoproterozoicos se encuentra en Lomas El Berrendo ubicado en la porción oriental del área de estudio (Figura 2). Estos cuerpos intrusionan a rocas de basamento más antiguo de edad paleoproterozoica que tienen características y afinidad con corteza tipo Yavapai (e.g., Iriondo y Premo, 2010). Afloramientos aislados se encuentran en el sector sureste de la Sierra Los Tanques (Figura 5) en contacto discordante con las rocas metavolcánicas-metasedimentarias jurásicas (Figura 5). Un granito mesoproterozoico en la Sierra Los Tanques ha sido fechado en 1100 ± 8 Ma; edad 207Pb/206Pb en zircón determinada por Iriondo et al.(2008), y recientemente en otras localidades en un rango entre 1083 – 1064 Ma (estrellas amarillas en la Figura 2; R. García, com. pers., 2015).

 

2.3.2. Paleozoico-Mesozoico

2.3.2.1. Permo-Triásico. La unidad litológica predominante en la Sierra Los Tanques corresponde a un conjunto de granitoides permo-triásicos (Figuras 2 – 5). Las variedades litológicas presentes son las granodioritas y cuarzomonzodioritas, aunque también existen monzogranitos, monzodioritas, cuarzosienitas y cuarzomonzonitas (Tabla 1). Esta clasificación se detalla en el apartado de geoquímica en Arvizu-Gutiérrez (2012). Debido a la complejidad y a la gran diferenciación de los granitoides de esta unidad permo-triásica, estas rocas se pueden dividir en dos facies litológicas de acuerdo al índice de color (es decir, al contenido de minerales máficos y/o félsicos en la roca) en granitoides melanocráticos y leucocráticos. Petrográficamente también se pueden distinguir los dos grupos de granitoides, en general, ambos tipos de granitoides tienen texturas faneríticas a porfídicas con tamaños de grano medio a grueso, en algunas ocasiones con grandes fenocristales (Figuras 7 A y B). Algunos granitoides muestran texturas esquistosas-gnéisicas (Figuras 7 C y D) debido a la foliación incipiente producida por metamorfismo de bajo grado en facies de esquistos verdes asociado a un evento tectónico regional presente en el área de estudio de posible edad laramídica (R. García, com. pers., 2015). La plagioclasa, el cuarzo y el feldespato alcalino son las fases predominantes en la mayoría de los granitoides variando su contenido en mayor o menor proporción en cada una de las litologías presentes, aunque la plagioclasa tiende a ser la fase más dominante (Tabla 1). En menor cantidad se encuentran la hornblenda y la biotita (Figura 7E), las cuales son las fases máficas dominantes en los granitoides melanocráticos. Otro de los minerales comunes pero en los granitoides leucocráticos es la moscovita, típica de granitos peraluminosos. La moscovita es muy común en los granitoides leucocráticos y ocurre como mineral ígneo primario. Como mineral secundario reemplazando casi siempre al feldespato se observa mica blanca (Figuras 7 F y G). Algunos otros minerales secundarios, como la clorita y la epidota, también están presentes en algunas rocas, principalmente la clorita reemplazando a la biotita, y la epidota reemplazando a la plagioclasa y/o feldespato, igualmente en algunas ocasiones a la hornblenda (Figuras 7 H e I). Como minerales accesorios se encuentran principalmente el zircón, el apatito, la esfena o titanita y los minerales opacos como la magnetita-ilmenita, además del granate que es una fase mineral presente únicamente en los granitoides leucocráticos (Figuras 7 J, K y L).

Tabla 1. Localización de muestras, clasificación, arreglos minerales y edades U-Pb en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW de Sonora, México.

Abreviaturas: Qtz = Cuarzo, Kfs = Feldespato potásico, Pl = Plagioclasa, Bt = Biotita, Ms = Moscovita, Ser = Sericita, Hbl = Hornblenda, Ep = Epidota, Chl = Chlorita, Ap = Apatito, Grt = Granate, Ttn = Titanita, Zrn = Zircón.
Min. Op. = Minerales opacos, F.A. = Feldespato Alcalino. N.D. = No Determinado.
Lat. = Latitud, Long. = Longitud. DATUM WGS84.
*Edades 206Pb/238U de zircones determinadas en este estudio por técnica de ablación laser (LA-ICPMS) reportadas a precisión 2σ.

 

El conjunto de granitoides permo-triásicos intrusionan a la unidad metamórfica paleoproterozoica de gneises bandeados cuarzo-feldespáticos. Se observan cuerpos graníticos que intrusionan sub-paralelamente a la foliación de los gneises bandeados, y en algunas ocasiones se ve cortando perpendicularmente a ésta (Figura 8A). También se aprecian pequeños bloques, a manera de enclaves, de la unidad gnéisica paleoproterozoica dentro de las masas graníticas leucocráticas (Figura 8B).

En los afloramientos de esta unidad granítica en el sector noroeste (Figura 3), las foliaciones presentan un patrón de rumbos E-W (85° NW – 80° NE) con echados variables entre 30° – 60° con dirección preferentemente hacia el SW. En algunas zonas los granitoides muestran un diferente patrón de foliaciones con rumbos NW-SE, específicamente 20° – 45° NW con echados entre 30° – 70° hacia el NE (Figura 3). Esta orientación de foliaciones también está presente en las rocas gnéisicas paleoproterozoicas que se encuentran dentro de esta unidad a manera de bloques o xenolitos o simplemente como basamento. Por su parte, los granitoides en el sector central (Figura 4) tienen un patrón homogéneo de foliaciones con rumbos NW-SE y echados entre 30° – 60° hacia el SW, preferentemente. En el sector sureste de la Sierra Los Tanques (Figura 5) se encuentra la mayor extensión de afloramientos de granitoides permo-triásicos. En esta zona las foliaciones de las rocas tienen rumbos NW-SE con echados hacia el SW. También existe un patrón de foliación diferente con rumbos N-S, variando 5° – 10° NW con echados entre 45° – 65° hacia el E-NE, foliación similar a las de las rocas de basamento paleoproterozoico presentes en la zona. En la porción central del sector sureste las foliaciones en los granitoides siguen siendo N-S con echados hacia el E-NE, mientras que en la porción más oriental, el patrón principal de las foliaciones cambia a rumbos NW-SE con echados hacia el SW, aunque existen rumbos N-S y echados contrarios hacia el E-NE (Figura 5) debido a que la deformación presente en esa zona está representada por plegamientos de la foliación.

Los dos grupos de granitoides, melanocrático y leucocrático, no presentan ninguna distribución preferencial espacialmente aunque en un afloramiento en el sector sureste de la sierra (Figura 5), los granitoides melanocráticos son más abundantes y son claramente intrusionados por los leucocráticos, cortando subparalelamente y, en algunas ocasiones, perpendicularmente a su foliación. En esa zona en la parte más sureste de la Sierra Los Tanques justo al norte de la Sierra Cipriano (Figura 5), existe un afloramiento de gran importancia que se denominó como afloramiento Cerro Microondas, en donde se observan relaciones de campo interesantes entre las unidades permo-triásicas que ejemplifican la deformación pérmica-triásica presente en esa zona. En general, abundan los granitoides leucocráticos foliados de moscovita y granate, aunque existe una cantidad importante de granitoides melanocráticos (granodioritas y cuarzomonzodioritas de hornblenda y biotita), los cuales son cortados subparalelamente a su foliación por los leucocráticos (Figuras 8 C y D). Estas dos unidades, a su vez, son cortadas por diques pegmatíticos-aplíticos (Figuras 8 E y F) de edad permo-triásica (estrellas amarillas en las Figuras 2 y 5; R. García, com. pers., 2015), los cuales contienen abundante granate. En algunas zonas, se observan bloques y/o xenolitos de la unidad melanocrática dentro de la leucocrática. En ambas unidades graníticas permo-triásicas también existen bloques o xenolitos de la unidad gnéisica paleoproterozoica, la cual es cortada por los granitoides melanocráticos y leucocráticos, y por los diques leucocráticos aplíticos-pegmatíticos. De la unidad melanocrática se realizaron fechamientos U-Pb en zircón proporcionando edades entre 267 – 250 Ma (R. García, com. pers., 2015; Figuras 2 y 5).

El conjunto de diques de aplitas-pegmatitas, que cortan a los granitoides permo-triásicos y a los gneises bandeados paleoproterozoicos, generalmente se presentan a una escala menor de unos pocos centímetros de espesor hasta ~ 1 m, pero sin llegar a ser cartografiables. Las aplitas son de color blanco y de grano medio a fino (0.5 – 1.0 mm), compuestas principalmente por cuarzo y feldespato, con cantidades moderadas de moscovita y con menor abundancia de biotita; además muestran pequeñas cantidades de granate. Las pegmatitas presentan texturas porfídicas representadas por una matriz de grano fino a medio con grandes fenocristales de feldespato y plagioclasa y con moderada cantidad de granate. Ambos diques graníticos (aplíticos y pegmatíticos) comúnmente presentan forma tabular, a veces bifurcados. En algunas zonas muestran una foliación incipiente y, debido a la deformación presente en el área, a veces se muestran abudinados. Existen fechamientos U-Pb en zircón en tres muestras pegmatíticas-aplíticas, cuyas composiciones varían entre granodiorita, cuarzosienita y monzogranito, proporcionando edades permo-triásicas entre 261 – 251 Ma (R. García, com. pers., 2015; Figuras 2 y 5).

2.3.2.2. Jurásico Medio-Superior. En el área de estudio aflora una unidad metavolcánica-metasedimentaria del Jurásico Medio (R. García, com. pers., 2015), relacionado a la actividad de un arco magmático continental activo durante ese tiempo (Izaguirre-Pompa, 2009). Esta unidad está afectada por metamorfismo de bajo grado en facies de esquistos verdes y consiste principalmente en metariolitas y metandesitas. También están presentes rocas metavolcánicas esquistosas, filíticas y a veces gnéisicas con diferentes grados de deformación-milonitización. Los afloramientos de mayor extensión se localizan en la parte más oriental del área de estudio, en el sector sureste y en los alrededores del poblado de Sonoyta (Figuras 2 y 5). Por ejemplo, en la Sierra Los Tanques (Figura 5), esta unidad se encuentra en contacto discordante con las rocas más antiguas (unidad gnéisica paleoproterozoica) en la parte norte y más hacia el sur con la unidad granítica permo-triásica. Se han determinado edades U-Pb en zircón para los protolitos de estas rocas en un rango aproximado entre 176 – 164 Ma (R. García, com. pers., 2015; Figuras 2 y 5). Las foliaciones de esta unidad son variables predominando una familia con rumbos NW-SE y echados entre 40° – 80° hacia el NE. Algunas otras mediciones tienen buzamientos opuestos a esta familia debido a la deformación y plegamiento posteriores. Otro de los afloramientos de esta unidad jurásica se ubica en la parte noroeste de Lomas El Berrendo (Figura 2), en donde se expone una metariolita que está en contacto con la unidad de granito mesoproterozoico; en esa zona el contacto es de tipo intrusivo. Existe un fechamiento de U-Pb en zircones de ~ 180 Ma de una de estas rocas volcánicas (Campbell y Anderson, 2003) y otro más reciente, por el mismo método, de ~ 170 Ma (R. García, com. pers., 2015; Figuras 2 y 5).

2.3.2.3. Cretácico Superior. Extensos afloramientos de rocas graníticas de edad laramídica correspondientes al cinturón batolítico sonorense (e.g., Damon et al., 1983) afloran en los alrededores de la zona de estudio. Estas rocas varían entre granitos y monzogranitos de biotita o de dos micas, cuarzodioritas y cuarzomonzodioritas, predominando las granodioritas de biotita y/o hornblenda. Las expresiones más antiguas del magmatismo laramídico están representadas por pequeños cuerpos dioríticos ubicados en los sectores central y noroeste del área de estudio (Figuras 2, 3 y 4). El cuerpo más antiguo corresponde a una diorita de grano medio-grueso de ~ 78 Ma (R. García, com. pers., 2015) que corta a la unidad permo-triásica. Otros cuerpos corresponden a una cuarzomonzodiorita y una microdiorita con edades U-Pb en zircones determinadas por Arvizu-Gutiérrez (2012) de 75.4 ± 0.3 Ma y 72.7 ± 0.6 Ma, respectivamente, y que también intrusionan a rocas permo-triásicas. Existe también un fechamiento U-Pb en zircones de ~ 68 Ma (R. García, com. pers., 2015; ver estrellas de color amarillo en las Figuras 2 y 3) en una muestra de granito de biotita que corta localmente al basamento paleoproterozoico en el sector central (Figura 4). En la región también aflora un cuerpo granítico de edad laramídica de gran extensión llamado Cerro El Papalote (Figuras 2 y 3) en donde también existe un fechamiento U-Pb en zircones de ~ 73 Ma (R. García, com. pers., 2015; ver estrellas amarillas en las Figuras 2 y 3). Otras ocurrencias de este magmatismo del Cretácico Superior se localizan al sureste del área de estudio (Figura 2) en donde sobresalen dos grandes cuerpos graníticos que se identifican fácilmente por su elevada topografía; estos son la Sierra Cipriano y la Sierra Cubabi. En la Sierra Cipriano se han determinado edades U-Pb en zircones de ~ 68 Ma, mientras que para la Sierra Cubabi existen edades de cristalización de ~ 65 Ma (R. García, com. pers., 2015; ver estrellas amarillas para la ubicación en las Figuras 2 y 5). En la Sierra Cubabi, también se tiene el control temporal de aplitas y pegmatitas que cortan al plutón principal con edades de 62 y 59 Ma, respectivamente (R. García, com. pers., 2015). Estas edades más jóvenes, junto con la edad U-Pb en zircones determinada por Arvizu-Gutiérrez (2012) de 63.2 ± 0.6 Ma de una muestra de granito de dos micas, ubicada en el sector sureste de la Sierra Los Tanques (Figura 5), representan las expresiones del magmatismo laramídico más joven en la región.


Figura 7. Microfotografías mostrando el aspecto textural y la mineralogía general presentes en las muestras de granitoides permo-triásicos de Sierra Los Tanques. (A) y (B) Texturas representativas vistas en NX. La mayoría de las rocas muestran una textura fanerítica a porfídica con tamaño de grano de medio a grueso. Nótese en (A) la presencia de cristales equigranulares de plagioclasa, feldespato y cuarzo, y en (B) la presencia de un fenocristal de microclina. (C) y (D) Algunas rocas muestran texturas gnéisicas-esquistosas (en NX) producto del metamorfismo de bajo grado presente en esta unidad granítica. (E) Cristal de biotita visto en NX con colores de interferencia rosa, amarillo y verde de segundo orden. (F) y (G) Cristales de moscovita vistos en NX. Este mineral aparece comúnmente en los granitoides como mineral primario en (G), aunque en algunas ocasiones se encuentra alterada a clorita como en (F). (H) e (I) Algunos minerales secundarios, como la clorita y la epidota vistos en NX, también están presentes en los granitoides, frecuentemente la clorita reemplazando a la biotita como en (H), y la epidota a la plagioclasa y/o feldespato como en (I). (J) Cristales rómbicos de titanita o esfena con alto relieve vistos en NII. Mineral accesorio muy común en la mayoría de estas rocas graníticas. (K) Cristales de granate mostrando relieves altos vistos en NII y cuya presencia en los granitoides es variable. (L) Misma microfotografía pero tomada en NX en donde se observan totalmente en extinción los cristales de granate debido a su carácter isótropo.

 



Figura 8. (A) y (B) Fotografías mostrando afloramientos representativos y relaciones de campo entre la unidad gnéisica paleoproterozoica y la unidad granítica permo-triásica de Sierra Los Tanques. (A) Vista de un afloramiento representativo en donde se observa a la unidad granítica leucocrática intrusionando subparalelamente y, a veces, perpendicularmente a la foliación de las rocas del basamento paleproterozoico. (B) Cuerpos graníticos leucocráticos en forma de diques pegmatíticos-aplíticos cortando paralelamente a la foliación de la unidad gnéisica. También se observan bloques o enclaves de gneises bandeados dentro de las masas graníticas permo-triásicas. (C-F) Fotografías mostrando afloramientos representativos y las relaciones de campo existentes entre los granitoides melanocráticos y leucocráticos de Sierra Los Tanques. En todos los casos se evidencia y muestra que la unidad granítica melanocrática (rocas oscuras) es cortada por la leucocrática (rocas claras). Todos los afloramientos están ubicados en el sector sureste del área de estudio, en los alrededores del afloramiento denominada Cerro Microondas. (C) y (D) Afloramientos en donde se observa a la unidad granítica leucocrática intrusionando paralelamente a la foliación de la unidad melanocrática como en A, y en algunas ocasiones cortando perpendicularmente a ésta como en (D). (E) y (F) Cuerpos graníticos leucocráticos en forma de diques pegmatíticos-aplíticos cortando a la unidad granitoide melanocrática pérmica. En (F) se puede observar que un dique pegmatítico corta tanto a la unidad leucocrática como a la melanocrática. Estos cuerpos pegmatíticos-aplíticos también son de edad permo-triásica (R. García, com. pers.).

 

2.3.3. Cenozoico

2.3.3.1. Mioceno. La presencia de un pulso magmático miocénico en la Sierra Los Tanques está representado por rocas volcánicas de composición basáltico-andesítica y por lavas riolíticas (e.g., Cerro Los Vidrios; Figuras 2 y 3). Una muestra de riolita de Cerros Los Vidrios, ubicada en el sector noroeste de la Sierra Los Tanques (Figura 3), fue fechada por Arvizu-Gutiérrez (2012) por el método U-Pb en zircones proporcionando una edad de 14.17 ± 0.13 Ma. Otro fechamiento de esta misma unidad riolítica, realizado anteriormente por Vidal-Solano et al. (2008) por el método 40Ar/39Ar en roca total, arroja una edad similar de 14.23 ± 0.15 Ma. Más hacia el suroeste, aproximadamente a 5 km de Cerros Los Vidrios en la localidad de Los Vidrios Viejos (Figura 2) existe un fechamiento 40Ar/39Ar en obsidiana, también de esta unidad riolítica, de 14.27 ± 0.87 Ma (Vidal-Solano et al., 2008). Se ha determinado una edad de 40Ar/39Ar en matriz volcánica de un basalto en la parte norte del sector noroeste de la Sierra Los Tanques (Figura 3) de ~ 22 Ma (F. Paz, com. pers.). Una muestra de esta unidad basáltica fue fechada por Vidal-Solano et al.(2008) en 19.0 ± 0.9 Ma por el mismo método pero en plagioclasa. Estas unidades lávicas miocénicas presentan basculamientos variables como reacción al pulso extensional Basin and Range presente en la región, mostrando en general, rumbos NW-SE con echados variables (aprox. 30° – 40°) hacia el NE y SW.

2.3.3.2. Cuaternario. Las rocas basálticas de edad cuaternaria y de composición alcalina que constituyen el Evento Volcánico El Pinacate (e.g., Gutmann, 1976, 1977, 1979, 1986, 2002; Lynch, 1981; Lynch et al., 1993; Gutmann et al., 2000), son encontradas coronando la mayoría de los afloramientos de la región. Cubriendo discordantemente a las rocas más antiguas afloran depósitos no consolidados del Cuaternario, constituidos por coluvión, aluvión y eólicos compuestos principalmente de gravas, arenas, limos y arcillas distribuidos al pie de las montañas y algunos otros cubriendo los amplios valles y rellenando cuencas locales (Figuras 2 – 5). Los sedimentos arcillo-arenosos transportados por acción eólica forman y modelan grandes dunas de arena.

 

3. Geocronología U-Pb en zircón de granitoides permo-triásicos de la Sierra Los Tanques

3.1. Introducción

Un total de 12 muestras de granitoides permo-triásicos fueron fechadas por el método geocronológico U-Pb en zircón para determinar las edades de cristalización utilizando la técnica de Ablación Láser y Espectrometría de Masas con Plasma Acoplado Inductivamente (LA-ICPMS, Laser Ablation-Inductively Coupled Plasma Mass Spectrometry Ablación Láser y Espectrometría de Masas con Plasma Acoplado Inductivamente; ver técnica analítica en Suplemento Electrónico). Todas estas muestras representativas fueron seleccionadas de diversos afloramientos ubicados en diferentes sectores del área de estudio (Figuras 2 – 5) con el fin de obtener un mejor control temporal del evento permo-triásico. Un promedio de 35 zircones para cada muestra fueron seleccionados y utilizados para realizar los análisis in situU-Pb en zircón.

A continuación se describen de forma general, las características de los zircones analizados y los resultados geocronológicos U-Pb de las muestras. Los datos geocronológicos obtenidos (diagramas de concordia U-Pb), además de imágenes de catodoluminiscencia de algunos de los zircones fechados más representativos de cada muestra, donde se observa el punto de ablación y la edad obtenida en ese punto del zircón se muestran en las Figuras 9 – 12. Todos los datos se reportan en la Tabla SE1 en el Suplemento Electrónico. Por otro lado, en la Tabla 1 se enlista un resumen de las edades permo-triásicas obtenidas, además de la localización de muestras y mineralogía de las diferentes unidades graníticas fechadas.

 

3.2. Descripción de zircones

Alrededor de 100 granos de zircón de cada muestra fueron estudiados utilizando imágenes de luz reflejada y transmitida, además de imágenes de catodoluminiscencia. Algunas imágenes de zircones representativos de cada muestra son mostradas en las Figuras 9 – 12. Vistos en luz transmitida, los zircones de todas las muestras comparten características similares: tienen formas euhedrales a subhedrales, la mayoría son incoloros, algunos granos exhiben tonos amarillos, además, la mayoría de los cristales muestran inclusiones. Las morfologías de los zircones principalmente son prismas bipiramidales alargados con bordes y puntas bien definidas, algunas veces ligeramente redondeadas, con relaciones de aspecto entre 1:3 y 1:4. Algunos cristales exhiben morfologías prismáticas cortas y anchas (stubby prisms), aunque predominando las primeras. Los tamaños son variables entre 100 – 350 µm pero la mayoría rebasando los 200 µm y los más grandes con tamaños > 300 µm.

Por otro lado, las imágenes de catodoluminiscencia (Figuras 9 – 12 D, H y L) revelan la naturaleza ígnea de los zircones mostrando estructuras internas típicas de crecimiento magmático con una zonación oscilatoria bien definida para la mayoría de los zircones. La mayoría de estos muestra una buena luminiscencia, revelando zonaciones oscilatorias suavemente marcadas en algunos granos. Otros cristales no exhiben una clara zonación oscilatoria sino que muestran una zonación más homogénea. Se ablacionaron intencionalmente los dominios zonados para determinar la edad de cristalización de cada roca (Figuras 9 – 12 D, H y L; Tabla SE1). Otra característica muy común y distintiva de los zircones de estos granitoides permo-triásicos es la presencia significativa de semillas o núcleos heredados que se distinguen fácilmente por presentar una alta luminiscencia y por ser redondeados (Figuras 9 – 12 D, H y L). Más del 50 % de los zircones de cada muestra presentan esta característica. Cabe señalar, que algunas de estas herencias fueron confirmadas por las edades U-Pb individuales obtenidas de algunos zircones (> 1.0 Ga, predominando un rango aproximado entre 1.6 – 1.8 Ga) (Figuras 9 – 12 D, H y L; Tabla SE1). En la mayoría de los zircones se muestra alta luminiscencia y zonaciones magmáticas oscilatorias bien definidas, algunos otros granos solamente muestran un núcleo heredado bordeado por un dominio más oscuro rico en U como lo indican las altas concentraciones (ppm) de ese elemento (Figuras 9 – 12D, H y L; Tabla SE1). Algunos zircones muestran estructuras internas o texturas complejas no muy comunes en zircones magmáticos (Figuras 9 – 12 D, H y L), quizá producto de recristalización por metamorfismo o hidrotermalismo como lo revelan algunas de las relaciones muy bajas de Th/U (≤ 0.02, Tabla SE1).

 

3.3. Resultados

3.3.1. Granodiorita de biotita (TANW09-06)

El contenido de U es alto en un rango entre 277 – 2904 ppm y las concentraciones de Th varían de 56 – 419 ppm. Las relaciones Th/U varían de 0.06 – 0.27 (Tabla SE1). Se observan algunos zircones discordantes (2 – 14 %) que representan herencias con edades proterozoicas. Destaca la presencia de un zircón heredado con edad 207Pb/206Pb de 1700 ± 17 Ma (zircón/análisis 15, Figura 9A; Tabla SE1). Por otro lado, los análisis más jóvenes (Figura 9B) muestran una dispersión a lo largo de la línea de concordia con diferentes grados de discordancia, debido a que representan zircones que han sufrido pérdida de Pb, o en el caso de zircones más viejos, representan herencias. Se determinó una edad 206Pb /238U media ponderada de 257 ± 5 Ma (2s, MSWD = 2.4, n = 4; Figura 9C) para ésta granodiorita de biotita.


Figura 9. Datos analíticos de U-Pb obtenidos de zircones de granitoides pérmicos de Sierra Los Tanques utilizando la técnica de ablación láser (LA-ICP-MS). (A), (E) e (I) Gráficos de concordia tipo Tera-Wasserburg mostrando todos los datos de los zircones analizados de las muestras TANW09-06, GneisSur-1 y TANSE09-01. (B), (F) y (J) Acercamientos a los datos más jóvenes en donde se muestra la edad 206Pb/238U media ponderada calculada para cada muestra. Los análisis representados por las elipses y cuadrados de color negro fueron empleados para el cálculo de la edad media ponderada, mientras que los análisis en color gris (elipses y cuadrados) fueron descartados para este cálculo debido a que representan zircones con herencias y/o pérdida de Pb. (C), (G) y (K) Gráficos de media ponderada mostrando los análisis empleados para calcular la edad media ponderada. (D), (H) y (L) Imágenes de catodoluminiscencia de algunos zircones representativos de cada muestra, mostrando el lugar de ablación y debajo de cada zircón la edad determinada en ese punto del zircón.

 

3.3.2. Gneis de biotita (GneisSur-1)

Las concentraciones de U varían de 332 – 6125 ppm; las más altas pertenecen a los zircones más jóvenes a lo largo de la línea de concordia que han perdido Pb (Figura 9E), lo cual también es confirmado por los dominios más oscuros ricos en U (Figura 9H; Tabla SE1). El contenido de Th es bajo variando de 4 – 331 ppm, mientras que las relaciones Th/U tienen un rango entre 0.01 – 0.32. Se observa una población importante pero dispersa de zircones con edades permo-triásicas con diversos grados de discordancia (0 – 9 %) (Figura 9F). Algunos de estos análisis también representan la presencia de Pb común, efecto que puede deducirse cuando la edad 208Pb/232Th del zircón es más vieja que la edad 206Pb/238U (Tabla SE1). Los análisis relativamente concordantes (≤ 3 %), proporcionan una edad 206Pb/238U media ponderada de 255 ± 3 Ma (2s, MSWD = 2.3, n = 8; Figura 9G) que se interpreta como la edad de cristalización del protolito de esta roca gnéisica.

 

3.3.3. Granodiorita leucocrática de biotita y granate (aplita) (TANSE09-01)

Las concentraciones de U y Pb para los zircones son de 47 – 1479 ppm y 1 – 137 ppm, respectivamente, con relaciones Th/U entre 0.01 – 0.36 (Tabla SE1). Presencia de zircones heredados, identificados en las imágenes de catodoluminiscencia con edades proterozoicas entre 1.2 – 1.6 Ga (e.g., zircón/análisis 3, 6, 8, 19 y 25; Tabla SE1), ligeramente discordantes (1 – 5 %) (Figura 9I). Los datos más jóvenes de edad permo-triásica muestran una dispersión a lo largo de la concordia; algunos datos son relativamente concordantes (-2 a 2 %) y otros muestran pérdida de Pb (Figura 9J). Se determinó una edad 206Pb/238U media ponderada de 254 ± 2 Ma (2s, MSWD = 2.5, n = 5; Figura 9K), interpretada como la edad de cristalización de este leucogranito con granate.

 

3.3.4. Monzogranito de biotita (CG09-10)

Los contenidos de U son de 260 – 3584 ppm (Tabla SE1). Los valores más altos de 3584 ppm y 1908 ppm corresponden a los análisis más jóvenes (zircón/análisis 32 y 15; Tabla SE1) con pérdida de Pb, los cuales se muestran a lo largo de la concordia (Figura 10B). Las concentraciones de Th varían de 7 – 1505 ppm mientras que las relaciones Th/U se encuentran en un rango entre 0.01 – 0.73, predominando los valores > 0.1 (Tabla SE1), típicas de zircones magmáticos. Se observan zircones heredados de edad mesoproterozoica con diversos grados de discordancia (< 5 % y > 10 %, Tabla SE1). Cabe destacar la presencia de dos zircones concordantes (0 y 1%) con edades 207Pb/206Pb de 1090 ± 19 Ma y 1443 ± 18 Ma (Figura 10A). Los datos más jóvenes de edades permo-triásicas muestran una población de datos relativamente concordantes (Figura 10B) empleados para calcular una edad 206Pb/238U media ponderada de 254 ± 3 Ma (2s, MSWD = 1.9, n = 9; Figura 10C), la cual se interpreta como la edad de cristalización del monzogranito de biotita.


Figura 10. Datos analíticos de U-Pb obtenidos de zircones de granitoides pérmicos de Sierra Los Tanques utilizando la técnica de ablación láser (LA-ICP-MS). (A), (E) e (I) Gráficos de concordia tipo Tera-Wasserburg mostrando todos los datos de los zircones analizados de las muestras CG09-10, TANSE-09 y MICRO-3. (B), (F) y (J) Acercamientos a los datos más jóvenes en donde se muestra la edad 206Pb/238U media ponderada calculada para cada muestra. Los análisis representados por las elipses y cuadrados de color negro fueron empleados para el cálculo de la edad media ponderada, mientras que los análisis en color gris (elipses y cuadrados) fueron descartados para este cálculo debido a que representan zircones con herencias y/o pérdida de Pb. (C), (G) y (K) Gráficos de media ponderada mostrando los análisis empleados para calcular la edad media ponderada. (D), (H) y (L) Imágenes de catodoluminiscencia de algunos zircones representativos de cada muestra, mostrando el lugar de ablación y debajo de cada zircón la edad determinada en ese punto del zircón.

 

3.3.5. Granodiorita leucocrática de biotita (TANSE-09)

Las concentraciones de U oscilan de 207 – 4518 ppm (Tabla SE1). Los valores más altos de U (2165 – 4518 ppm) representan los análisis más jóvenes que han experimentado pérdida de Pb. El contenido de Th varía entre 28 – 551 ppm con relaciones Th/U en un rango entre 0.03 – 0.42, prevaleciendo los valores > 0.1 (Tabla SE1). Existe un número elevado de zircones heredados de edad proterozoica (1591 – 1758 Ma) con diferentes grados de discordancia (-2 % a 10 %) (Figura 10E). Se destaca la presencia de dos análisis concordantes con edades de 1351 ± 28 Ma y 1643 ± 20 Ma (Tabla SE1). Un acercamiento a los zircones más jóvenes de edad permo-triásica (Figura 10F) muestra una población de análisis relativamente concordantes (< 4 %), los cuales fueron empleados para calcular una edad 206Pb/238U media ponderada de 252 ± 3 Ma (2s, MSWD = 0.69, n = 7; Figura 10G) para este leucogranito de biotita. Los análisis más jóvenes no fueron utilizados para este cálculo debido a que representan zircones que han sufrido pérdida de Pb como lo indican las concentraciones altas de U (2165 – 4518 ppm; Tabla SE1).

 

3.3.6. Cuarzomonzodiorita de biotita (MICRO-3)

Las concentraciones de U y Th para los zircones analizados son de 394 – 4248 ppm y de 51 – 780 ppm, respectivamente, con relaciones Th/U que varían en un rango entre 0.08 – 0.25. Los valores más altos de U pertenecen a los análisis más jóvenes que pudieran representar zircones con pérdida de Pb. Se observa poca presencia de herencias, destacando un zircón heredado concordante con una edad 207Pb/206Pb de 1716 ± 18 Ma (Figura 10I). Un acercamiento a los análisis más jóvenes (Figura 10J) permite visualizar una gran dispersión de datos con diversos grados de discordancia, aunque existen algunos análisis relativamente más concordantes entre -1 % y 3 %. Se determinó una edad 206Pb/238U media ponderada de 243 ± 2 Ma (2s, MSWD = 0.23, n = 5; Figura 10K) para la muestra de cuarzomonzodiorita de biotita. Los análisis más jóvenes claramente han sufrido pérdida de Pb como lo podrían indicar los elevados contenidos de U de esos zircones (Tabla SE1).

 

3.3.7. Granodiorita leucocrática de biotita (GranCen-5)

Los zircones tienen de moderadas a altas concentraciones de U y Th (395 – 2106 ppm y 26 – 827 ppm, respectivamente) con relaciones Th/U que varían entre 0.05 – 0.47, predominando los valores > 0.1 (Tabla SE1). Se observan algunos análisis altamente discordantes > 3 % (entre 3 – 22 %) que representan zircones heredados (e.g., zircón/análisis 18, 20, 21, 25 y 30) (Figura 11A). Un acercamiento a los análisis más jóvenes muestra una población de datos dispersos, relativamente concordantes (≤ 3 %) a lo largo de la línea de concordia (Figura 11B). Se determinó una edad 206Pb/238U media ponderada de 240 ± 3 Ma (2s, MSWD = 1.5, n = 5; Figura 11C) para la granodiorita leucocrática de biotita. El resto de los análisis, que se representan como elipses y cuadrados de color gris, no fueron usados para calcular la edad media ponderada debido a que representan zircones que han experimentado pérdida de Pb (análisis más jóvenes con altas concentraciones de U; Tabla SE1) y/o son zircones en donde simplemente se han muestreado dominios del zircón un poco más viejos.


Figura 11. Datos analíticos de U-Pb obtenidos de zircones de granitoides pérmicos de Sierra Los Tanques utilizando la técnica de ablación láser (LA-ICP-MS). (A), (E) e (I) Gráficos de concordia tipo Tera-Wasserburg mostrando todos los datos de los zircones analizados de las muestras GranCen-5, TANW09-01 y TANC09-04. (B), (F) y (J) Acercamientos a los datos más jóvenes en donde se muestra la edad 206Pb/238U media ponderada calculada para cada muestra. Los análisis representados por las elipses y cuadrados de color negro fueron empleados para el cálculo de la edad media ponderada, mientras que los análisis en color gris (elipses y cuadrados) fueron descartados para este cálculo debido a que representan zircones con herencias y/o pérdida de Pb. (C), (G) y (K) Gráficos de media ponderada mostrando los análisis empleados para calcular la edad media ponderada. (D), (H) y (L) Imágenes de catodoluminiscencia de algunos zircones representativos de cada muestra, mostrando el lugar de ablación y debajo de cada zircón la edad determinada en ese punto del zircón.

 

3.3.8. Granodiorita leucocrática de dos micas (TANW09- 01)

Los contenidos de U y Th para los zircones analizados son moderados variando de 18 – 1097 ppm y de 6 – 183 ppm, respectivamente, con relaciones Th/U 0.01 – 0.70 prevaleciendo valores > 0.1 (Tabla SE1). Existe la presencia de herencias, destacando la presencia de tres análisis concordantes (≤ 3 %) con edades 207Pb/206Pb de 1111 ± 52 Ma, 1476 ± 17 Ma y 1612 ± 17 Ma (Figura 11E). Otros tres análisis con discordancias altas, representan zircones con diferentes grados de herencia (e.g., zircón/análisis 3, 8 y 23 Figura 11E ; Tabla SE1). Un acercamiento a los análisis más jóvenes (Figura 11F) muestra una dispersión significativa a lo largo de la línea de concordia de los datos que son relativamente concordantes (- 1 % a 2 %). Una agrupación de análisis concordantes, representados por las elipses y cuadrados de color negro, fueron usados para el cálculo de una edad 206Pb/238U media ponderada de 238 ± 1 Ma (2s, MSWD = 1.8, n = 12; Figura 11G), interpretada como la edad de cristalización de esta granodiorita leucocrática de dos micas.

 

3.3.9. Granodiorita leucocrática de biotita (TANC09-04)

El contenido de U para los zircones analizados va de 66 – 2495 ppm y de Th va de 12 – 1302 ppm con relaciones Th/U que varían entre 0.07 – 0.59, predominando valores altos > 0.1 (Tabla SE1). Existe un gran número de zircones heredados de edades proterozoicas 207Pb/206Pb entre 1183 – 1934 Ma (Figura 11I), pero con diversos grados de discordancia (> 10 %, Tabla SE1). Los análisis más discordantes tienen valores entre 10 – 42 % de discordancia, mientras que los menos discordantes tienen valores < 5 % (Tabla SE1). Cabe destacar tres análisis concordantes (0 – 1 %) con edades 207Pb/206Pb de 1191 ± 20 Ma, 1598 ± 17 Ma y 1720 ± 17 Ma. En el acercamiento a los datos más jóvenes (Figura 11J) se observa una agrupación de análisis representados por elipses y cuadrados de color negro, que han sido empleados para calcular una edad 206Pb/238U media ponderada de 231 ± 1 Ma (2s, MSWD = 2.1, n = 6; Figura 11K), la cual es interpretada como la edad de cristalización de la granodiorita leucocrática de biotita.

 

3.3.10. Granodiorita leucocrática de biotita (LeucoCen-1)

Las concentraciones de U de los zircones van de 75 – 6455 ppm, algunas de las más altas corresponden a los análisis más jóvenes que se interpreta han sufrido pérdida de Pb. Por su parte, los contenidos de Th van de 3 – 1979 ppm con relaciones Th/U en un rango que varía de 0.01 – 0.60 (Tabla SE1). Se corrobora la existencia de varios zircones heredados que presentan diferentes grados de discordancia, destacando la presencia de tres análisis relativamente concordantes (< 2 %) con edades proterozoicas 207Pb/206Pb de 1058 ± 21 Ma, 1287 ± 29 Ma y 1688 ± 19 Ma (Figura 12A). Un acercamiento a los datos más jóvenes (Figura 12B) permite visualizar una dispersión de los análisis con diferentes grados de discordancia a lo largo de la línea de concordia. Una población de zircones concordantes (- 1 % a 1 %) permite calcular una edad 206Pb/238U media ponderada de 226 ± 5 Ma (2s, MSWD = 1.6, n = 5; Figura 12C) para este leucogranito de biotita. La agrupación de los análisis más jóvenes representa zircones que han experimentado una pérdida de Pb, como lo sugieren las concentraciones altas de U (1928 – 6455 ppm; Tabla SE1), comparadas con el resto de los análisis de esta muestra.


Figura 12. Datos analíticos de U-Pb obtenidos de zircones de granitoides pérmicos de Sierra Los Tanques utilizando la técnica de ablación láser (LA-ICP-MS). (A), (E) e (H) Gráficos de concordia tipo Tera-Wasserburg mostrando todos los datos de los zircones analizados de las muestras LeucoCen-1, GranCen-4 y GranCen-3. (B) y (E) Acercamientos a los datos más jóvenes en donde se muestra la edad 206Pb/238U media ponderada calculada para cada muestra. Los análisis representados por las elipses y cuadrados de color negro fueron empleados para el cálculo de la edad media ponderada, mientras que los análisis en color gris (elipses y cuadrados) fueron descartados para este cálculo debido a que representan zircones con herencias y/o pérdida de Pb. (C), (G) y (K) Gráficos de media ponderada mostrando los análisis empleados para calcular la edad media ponderada. (D), (H) y (L) Imágenes de catodoluminiscencia de algunos zircones representativos de cada muestra, mostrando el lugar de ablación y debajo de cada zircón la edad determinada en ese punto del zircón.

 

3.3.11. Granodiorita leucocrática de dos micas (GranCen-4)

Los zircones analizados tienen concentraciones altas de U entre 344 – 3118 ppm y contenidos de Th que varían de 36 – 549 ppm, con relaciones Th/U que van de 0.02 – 0.26 (Tabla SE1). Se observa una gran dispersión de los datos, los cuales poseen diferentes grados de discordancia (- 1 % a 19 %) (Figura 12E). Los análisis con edades más antiguas, altamente discordantes (> 10 %), representan zircones con algún grado de herencia. También existe una población de zircones más jóvenes, con mayor o menor grado de discordancia (aunque algunos muy concordantes), con edades entre 203 – 265 Ma que muestran gran dispersión a lo largo de la línea de concordia. Una agrupación de estos análisis, relativamente concordantes, permiten calcular una edad 206Pb/238U media ponderada de 224 ± 3Ma (2s, MSWD = 1.8, n = 5; Figura 12F) que se interpreta como la edad de cristalización de esta granodiorita leucocrática de dos micas.

 

3.3.12. Granodiorita leucocrática de dos micas (GranCen-3)

Las concentraciones de U y Th para los zircones analizados son las más altas, comparadas con el resto de las muestras, variando de 604 – 9508 ppm y 87 – 958 ppm, respectivamente, con relaciones Th/U entre 0.03 – 0.26 (Tabla SE1). Se observa una gran dispersión de los datos con diferentes grados de discordancia (- 1 % a 13 %), aunque algunos análisis son más concordantes que otros (entre - 1 % y 3 %) (Figura 12H). Una población de zircones representada por la agrupación de los análisis en color negro (elipses y cuadrados) fueron utilizados para el cálculo de una edad 206Pb/238U media ponderada de 221 ± 2 Ma (2s, MSWD = 2.0, n = 9; Figura 12I).

 

4. Discusión

4.1. Edad del magmatismo permo-triásico y geocronología U-Pb en zircón

El magmatismo permo-triásico del NW de Sonora se encuentra representado por un conjunto de granitoides con edades de cristalización U-Pb en zircón en un rango aproximado de 284 – 221 Ma (Figura 13). Este rango indica un intervalo de actividad magmática de aproximadamente 60 Ma, sugiriendo el inicio del arco continental en el Pérmico temprano hasta el Triásico tardío. Las rocas afloran en diversas localidades del NW de Sonora como en el área de estudio de la Sierra Los Tanques (este estudio; R. García-Flores, com. pers., 2015), Sierra Pinta (Arvizu et al., 2009a), Sierra San Francisco (Velázquez-Santelíz, 2014), Sierra Enterrada (Paz-Moreno, com. pers., 2011) y Sierra Blanca (Paz-Moreno, com. pers., 2011) (Figura 1). Cabe señalar que la mayoría de estas rocas permo-triásicas distribuidas en las zonas antes mencionadas estaban cartografiadas como de edad proterozoica o incluso como rocas del Cretácico tardío o del Paleógeno-Neógeno (e.g., SGM, 2002). En el histograma de la Figura 14 se muestra una distribución de los datos geocronológicos existentes del magmatismo presente en el NW de Sonora, además del tipo de tectonismo dominante desde el Proterozoico hasta el Cenozoico. A grandes rasgos, se observa que en el NW de Sonora existen diversos pulsos y gaps magmáticos representados por ausencia de magmatismo y por rocas ígneas con características calcialcalinas asociadas a subducción para formar el arco magmático continental cordillerano desde el Pérmico hasta básicamente el Mioceno (e.g., Izaguirre-Pompa, 2006, 2009; Vidal-Solano et al., 2008; Roldán-Quintana et al., 2009; Valencia-Moreno et al., 2011; Arvizu-Gutiérrez, 2012), estableciéndose éste, en un basamento de edad proterozoica y paleozoica y de naturaleza totalmente laurenciana (Figura 14) (e.g., Iriondo, 2001; Iriondo et al., 2004; Nourse et al., 2005).

Por otra parte, la mayoría de los análisis de zircón de los granitoides permo-triásicos muestran concentraciones altas de U, sugiriendo que han sufrido diferentes grados de pérdida de Pb. En el caso de los zircones más viejos, estos podrían representar zircones con diferentes grados de herencia en los cuales se muestreó parte de un núcleo o simplemente dominios más viejos del zircón como lo revelan las imágenes de catodoluminiscencia (Figuras 9 – 12 D, H y L).

La presencia de análisis concordantes con edades proterozoicas (Figura 15), que corresponden a núcleos heredados como se muestra en las imágenes de catodoluminiscencia (Figuras 9 – 12 D, H y L), puede ser fácilmente explicada ya que estas edades son comunes para el basamento granítico meta-ígneo existente en la región de ~ 1.7 – 1.6 Ga, ~ 1.4 y ~ 1.1 Ga (e.g., Iriondo et al., 2004, 2005; Nourse et al., 2005; Izaguirre et al., 2008; Arvizu et al., 2009b; Iriondo y Premo, 2010), incluso consistentes con las edades proterozoicas obtenidas de rocas de basamento para la zona de estudio de Sierra Los Tanques (Arvizu-Gutiérrez, 2012). En el histograma de la Figura 15A se observan las edades individuales U-Pb en zircón obtenidas de todas las muestras fechadas en este estudio, observándose picos significativos a ~ 238 Ma y ~ 258 Ma que coinciden con el rango de edades de cristalización (edades U-Pb medias ponderadas) determinadas para la mayoría de las rocas datadas en este trabajo. Una interpretación importante que se podría evaluar y que no se puede descartar, es que algunos de los zircones más antiguos de edad pérmica y que son relativamente concordantes, en un rango entre ~ 258 – 288 Ma, podrían representar las edades de cristalización originales de algunas rocas, pero que posteriormente sufrieron un grado significativo de pérdida de plomo. No obstante, los granitoides permo-triásicos contienen abundantes zircones heredados (algunos altamente concordantes; Figuras 9 – 12 D, H y L) con edades que varían en un rango entre ~ 1071 – 1924 Ma, con picos o abundancias principales a ~ 1.1 Ga, ~ 1.4 Ga y ~ 1.6 – 1.7 Ga (Figura 15B). Se interpreta que estos zircones heredados fueron derivados de la fusión parcial y/o asimilación de las rocas encajonantes de basamento paleoproterozoico presente localmente en Sierra Los Tanques (e.g., bloques, xenolitos, roof pendants).

En los gráficos de Edad 206Pb/238U (Ma) vs. Concentración de U (ppm) de la Figuras 16 A – B se observan en (a) todos los análisis de zircón más jóvenes con edades < 300 Ma y en (b) un acercamiento a los zircones de edad permo-triásica (200 – 300 Ma). En ambos gráficos se observa una tendencia al incremento en las concentraciones de U a medida que el zircón/análisis es más joven. Es importante resaltar que la mayoría de los zircones con edades más jóvenes son zircones con valores altos en U (1000 – 6000 ppm) (Figuras 16 A-B, Tabla SE1) que sufrieron pérdida de plomo. De acuerdo a esto, no se descarta que algunos análisis de edades triásicas pudieran haber sido zircones pérmicos con pérdida generalizada de Pb siguiendo una trayectoria a lo largo de la línea de concordia (Figuras 9 – 12 D, H y L).


Figura 13. Histograma y diagrama de probabilidad de edades de cristalización U-Pb de zircones de granitoides permo-triásicos del NW de Sonora (datos de este trabajo y referencias mencionadas en el texto).

 

Figura 14. Histograma mostrando los periodos, rangos y gaps de magmatismo en el NW de Sonora empleando principalmente las edades U-Pb de cristalización en zircones de rocas ígneas. También se observa el tipo de tectonismo dominante desde el Proterozoico al Cenozoico relacionado a cada pulso o periodo de magmatismo y ausencia del mismo durante la evolución geológica de la región. La mayor parte de la base de datos utilizada para el desarrollo del histograma se encuentra recopilada en Izaguirre-Pompa (2009) y sus referencias, mientras que el resto son datos generados en Arvizu-Gutiérrez, 2012 y en este estudio.

 

Figura 15. A) Histograma y diagrama de probabilidad de edades U-Pb de zircones individuales de todas las muestras de granitoides permo-triásicos fechadas en este trabajo. B) Histograma y diagrama de probabilidad de edades U-Pb de zircones heredados fechados en las muestras de granitoides permo-triásicos.

 

4.2. Relaciones Th/U como indicadores del origen de zircones ígneos y metamórficos

Las relaciones Th/U se han convertido en un criterio comúnmente empleado para distinguir entre ambientes magmáticos, metamórficos e hidrotermales de formación del zircón (Harley et al., 2007). Incluso, algunos geocronólogos han reconocido por algún tiempo que la relación Th/U podría ser usada como un discriminante de primer orden entre zircones magmáticos y metamórficos (e.g., Bibikova, 1984; Pidgeon et al., 2000). Empíricamente, las relaciones Th/U de zircones magmáticos tienden a ser > 0.1 (Vavra et al., 1999; Hoskin e Ireland, 2000; Pidgeon et al., 2000; Belousova et al., 2002; Hidaka et al., 2002), mientras que las relaciones Th/U de los zircones metamórficos suelen ser < 0.1 (Hoskin e Ireland, 2000; Hidaka et al., 2002; Rubatto, 2002). Sin embargo, existen muchas situaciones con relaciones > 0.1 para zircones metamórficos (Vavra et al., 1999; Kröner et al., 2000; Wilde et al., 2001) y < 0.1 para zircones magmáticos (Young et al., 1995; Compston, 1995; Elburg, 1996; Muir et al., 1996; Singh et al., 2002; Lund et al., 2002; Li et al., 2003; Zhai et al., 2005). Las causas de las variaciones de tales relaciones Th/U son altamente controversiales (Klötzli, 1999) y su uso ha sido re-evaluado en vista de observaciones texturales y otros criterios químicos (e.g., Möller et al., 2003).

Aunque algunas de las relaciones Th/U en los zircones permo-triásicos analizados en este estudio son muy bajas (< 0.1) (Figura 16C; Tabla SE1), valores que podrían interpretarse como relaciones típicas para zircones metamórficos, la morfología prismática típica, además de las texturas observadas en las imágenes de catodoluminiscencia indican que la mayoría de los zircones son fácilmente asignados a un origen ígneo, ya que se aprecian zonaciones oscilatorias típicas de crecimiento magmático (Figuras 9 – 12D, H y L). Sin embargo, algunos zircones exhiben texturas o estructuras internas no muy comunes en zircones magmáticos (Figuras 9 – 12D, H y L), quizá producto de recristalización por metamorfismo o disolución por actividad hidrotermal como lo revelan algunas de las relaciones muy bajas de Th/U (≤ 0.02, Figura 16C; Tabla SE1). Se han documentado que estas relaciones tan bajas de Th/U son típicas de zircones que se han formado durante metamorfismo de alto grado (e.g., Williams y Claesson, 1987; Maas et al., 1992; Rubatto, 2002; entre otros) o zircones asociados con interacciones fluido-mineral en estadios tardíos a temperaturas moderadas a altas, durante la cristalización de los zircones (e.g., Vavra et al., 1999; Harley et al., 2001; Carson et al., 2002). Algunos otros zircones no muestran una zonación clara, sino dominios más oscuros ricos en U (Figuras 9 – 12D, H y L) como lo indican las concentraciones altas de este elemento (Tabla SE1).

Las altas variaciones en los contenidos de Th (~ 1 – 1503) y U (~ 47 – 9508) (Figura 16D; Tabla SE1) en los zircones permo-triásicos analizados también podrían indicar que existe una zonación química dentro de los cristales de zircón como los demuestran las imágenes de catodoluminiscencia. Algunos reportes sobre relaciones bajas de Th/U en zircones magmáticos (e.g., Zheng et al., 1999) sugieren que los valores bajos en estas relaciones, determinados en los zircones magmáticos de los granitoides permotriásicos son razonables.

Por ejemplo, las concentraciones de U y Th promedio en zircones graníticos han sido propuestas en 1330 ppm y 630 ppm, respectivamente (Figura 16D; Ahrens et al., 1967). Un resultado similar fue obtenido por Lyakhovich (1973), mostrando promedios de U y Th para zircones graníticos de 1150 ppm y 886 ppm, respectivamente (Figura 16D). Sin embargo, análisis más recientes muestran que los valores de U y Th en zircones graníticos son mucho menores que los valores aceptados antes mencionados (Wilde y Youssef, 2000; Claesson et al., 2000; Da Silva et al., 2000; Eichhorn et al., 2000; Singh et al., 2002; Lund et al., 2002; Zhou et al., 2002; Li et al., 2002; Thrane, 2002; Li et al., 2003; Liu et al., 2004; Zhai et al., 2005). Inclusive, en un trabajo recientemente publicado por Wang et al.(2011), donde se hace una compilación de datos de literatura, muestra que los contenidos de U y Th en zircones de rocas graníticas están mejor representados por valores promedio de 350 ppm y 140 ppm, respectivamente (Figura 16D). Aunque, como se mencionó anteriormente, valores mucho más altos de U y Th (> 1000 ppm para ambos) en zircones magmáticos han sido reportados en la literatura.

El criterio propuesto para distinguir entre zircones magmáticos y metamórficos utilizando las relaciones Th/U (e.g., Rubatto, 2002; Hoskin y Schaltegger, 2003) no es infalible de acuerdo a las variaciones considerables de este parámetro marcadas en varios trabajos (e.g., Carson et al., 2002; Kelly y Harley, 2005). Los datos de este estudio apoyan esta conclusión, ya que los zircones permo-triásicos muestran relaciones Th/U altamente variables (0.01 – 0.73; Figura 16D), variaciones similares a los valores propuestos para zircones magmáticos y/o metamórficos reportados en literatura (e.g., Ahrens et al., 1967; Lyakhovich, 1973; Wang et al., 2011). Dado este hecho y la evidencia de relaciones variables de Th/U descritas anteriormente, los valores de Th/U pueden sólo ser usados con precaución y en colaboración con otros criterios químicos para valorar el origen del zircón dentro de su contexto textural como lo podría ser la geoquímica de REE en el zircón.


Figura 16. A) Gráfico de Edad 206Pb/238U (Ma) vs. Concentración de U (ppm) de todos los zircones analizados más jóvenes < 300 Ma utilizando 233 análisis individuales. Los círculos en negro representan los análisis de zircón utilizados para calcular las diferentes edades de las rocas reportadas en este trabajo (ver Tabla 1 y Figuras 9 – 12), mientras que los círculos grises son los análisis descartados para el cálculo de la edad por representar zircones con diferentes grados de pérdida de Pb y/o núcleos heredados. B) Acercamiento mostrando solamente los zircones de edad permo-triásica (222 análisis). C) Gráfico de Edad 206Pb/238U (Ma) vs. Relación 232Th/238U. La línea punteada a 0.1 en la relación Th/U muestra una tentativa división para el origen de los zircones apoyada de datos de literatura (e.g., Hoskin y Black, 2000; entre otros discutidos en el texto). Los valores > 0.1 indican un origen ígneo mientras que los valores < 0.1 indican posiblemente un origen metamórfico para los zircones. D) Gráfico de concentraciones de U (ppm) vs. Th (ppm) de todos los zircones permo-triásicos.

 

 

4.3. Implicaciones tectónicas del magmatismo permo-triásico en el NW de México

El estudio de las rocas paleoproterozoicas del SW de Norteamérica ha permitido caracterizar y proponer una división del basamento paleoproterozoico en el margen continental del SW de Laurencia en tres diferentes provincias: Mojave, Yavapai y Mazatzal (Figura 17A) (e.g., Karlstrom et al., 1987; Karlstrom y Bowring, 1988; Karlstrom y Bowring, 1993; Wooden y Miller, 1990; Iriondo et al., 2004; Iriondo y Premo, 2010 y sus referencias). La presencia de rocas paleoproterozoicas aflorantes en el NW de Sonora, como en las regiones de Quitovac, Cabeza Prieta-Pinacate, Cerros San Luisito, Cerro Prieto y Zona Canteras-Puerto Peñasco (Iriondo et al., 2004; Nourse et al., 2005; Gutiérrez-Coronado et al., 2008; Izaguirre et al., 2008; Arvizu et al., 2009b) sugiere mediante estudios geocronológicos, geoquímicos e isotópicos que el basamento cristalino en esta región presenta similitudes con rocas asociadas a la provincia Yavapai, por lo que se propone la extensión de estas provincias hacia México (Figuras 17 A y B).

Iriondo (2005, 2007) sugiere que la agrupación de rocas paleoproterozoicas con características Yavapai en Sonora, que mantienen una dirección estructural predominantemente NW-SE (Figura 17), han podido actuar como una zona de debilidad cortical (sutura) desde el Paleoproterozoico. Esta debilidad pudo haber condicionado notablemente algunos eventos geológicos subsecuentes presentes en Sonora como la orientación del rifting continental durante la ruptura del supercontinente Rodinia; la ubicación preferencial para el emplazamiento del magmatismo y la formación de cuencas sedimentarias mesozoicas; la canalización de fluidos metamórficos para la formación del cinturón de Au orogénico laramídico; la ubicación preferencial para el magmatismo terciario, principalmente volcanismo; la orientación de la apertura (rifting) del Golfo de California; y quizá, la presencia de magmatismo máfico cuaternario (e.g., Campos volcánicos del Pinacate y Moctezuma) a lo largo de la franja de corteza Yavapai.

Algunos autores (e.g., Arvizu et al., 2009a; 2009b; Iriondo y Premo, 2010) sugieren que esta zona representada por la franja de Yavapai mexicano (Figura 17) también sirvió para que los primeros magmas asociados a la subducción permo-triásica y al inicio del arco magmático continental cordillerano del SW de Norteamérica ascendieran hacia la superficie con mayor facilidad (Figura 17B). Esto a través de una corteza continental comparativamente fría después de cientos de millones de años como corteza de margen continental pasiva generada posteriormente al rifting o ruptura del supercontinente Rodinia en el Neoproterozoico y/o Paleozoico Inferior (Stewart, 1976, 1988; Li et al., 2008) (Figura 14).

Cabe aclarar que lo que se considera como zona de debilidad cortical Yavapai es sólo una hipótesis para explicar el conducto por el cual los magmas generados por subducción durante el permo-triásico ascendieron hacia la superficie. Sin embargo, aún no se puede demostrar pero estudios recientes antes mencionados indican que esta hipótesis podría ser factible para explicar la presencia de las rocas ígneas permo-triásicas en el NW de Sonora como en las localidades de Sierra Enterrada, Sierra Blanca, Sierra San Francisco, Sierra Los Tanques y Sierra Pinta (Figura 17B).

Figura 17. (A) Distribución tentativa de las provincias paleoproterozoicas Mojave, Yavapai y Mazatzal en el SW de Laurencia, incluyendo los afloramientos del NW de México (Iriondo y Premo, 2010). El rango de edades de cristalización (en rojo) para rocas ígneas de cada una de las provincias está basado en la recopilación de edades de Iriondo et al. (2004). También se presenta, de forma tentativa, la extensión de la traza de fronteras de Nd y de las series geoquímicas al internarse en México (Iriondo y Premo, 2010). Las abreviaciones son LA: Los Ángeles, SD: San Diego, LV: Las Vegas, PHX: Phoenix, TUC: Tucson, HER: Hermosillo. (B) Acercamiento al NW de Sonora mostrando los afloramientos de rocas graníticas permo-triásicas encontrados hasta la fecha en la región y que se encuentran espacialmente asociadas a la franja del Yavapai mexicano (este estudio y referencias mencionadas en el texto).

 

 

4.4. Relación entre el magmatismo permo-triásico en el NW de Sonora y el magmatismo cordillerano del SW de Norteamérica, noreste, centro y sur de México

El descubrimiento del pulso magmático permo-triásico en el NW de Sonora, con edades U-Pb en zircones entre ~ 284 – 221 Ma (Figura 13) se puede asociar a subducción y al inicio del arco magmático continental del SW de Norteamérica. Esto contrasta con la idea de que el comienzo de la subducción para formar el arco magmático continental cordillerano en el SW de Norteamérica inició con la intrusión de plutones graníticos de edad básicamente triásica (~ 250 – 207 Ma; Barth et al., 1997; Barth y Wooden, 2006) emplazados en el basamento paleoproterozoico, como resultado del inicio de la convergencia a lo largo del margen continental paleozoico pre-existente (e.g., Burchfiel y Davis, 1972, 1975, 1981; Kistler y Peterman, 1973; Dickinson, 1981; Burchfiel et al., 1992). De esta manera, esta ocurrencia de magmatismo pérmico en el NW de México permite recorrer varios millones de años hacia atrás (> 30 Ma) el inicio de la subducción y el establecimiento del margen continental activo en el SW de Norteamérica.

La ocurrencia de algunos plutones de edad permo-triásica (~ 260 – 207 Ma) en los estados de Nevada, California y Arizona (e.g., Snow et al., 1991; Bateman, 1992; Burchfield et al., 1992; Miller et al., 1992, 1995; Dunne y Saleeby, 1993; Schweickert y Lahren, 1993; Barth et al., 1997; Barth y Wooden, 2006) parece estar asociada a dos diferentes procesos de formación. Por un lado, los plutones permo-triásicos localizados en la parte norte y centro de California y los del oeste de Nevada, parecen estar asociados a un arco magmático de islas constituido por terrenos oceánicos acrecionados (Figura 18), creado a distancia del margen continental y que posteriormente colisionaron contra el continente en tiempos mesozoicos (Barth et al., 1990, 1997; Busby-Spera et al., 1990; Saleeby y Busby-Spera, 1992; Barth y Wooden, 2006). Asimismo, estos autores plantean que algunos de estos plutones permo-triásicos en la parte sur de California y oeste de Arizona se encuentran asociados a una zona de subducción paralela al margen continental paleozoico pre-existente, como lo sugiere el patrón de orientación NW del plutonismo y volcanismo permo-triásico que corta basamento proterozoico en esas regiones (Figura 18).


Figura 18. Reconstrucción geotectónica hipotética del Permo-triásico del oeste de Pangea. Se muestra la sutura orogénica Ouachita-Marathon-Sonora propuesta por Poole et al. (2005), la cual se infiere se extiende hacia Sonora. Las posiciones o paleogeografías de los diferentes bloques corticales que conforman México en la actualidad son inferidas (modificadas a partir de Dickinson y Lawton, 2001; Elías-Herrera y Ortega-Gutiérrez, 2002; entre otros). En este mapa también se muestra la posición inferida del arco cordillerano continental Pérmico-Jurásico? y la zona de subducción (según Dickinson y Lawton, 2001; Dickinson, 2006; Godínez-Urban et al., 2011). La localización de los segmentos de arco intraoceánicos acrecionados en EUA son según Dickinson (2006), en donde BM = Blue Mountains, KM = Klamath Mountains, SN = Sierra Nevada y PR = Peninsular Ranges. También se muestran las principales localidades de rocas volcánicas-plutónicas de edad permo-triásica que forman parte del inicio del arco magmático cordillerano instaurado en el borde oeste de Pangea (Torres et al., 1999). Los afloramientos permo-triásicos no están a escala. Los círculos negros, como se muestra en la leyenda, representan la ubicación de algunas localidades con los principales cuerpos ígneos de edad permo-triásica reportados hasta la fecha en publicaciones científicas. Las localidades de estas rocas ígneas permo-triásicas se encuentran discutidas en el texto. Las estrellas en color negro representan magmatismo de arco de edad carbonífera generado previo a la fase final de colisión entre Laurencia y Gondwana creando la sutura orogénica en el Pérmico temprano (ca. 281 Ma). En línea punteada delgada se presenta la configuración geográfica actual de Norteamérica. Abreviaturas = Ac: Complejo Acatlán, CA: Andes Colombianos, ChB: Bloque de Chortís, CB-D: Bloque Coahuila-Delicias, DSB: Bloque Del Sur (Ac+Oax), F: Florida, FB: Bloque El Fuerte, M: Terreno Mérida, MCh: Macizo de Chiapas, Oax: Complejo Oaxaca, Tam: Bloque Tampico, YB: Bloque Yucatán-Chiapas.

Por otro lado, en el noreste, centro y sur de México el arco continental permo-triásico nombrado arco del Este de México (Torres et al., 1999) está relacionado a una zona de subducción con vergencia hacia el este en el margen oeste de Pangea (Torres et al., 1999; Schaaf et al., 2002; Weber et al., 2005, 2007; Ratschbacher et al., 2009) pero es establecido en corteza gondwánica. Algunos trabajos proponen que pudiera extenderse probablemente hasta el noroeste de Sudamérica (e.g., Centeno-García y Keppie, 1999), específicamente en Colombia, ya que también han sido reportadas rocas de estas edades en esa parte de la Cordillera (e.g., Pindell y Dewey, 1982; Pindell, 1985; Case et al., 1990). Sin embargo, algunas rocas graníticas permo-triásicas estudiadas en la parte norte de la Cordillera Central de Colombia se cree que han registrado el evento colisional entre Laurencia y Gondwana, completando el ensamble final de Pangea durante el Pérmico temprano (e.g., Restrepo et al., 1978, 1991; González, 2001; Vinasco et al., 2006). Investigaciones más recientes han comprobado la continuación del arco magmático permo-triásico hacia Sudamérica (e.g., Cochrane et al., 2014; Spikings et al., 2015).

La reconstrucción geotectónica hipotética presentada en este estudio para el Permo-triásico en la parte oeste-centro de Pangea (Figura 18) está basada principalmente en los modelos de Dickinson y Lawton (2001), Elías-Herrera y Ortega-Gutiérrez (2002) y Godínez-Urban et al. (2011). Primeramente, el cierre del océano Rhéico durante el Paleozoico tardío, a lo largo de una zona de subducción con orientación aproximadamente ENE-WSW y con dirección hacia el sur, permitió la colisión final entre el sur de Laurencia y el noroeste de Gondwana creando el cinturón orogénico o sutura Ouachita-Marathon-Sonora para lograr el ensamble final de Pangea (e.g., Poole et al., 2005). Esta zona inicial de subducción con dirección hacia el sur puede incluir el arco volcánico Las Delicias del Misisípico tardío-Pérmico temprano que se extinguió justo antes de la colisión final continente-continente entre Laurencia y Gondwana en el Pérmico temprano (ca. 281 Ma). De este evento se tiene registro de algunas rocas ígneas de composición dacítica y granítica del arco Las Delicias que están expuestas localmente dentro del bloque Coahuila (López, 1997). Aunque la secuencia expuesta en Las Delicias es interpretada como de tras-arco, por la presencia de wild-flysch, tiene un alcance estratigráfico hasta el Pérmico tardío (McKee et al., 1988). También se han reconocido rocas meta-volcánicas de edad carbonífera en Yucatán cortadas por algunos pozos de exploración petrolera (Marton y Buffler, 1994). Estas rocas, evidentemente, representan la existencia de un arco magmático de edad carbonífera formado previo a la sutura Ouachita-Marathon-Sonora (e.g., Viele y Thomas, 1989; Marton y Buffler, 1994; López, 1997; Stewart et al., 1999).

Estudios más recientes documentan magmatismo del Pensilvánico temprano en los Altos Cuchumatanes en Guatemala (312 – 317 Ma, Solari et al., 2009) debido a la convergencia oblicua entre Laurencia y Gondwana causada por el desarrollo de una zona de subducción. En este sentido, en el Macizo de Chiapas se han interpretado protolitos de anatexitas del Pérmico temprano (~ 272 Ma, Weber et al., 2007).

En la reconstrucción geotectónica durante el Permo-triásico (Figura 18), las posiciones o paleogeografías de los diferentes bloques corticales que conforman México en la actualidad son inferidas, aunque la posición más probable para estos era que el Bloque Del Sur (DSB), conformado por los Complejos Acatlán (Ac) y Oaxaca (Oax), estaba junto a los Andes Colombianos (CA), mientras que el Bloque de Chortís (ChB) se encontraba localizado más hacia el sur. Por su parte, el sur del bloque Maya (MCh = Macizo de Chiapas) durante ese tiempo estaba localizado al noroeste del margen de Gondwana, encontrándose, hacia el este, junto al terreno Mérida (M) (Andes Paleozoicos), actualmente Venezuela (Alemán y Ramos, 2000 y sus referencias) mientras que al oeste colindaba con el Bloque Tampico. Los Bloques de Yucatán-Chiapas, Coahuila-Delicias y El Fuerte, de afinidad gondwánica, estaban localizados más hacia el norte cerca de la sutura Ouachita-Marathon-Sonora.

Durante la última etapa de la colisión, en el Pérmico temprano, la parte oeste de Pangea experimentó una convergencia con orientación aproximadamente este-oeste generando una nueva zona de subducción con orientación general NW-SE hacia el este consumiendo una placa oceánica (¿Mezcalera?) y permitiendo el establecimiento del arco magmático continental del Este de México (Figura 18). Todas las unidades de basamento precámbrico y paleozoico de México y Centroamérica antes mencionadas estuvieron involucradas dentro de este complejo de subducción (Elías-Herrera y Ortega-Gutiérrez, 2002). Se propone que el arco del Este de México se instauró inicialmente a lo largo del Bloque Tampico marcando un arreglo linear norte-sur (Torres et al., 1999), extendiéndose hacia el sur dentro del Bloque del Sur (Sedlock et al., 1993). Dickinson y Lawton (2001) especularon que el magmatismo pre-jurásico del Bloque de Chortís (Donnelly et al., 1990) podría incluir rocas plutónicas que representarían una extensión hacia el sur del arco permo-triásico del Este de México. Estudios recientes han corroborado esa hipótesis (e.g., Cochrane et al., 2014; Spikings et al., 2015). Posteriormente, el magmatismo cruzó el Macizo de Chiapas, parte del Bloque Yucatán-Chiapas, continuando hacia el norte como un cinturón arqueado de plutones aislados emplazados dentro del Bloque Coahuila-Delicias (Salvador, 1991; Sedlock et al., 1993; López, 1997) y en menor proporción, dentro de corteza Laurenciana, al norte de la sutura Ouachita-Marathon-Sonora, en el estado de Chihuahua (Torres et al., 1999) (Figura 18).

Por su parte, el complejo de subducción de la Mesa Central es un ensamble de depósitos volcanoclásticos, algunos metamorfoseados. Algunos autores le han asignado una edad del Pérmico Inferior (Gursky y Michalzik, 1989; Stewart et al., 1999), pero también se considera una edad triásica basada en zircones detríticos (Barboza-Gudiño et al., 2010). Rocas de este complejo están expuestas al oeste del cinturón plutónico (Figura 18), localizado en "Oaxaquia" (término utilizado para nombrar al ensamble cortical, de afinidad gondwánica, de los Bloques Tampico [Tam] y Bloque Del Sur; Keppie y Ortega-Gutiérrez, 1995; Ortega-Gutiérrez et al., 1995). Otras secuencias, como la Formación Guacamaya de la Sierra Madre Oriental, han sido interpretadas por Dickinson y Lawton (2001) como depósitos de una cuenca antearco asociada con el arco del Este de México. El esquisto Granjeno que incluye rocas serpentinizadas y localmente expuesto en el anticlinorio Huizachal, cerca del borde oeste del Bloque Tampico, podría representar una exposición local del complejo de subducción relacionado con el arco del este de México (Sedlock et al., 1993), ya que ha proporcionado edades del Pérmico tardío (Carrillo-Bravo, 1961).

En conclusión, la ocurrencia de rocas graníticas permo-triásicas en el NW de Sonora nos permite enlazar este evento magmático a nivel cordillerano desde el SW de los Estados Unidos (Nevada-California-Arizona), a través de Sonora, hasta Chihuahua, Coahuila, Puebla, Oaxaca y Chiapas en el norte, centro y sur de México (Torres et al., 1999; Centeno-García y Keppie, 1999; Dickinson y Lawton, 2001; Solari et al., 2001; Weber et al., 2007). Se propone una conexión entre el arco magmático permo-triásico del SW de EUA (e.g., Damon et al., 1981; Barth et al., 1997; Barth y Wooden, 2006) y NW de Sonora (Arvizu et al., 2009a) con el arco triásico del Este de México (Torres et al., 1999) y el arco permo-triásico del sur de México (Torres et al., 1999; Solari et al., 2001; Dickinson y Lawton 2001; Weber et al., 2005, 2007; Kirsch et al., 2012; Ortega-Obregón et al., 2013) enlazando este evento magmático a nivel cordillerano hasta el noroeste de Sudamérica (e.g., Vinasco et al., 2006; Cardona et al., 2010; Spikings et al., 2015). Al igual que otros autores, esto nos lleva a la conclusión de que este cinturón magmático es el resultado de la subducción permo-triásica a lo largo de un margen continental activo establecido después del ensamble final o sutura de Pangea durante la orogenia Ouachita-Marathon-Sonora en el Carbonífero tardío-Pérmico temprano (e.g., Ross, 1986; Torres et al., 1999; Dickinson y Lawton, 2001; Poole et al., 2005) formada por el cierre diacrónico de una cuenca oceánica (i.e., océano Rhéico) entre Laurencia y Gondwana, permitiendo su posterior colisión (Graham et al., 1975; Ross, 1979; Viele y Thomas, 1989; Hatcher, 2002).

Iriondo y Arvizu (2009) plantearon como hipótesis que el magmatismo pérmico comenzó inicialmente en la parte sur de México, donde existían las rocas ígneas más antiguas, y avanzó hacia el norte pasando a través del NW de Sonora y siguiendo el camino a California y Nevada en el SW de EUA, en donde el magmatismo, aparentemente, era más joven. Sin embargo, cabe señalar que nuevas ocurrencias de rocas graníticas en el NW de Sonora (Arvizu et al., 2009a; este estudio y sus referencias) han resultado ser tan antiguas como las del sur de México (~ 284 – 250 Ma) y tan jóvenes como las del arco del SW de EUA (~ 250 – 221 Ma) descartándose esa idea inicial de la migración del magmatismo. De cualquier manera, este arco magmático continental permo-triásico representa un gran evento a nivel cordillerano en el SW de Norteamérica que difiere en tiempo y que es básicamente oblicuo al arco Las Delicias más viejo encontrado en el NE de México (e.g., Iriondo y Arvizu, 2009).

La hipótesis de la migración del magmatismo permo-triásico del sur y centro de México (instaurado dentro de corteza gondwánica) hacia el norte de México y suroeste de Estados Unidos (establecido dentro de corteza laurenciana) claramente ha sido descartada por la existencia de actividad magmática relacionada a subducción, tanto de edad pérmica como de edad triásica en ambas regiones. Incluso a lo largo de todo el margen oeste de Gondwana desde Norteamérica hasta Perú (e.g., Ratschbacher et al., 2009; Cochrane et al., 2014; Spikings et al., 2015).

El modelo más factible para explicar tal coexistencia de edades, tanto en el noroeste de Sonora-suroeste de Estados Unidos (Laurencia) como en el centro-sur de México (Gondwana), lo explica claramente la existencia de un arco continental activo desde el Pérmico temprano al Triásico tardío. El cual podría haber experimentado variaciones periódicas, a lo largo de ca. 60 Ma (284 – 221 Ma), en el ángulo de subducción (e.g., tectonic switching: Collins, 2002), sugiriendo que la variación entre una subducción plana, superficial o poco profunda (flat- slab subduction) y una abrupta (steep-slab subduction) fue espacialmente diacrónica a lo largo del margen cordillerano de Norteamérica. Además, otro factor importante que pudo haber influido fue la geometría de la placa subducida (Mezcalera?), la cual también pudo haber variado espacialmente a lo largo del margen continental cordillerano. Todos estos factores han sido documentados en la mayoría de las tectónicas acrecionales y sistema de arcos magmáticos modernos tales como Los Andes (e.g., Gutscher et al., 2000; Ramos y Folguera, 2008).

 

5. Conclusiones

El descubrimiento del magmatismo permo-triásico en el NW de Sonora, no reconocido anteriormente en la región, se encuentra representado por la ocurrencia de un conjunto de granitoides con edades de cristalización U-Pb en zircón en un rango de 284 – 221 Ma. Este rango indica un intervalo de actividad magmática de aproximadamente 60 Ma, sugiriendo el inicio del arco continental cordillerano en el margen SW de Laurencia en el Pérmico temprano hasta el Triásico tardío.

La mayoría de los análisis de zircón de los granitoides permo-triásicos muestran concentraciones altas de U, sugiriendo que han experimentado pérdida de Pb asociada a los eventos magmáticos posteriores a su emplazamiento presentes en la región de estudio. En el caso de los zircones más viejos, estos representan zircones heredados con edades proterozoicas comunes para el basamento meta-ígneo existente en la región de ~ 1.7 – 1.6 Ga, ~ 1.4 y ~ 1.1 Ga. Claramente estas herencias fueron derivadas de la fusión parcial y/o asimilación de las rocas encajonantes de basamento paleoproterozoico presente localmente en Sierra Los Tanques, lo cual se confirma con las edades proterozoicas obtenidas en estudios recientes de rocas de basamento para la zona de estudio.

Las relaciones bajas de Th/U de los zircones podrían interpretarse como relaciones típicas para zircones metamórficos, pero la morfología prismática típica, además de las texturas internas observadas en las imágenes de catodoluminiscencia indican que la mayoría de los zircones son de origen ígneo con zonaciones oscilatorias típicas de crecimiento magmático.

La ocurrencia del pulso magmático permo-triásico se asocia regionalmente a una zona de debilidad cortical relacionada al basamento paleoproterozoico del Yavapai mexicano en el NW de Sonora. Por lo tanto, su entendimiento es importante para contribuir en el conocimiento de la evolución tectónica del SW de Norteamérica, ya que representa una fuente regional de zircones detríticos (207 – 292 Ma) no reconocida anteriormente para cuencas sedimentarias mesozoicas y cenozoicas en Sonora y sur de Arizona. Su existencia también permite enlazar este evento magmático a nivel cordillerano desde el SW de los Estados Unidos pasando por Sonora en el norte, a través del centro y sur de México, hasta el norte de Sudamérica.

Este cinturón magmático es el resultado de la subducción permo-triásica hacia el este y su existencia representa el inicio del magmatismo cordillerano en el SW de Laurencia establecido a lo largo del borde oeste de Pangea inmediatamente después de culminar su ensamble final. El modelo más factible para explicar la coexistencia de rocas con edades permo-triásicas, tanto en Laurencia como en Gondwana, lo explica claramente la existencia de un arco continental activo inicialmente en el Pérmico temprano hasta el Triásico tardío, experimentando variaciones periódicas en el ángulo de subducción, a lo largo de ca.60 Ma (284 – 221 Ma).

 

Agradecimientos

Harim Arvizu agradece a las instituciones que otorgaron los proyectos de investigación PAPIIT/UNAM (clave IN-116709) y CONACYT (claves CB-82518 y CB-129370), a Alexander Iriondo, por el financiamiento proporcionado para realizar trabajo de campo y estudios de laboratorio. Al CONACYT por la beca otorgada durante la maestría. Agradecimiento especial al compañero y colega Aldo Izaguirre Pompa por el apoyo brindado en las campañas geológicas realizadas en Sierra Los Tanques, NW de Sonora. Se agradece a Luis M. Martínez Torres (Koldo) por el valioso apoyo en campo y valiosa aportación en la cartografía geológica de Sierra Los Tanques. A Luigi Solari, profesor-investigador, y a Carlos Ortega Obregón, técnico del LEI (Laboratorio de Estudios Isotópicos), ambos del CGEO, por la valiosa ayuda y apoyo durante los fechamientos U-Pb en zircones, en lo que respecta a la adquisición de los datos y reducción de los mismos. Se agradece a Luigi Solari por el apoyo ofrecido para obtener imágenes de luz reflejada y transmitida de los zircones. Agradecimiento enorme a Dan Miggins y Heather Lowers del U.S. Geological Survey de Denver por la asistencia en la obtención de imágenes de SEM-Catodoluminiscencia para realizar los estudios de geocronología U-Pb en zircones. Finalmente, Arvizu agradece y aprecia los comentarios, sugerencias y críticas constructivas realizadas por los revisores Bodo Weber y Peter Schaaf, las cuales mejoraron el manuscrito y, de igual manera, a los editores del BSGM por el apoyo logístico brindado para publicar este artículo.

 

Referencias

Ahrens, L.H., Cherry, R.D., Erlank, A.J., 1967, Observations on the Th-U relationship in zircons from granite rocks and from kimberlites: Geochimica et Cosmochimca Acta, 31, 2379-2387.

Alemán, A., Ramos, V.A., 2000, Northern Andes, in 31st International Geological Congress: Rio de Janeiro, Cordani, U.G., Milani, E.J., Thomas-Filho, A., Campos, D.A. (eds.), Tectonic evolution of South America, stInternational Geological Congress, 453-480.

Anderson, J.L., Cullers, R.L., 1999, Paleo-and Mesoproterozoic granite plutonism of Colorado and Wyoming: Rocky Mountain Geology Fall, 34(2), 149-164.

Anderson, T.H., Silver, L.T., 1979, The role of the Mojave-Sonora megashear in the tectonic evolution of northern Sonora, in Anderson, T.H., Roldán-Quintana, J. (eds.), Geology of northern Sonora: Geological Society of America Field Trip Guidebook, 7, 59-68.

Anderson, T.H., Silver, L.T., 2005, The Mojave-Sonora megashear –Field and analytical studies leading to the conception and evolution of the hypothesis, in Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B. (eds.), The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 1-50.

Arvizu-Gutiérrez, H.E., 2012, Magmatismo permo-triásico en el NW de Sonora, México: Inicio de la subducción y maduración de un margen continental activo: Querétaro, México, Universidad Nacional Autónoma de México, Centro de Geociencias, Campus Juriquilla, Tesis de Maestría, 250 p.

Arvizu, H., Iriondo, A., 2011, Estudios isotópicos de Hf en zircones de granitoides pérmicos en el NW de México: Posible evidencia de mezcla de magmas generados a partir de la fusión de múltiples fuentes corticales: Revista Mexicana de Ciencias Geológicas, 28(3), 493-518.

Arvizu, H., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G.D., Solís-Pichardo, G., Foster, D.A., Lozano-Santa Cruz, R., 2009a, Rocas graníticas pérmicas en la Sierra Pinta en el NW de Sonora, México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norte América: Revista Mexicana de Ciencias Geológicas, 26(3), 709-728.

Arvizu, H., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G.D., Foster, D.A., Lozano-Santa Cruz, R., Solís-Pichardo, G., 2009b, Gneises bandeados paleoproterozoicos (~ 1.76 – 1.73 Ga) de la Zona Canteras-Puerto Peñasco: Una nueva ocurrencia de rocas de basamento tipo Yavapai en el NW de Sonora, México: Boletín de la Sociedad Geológica Mexicana, 61(3), 375-402.

Barboza-Gudiño, J.R., Zavala-Monsiváis, A., Venegas-Rodríguez, G., Barajas-Nigoche, L.D., 2010, Late Triassic stratigraphy and facies from northeastern Mexico—Tectonic setting and provenance: Geosphere, 6(5), 621-640.

Barth, A.P., Wooden, J.L., 2006, Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources: The Journal of Geology, 114, 231-245.

Barth, A.P., Tosdal, R.M., Wooden, J.L., 1990, A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California: Journal of Geophysical Research, 95, 20075-20096.

Barth, A.P., Tosdal, R.M., Wooden, J.L., Howard, K.A., 1997, Triassic plutonism in Southern California; southward younging of arc initiation along a truncated continental margin: Tectonics, 6, 290-304.

Bateman, P.C., 1992, Plutonism in the central part of the Sierra Nevada batholith, California: U.S.A, U.S. Geological Survey Professional Paper 1483, 186 p.

Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., 2002, Igneous zircon: trace element composition as an indicator of source rock type: Contributions to Mineralogy and Petrology, 143, 602-622.

Bibikova, E.V., 1984, The most ancient rocks in the USSR territory by U-Pb data accessory zircons, in Kröner, A., Hanson, G.N., Goodwin, A.M. (eds.), Archean Geochemistry, Heidelberg: Springer Verlag, 235-250.

Burchfiel, B.C., Davis, G.A., 1972, Structural framework and evolution of the southern part of the Cordilleran orogen, western United States: American Journal of Science, 272, 97-118.

Burchfiel, B.C., Davis, G.A., 1975, Nature and controls of Cordilleran orogenesis, western United States: Extensions of and earlier synthesis: American Journal of Science, 275A, 363-396.

Burchfiel, B.C., Davis, G.A., 1981, Mojave Desert and environs, in Ernst, W.G. (ed.), The geotectonic development of California: Englewood Cliffs, NJ, Prentice-Hall, 217-252.

Burchfiel, B.C., Cowan, D.S., Davis, G.A., 1992, Tectonic overview of the Cordilleran orogen in the western United States, in Burchfiel, B.C., Lipman, P.W., Zoback, M.L. (eds.), The Cordilleran orogen: conterminous U.S. (Geology of North America): Boulder, Colorado, Geological Society of America, G-3, 407-479.

Busby-Spera, C.J., Mattinson, J.M., Riggs, N.R., Schermer, E.R., 1990, The Triassic-Jurassic magmatic arc in the Mojave-Sonoran Deserts and the Sierran-Klamath region: Similarities and differences in paleogeographic evolution, in Harwood, D.S., Miller, M.M. (eds.), Paleozoic and early Mesozoic paleogeographic relations: Sierra Nevada, Klamath Mountains, and related terranes: Geological Society of America Special Paper 225, 325-337.

Campbell, P.A., Anderson, T.H., 2003, Structure and kinematics along a segment of the Mojave-Sonora megashear: A strike-slip fault that truncates the Jurassic continental magmatic arc of southwestern North America: Tectonics, 22(6), 1-21.

Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J., Weber, M., 2010, Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography: Journal of South American Earth Sciences, 29, 772-783.

Carrillo-Bravo, J., 1961, Geología del anticlinorio de Huizachal-Peregrina al NW de Ciudad Victoria, Tamaulipas: Boletín de la Asociación Mexicana de Geólogos Petroleros, 8, 1-98.

Carson, C.J., Ague, J.J., Grove, M., Coath, C.D., Harrison, T.M., 2002, U-Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica: Earth and Planetary Science Letters, 199, 287-310.

Case, J.E., Shagan, R., Giegengack, R.F., 1990, Geology of the northern Andes: An overview in The Caribbean region: Boulder Colorado, Geological Society of America, The Geology of North America, H, 177-200.

Centeno-García, E., Keppie, J.D., 1999, Latest Paleozoic–Early Mesozoic structures in the central Oaxaca terrane of southern Mexico: Deformation near a triple junction: Tectonopysics, 301, 231-242.

Claesson, S., Vetrin, V., Bayanova, T., Downes, H., 2000, U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia; a record of geological evolution from the Archean to the Paleozoic: Lithos, 51, 95-108.

Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., Chiaradia, M., 2014, Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea: Lithos, 190-191, 383-402.

Collins, W.J., 2002, Hot orogens, tectonic switching, and creation of continental crust: Geology, 30(6), 535-538.

Compston, D.M., 1995, Time constraints on the evolution of the Tennant Creek Block, northern Australia: Precambrian Research, 71, 107-129.

Damon, P.E., Shafiqullah, M., Clark, K.F., 1981, Age trends of igneous activity in relation to metallogenesis in the Southern Cordillera, in Dickinson, W.R., Payne, W.D. (eds.), Relations of Tectonics to Ore Deposits in Southern Cordillera: Arizona Geological Society Digest, 14, 137-154.

Damon, P.E., Clark, K.F., Shafiqullah, M., 1983, Geochronology of the porphyry copper deposits and related mineralization of Mexico: Canadian Journal of Earth Sciences, 20(6), 1052-1071.

Da Silva, L.C., Gresse, P.G., Scheepers, R., McNaughton, N.J., Hartmann, L.A., Fletcher, I., 2000, U-Pb SHRIMP and Sm-Nd age constraints on the timing and sources of the Pan-African Cape Granite Suite, South Africa: Journal of African Earth Sciences, 30, 795-815.

Dickinson, W.R., 1981, Plate tectonics and the continental margin of California, in Ernst, W.G. (ed.), The geotectonic development of California: Englewood Cliffs, NJ, Prentice-Hall, 1-28.

Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, 2(7), 353-368.

Dickinson, W.R., Lawton, T.F., 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico: Geological Society of America Bulletin, 113, 1,142-1,160.

Donnelly, T.W., Horne, G.S., Finch, R.C., López-Ramos, E., 1990, Northern Central America: The Chortis and Maya blocks, in Dengo, G., Case, J.E. (eds.), The Caribbean region: Boulder, Colorado, Geological Society of America, Geology of North America, H, 37-76.

Dunne, G.C., Saleeby, J.B., 1993, Kern plateau shear zone, southern Sierra Nevada–New data concerning age and northward continuation: Geological Society of America Abstracts with Programs, 25(5), 33.

Eichhorn, R., Loth, G., Holl, R., Finger, F., Schermaier, A., Kennedy, A., 2000, Multistage Variscan magmatism in the central Yauern Window (Austria) unveiled by U/Pb SHRIMP zircon data: Contributions to Mineralogy and Petrology, 139, 418-435.

Elburg, M.A., 1996, U-Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite: Evidence for magma mingling: Contributions to Mineralogy and Petrology, 123, 177-189.

Elías-Herrera, M., Ortega-Gutiérrez, F., 2002, Caltepec fault zone: An early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlan complexes, southern Mexico, and regional tectonic implications: Tectonics, 21, 1-19.

Godínez-Urban, A., Lawton, T.F., Molina-Garza, R.S., Iriondo, A., Weber, B., López-Martínez, M., 2011, Jurassic volcanic and sedimentary rocks of the La Silla and Todos Santos Formations, Chiapas: Record of Nazas arc magmatism and rift-basin formation prior to opening of the Gulf of Mexico: Geosphere, 7, 121-144.

González, H., 2001, Mapa Geológico del departamento de Antioquia, Escala 1:400000: Medellín, Memoria explicative, Ingeominas.

Goodge, J.W., Vervoort, J.D., 2006, Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence: Earth and Planetary Science Letters, 243, 711-731.

Graham, S.A., Dickinson, W.R., Ingersoll, R.V., 1975, Himalayan-Bengal model for flysch dispersal in the Appalachian-Ouachita system: Geological Society of America Bulletin, 86, 273-286.

Gursky, H.J., Michalzik, D., 1989, Lower Permian turbidites in the northern Sierra Madre Oriental, Mexico: Zentralblatt für Geologie und Palaöntologie (Teil 1), 1989, 821-838.

Gutiérrez-Coronado, A., Iriondo, A., Rodríguez-Castañeda, J.L., Wooden, J.L., Budahn, J.R., Lozano-Santa Cruz, R., Hernández-Treviño, T., 2008, Paleoproterozoic gneises of the San Luisito Hills in NW Sonora: Extending the Mexican Yavapai province of SW Laurentia: Geological Society of America Abstracts with Programs, 40, 144.

Gutmann, J.T., 1976, Geology of Crater Elegante, Sonora, Mexico: Geological Society of America Bulletin, 87, 1718-1729.

Gutmann, J.T., 1977, Textures and genesis of phenocryst and megacryst in basaltic lavas from the Pinacate volcanic field: American Journal of Science, 277, 833-861.

Gutmann, J.T., 1979, Structure and eruptive cycle of cinder cones in the Pinacate volcanic field and the control of strombolian activity: Journal of Geology, 87, 448-454.

Gutmann, J.T., 1986, Origin of four and five phase ultramafic xenoliths from Sonora, Mexico: American Mineralogy, 71, 1076-1084.

Gutmann, J.T., 2002, Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico: Journal of Volcanology and Geothermal Research, 113, 345-356.

Gutmann, J.T., Turrin B.D., Dohrenwend J.C., 2000, Basaltic rocks from the Pinacate volcanic field yield notably young 40Ar/39Ar ages: EOS, Transactions American Geophysical Union, 81, 33-37.

Gutscher, M., Spakman, W., Bijwaard, H., Engdahl, E., 2000, Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin: Tectonics, 19, (5), 814-833.

Harley, S.L., Kinny, P.D., Snape, I., Black, L.P., 2001, Zircon chemistry and the definition of events in Archaean granulite terrains, in Cassidy, K.F., Dunphy, J.M., van Kranendonk, M.J. (eds.), Extended Abstracts of 4thInternational Archaean Symposium: AGSO-Geoscience Australia Record 2001/37, Canberra, 511-513.

Harley, S.L., Kelly, N.M., Möller, A., 2007, Zircon Behaviour and the Thermal Histories of Mountain Chains: Elements, 3, 25-30.

Hatcher, R.D., 2002, Alleghanian (Appalachian) orogeny, a product of zipper tectonics: Rotational transpressive continent-continent collision and closing of ancient oceans along irregular margins, in Martínez-Catalán, J.R., Hatcher, R.D., Arenas, R., Díaz-García, F. (eds.), Variscan-Appalachian dynamics: The building of the Late Paleozoic basement: Geological Society of America Special Paper 364, 199-208.

Haxel, G.B., Tosdal, R.M., May, D.J., Wright, J.E., 1984, Latest Cretaceous and early Tertiary orogenesis in south-central Arizona: Thrust faulting, regional metamorphism, and granitic plutonism: Geological Society of America Bulletin, 95, 631-653.

Hidaka, H., Shimizu, H., Adachi, M., 2002, U-Pb geochronology and REE geochemistry of zircons from Paleoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan, Evidence for an Archean provenance: Chemical Geology, 187, 279-293.

Hoskin, P.W.O., Black, L.P., 2000, Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, 18, 423-439.

Hoskin, P.W.O., Ireland, T.R., 2000, Rare earth element chemistry of zircon and its use as a provenance indicator: Geology, 28, 627-630.

Hoskin, P.W.O., Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis, in Hanchar, J.M., Hoskin, P.W.O. (eds.), Zircon: Reviews in Mineralogy and Geochemistry, 53, 27-62.

Iriondo, A., 2001, Proterozoic basements and their Laramide juxtaposition in NW Sonora, Mexico: Tectonic constraints on the SW margin of Laurentia: Boulder, Colorado, University of Colorado, Ph.D. Thesis, 222 p.

Iriondo, A., 2005, The Caborca oroclinal bend: A testable hypothesis to explain the NW-SE geological trend of Paleoproterozoic provinces in the Mexican SW Laurentia: GEOS, Unión Geofísica Mexicana, A.C., Resúmenes y Programa, 25(1), 85.

Iriondo, A., 2007, Precambrian geology in NW Mexico: New ideas for the distribution of Paleoproterozoic crustal provinces in SW Laurentia in Symposium Ores & Orogenesis: Circum-Pacific Tectonics, Geologic Evolution and Ore Deposits: Tucson, Arizona (Abstract 256).

Iriondo, A., Arvizu, H., 2009, Permian (~ 275 – 258 Ma) granitic magmatism in NW Sonora, Mexico: The missing link to a large continental arc event in SW North America, in Geological Society of America, South-Central Section, in 43rdAnnual Meeting: Dallas, Texas, USA, Geological Society of America, Abstracts with Programs, 41(2), 35.

Iriondo, A., Premo, W.R., 2010, Las rocas cristalinas proterozoicas de Sonora y su importancia para la reconstrucción del margen continental SW de Laurencia—la pieza mexicana del rompecabezas de Rodinia, in Calmus, T. (ed.), Panorama sobre la geología de Sonora, México: Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118(2), 25-55.

Iriondo, A., Premo, W.R., Martínez-Torres, L.M., Budahn, J.R., Atkinson, W.W., Jr., Siems, D.F., Guarás-González, B., 2004, Isotopic, geochemical and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwestern Sonora, Mexico: Implications for the reconstruction of the southwestern margin of Laurentia: Geological Society of America Bulletin, 116, 154-170.

Iriondo, A., Martínez-Torres, L.M., Kunk, M.J., Atkinson, W.W., Jr., Premo, W.R., McIntosh, W.C., 2005, Northward Laramide thrusting in the Quitovac region, northwestern Sonora, Mexico: Implications for the juxtaposition of Paleoproterozoic basement blocks and the Mojave-Sonora megashear hypothesis, in Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B. (eds.), The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 631-669.

Iriondo, A., Kamenov, G.D., Foster, D.A., 2008, The Sierra Los Tanques ~ 1.1 Ga Granite in NW Sonora: Another example of Mesoproterozoic plutonism along the Mexican Yavapai province, in 2008 Joint Meeting, Geological Society of America, eeting, Abstract with Programs, 145, 144.

Izaguirre-Pompa, A., 2006, Estudio petrológico y geocronológico del volcanismo orogénico intermedio-ácido de edad oligo-mioceno del norte de Caborca, Sonora, México: Hermosillo, Sonora, Universidad de Sonora, Departamento de Geología, Tesis de Licenciatura, 94 p.

Izaguirre-Pompa, A., 2009, El basamento paleoproterozoico (~ 1.71 – 1.68 Ga) Yavapai en el área Mina La Herradura en el NW de Sonora: Sus implicaciones para el desarrollo del arco magmático continental Mesozoico-Cenozoico del NW de México: Juriquilla, Querétaro, Universidad Nacional Autónoma de México, Centro de Geociencias, Tesis de Maestría, 202 p.

Izaguirre, A., Iriondo, A., Wooden, J.L., Budahn, J.R., Schaaf, P., 2008, Paleoproterozoic orthogneisses from the Cerro Prieto area—a new addition to the Mexican Yavapai province in NW Sonora, in Joint Annual Meeting, Geological Society of America Abstracts with Programs, 40(6), 143-144.

Karlstrom, K.E., Bowring, S.A., 1988, Early Proterozoic assembly of tectonostratigraphic terranes in southwestern North America: Journal of Geology, 96, 561-576.

Karlstrom, K.E., Bowring, S.A., 1993, Proterozoic orogenic history of Arizona, in Van Schmus, W.R. (another 24 eds.), Transcontinental Proterozoic provinces, in Reed, J.C., Jr., Bickford, M.E., Houston, R.S., Link, P.K., Rankin, D.W., Sims, P.K., Van Schmus, W.R. (eds.), Precambrian: Conterminous U.S: Geological Society of America, The Geology of North America C-2, 188-211.

Karlstrom, K.E., Bowring, S.A., Conway, C.M., 1987, Tectonic significance of an Early Proterozoic two-province boundary in central Arizona: Geological Society of American Bulletin, 9, 529-538.

Kelly, N.M., Harley, S.L., 2005, An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica: Contributions to Mineralogy and Petrology, 149, 57-84.

Keppie, J.D., Ortega-Gutiérrez, F., 1995, Provenance of Mexican terranes: Isotopic constraints: International Geology Reviews, 37, 813-824.

Kirsch, M., Keppie, J.D., Murphy, J.B., Solari, L., 2012, Permian–Carboniferous arc magmatism basin evolution along the western margin of Pangea: geochemical and geochronological evidence from the eastern Acatlan Complex, southern Mexico: Geological Society of America Bulletin, 124, 1607-1628.

Kistler, R.W., Peterman, Z.E., 1973, Variations in Sr, Rb, K, Na, and initial 87Sr/86Sr in Mesozoic granitic rocks and intruded wall rocks in central California: Geological Society of America Bulletin, 84, 3489-3512.

Klötzli, U.S., 1999, Th/U zonation in zircon derived from evaporation analysis: A model and its implications: Chemical Geology, 158, 325-333.

Kröner, A., O'Brien, P.J., Nemchin, A.A., Pidgeon, R.T., 2000, Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes: Contributions to Mineralogy and Petrology, 138, 127-142.

Li, X., Li, Z.X., Zhou, H., Liu, Y., Kinny, P.D., 2002, U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China; implications for the initial rifting of Rodinia: Precambrian Research, 113, 135-154.

Li, Z.X., Li, X., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003, Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia: Precambrian Research, 122, 85-109.

Li, Z.X., Bogdanova, S.V., Collins, A.S., Davison, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, 160, 179-210.

Liu, Q., Wu, Z., Hu, D., Ye, P., Jiang, W., Wang, Y., Zhang, H., 2004, SHRIMP U-Pb zircon dating on Nyainqentanglha granite in central Lhasa block: Chinese Science Bulletin, 49, 76-82.

López, R., 1997, High-Mg andesites from the Gila Bend Mountains: Evidence for hydrous melting of the lithosphere during Miocene extension, and the pre-Jurassic geotectonic evolution of the Coahuila terrane, northeastern Mexico: Grenville basement, a late Paleozoic arc, Triassic plutonism, and the events south of the Ouachita suture: Santa Cruz, California, University of California, Ph.D. thesis, 147 p.

Lund, K., Aleinikoff, J.N., Kunk, M.J., Unruth, D.M., Zeihen, G.D., Hodges, W.C., du Bray, E.A., O'Neill, J.M., 2002, SHRIMP U-Pb and 40Ar/39Ar age constraints for relating plutonism and mineralization in the Boulder Batolith region, Montana: Economic Geology, 97, 241-267.

Lyakhovich, V.V., 1973, Rare elements in the accessory minerals of the granitoids: Nedra, Moscow, 309 p.

Lynch, D.J., 1981, Genesis and geochronology of alkaline volcanism in the Pinacate volcanic field, northwestern Sonora, México: Tucson, University of Arizona, Ph.D. Thesis, 250 p.

Lynch, D.J., Musselman, T.E., Gutmann, J.T., Patchett, P.J., 1993, Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico: Lithos, 29, 295-302.

Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W., 1992, The Earth's oldest known crust: A geochronological and geochemical study of 3900 – 4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia: Geochimica et Cosmochimica Acta, 56, 1281-1300.

Marton, G., Buffler, R.T., 1994, Jurassic reconstruction of the Gulf of Mexico basin: International Geology Review, 36, 545-586.

McKee, W.J., Jones, W.N., Anderson, H.T., 1988, Las Delicias Basin, a record of Late Paleozoic arc volcanism in northeastern Mexico: Geology, 16, 37-40.

Miller, C.F., Wooden, J.L., Gerber, M.E., 1992, Plutonism at a tectonically evolving continent margin, Mesozoic granitoids of the eastern Mojave Desert, California, USA (Abstracts), in 29thInternational Geological Congress: 29, 519.

Miller, J.S., Glazner, A.F., Walker, J.D., Martin, M.W., 1995, Geochronologic and isotopic evidence for Triassic-Jurassic emplacement of the eugeoclinal allochton in the Mojave Desert region, California: Geological Society of America Bulletin, 107, 1441-1457.

Möller, A., O'Brien, P.J., Kennedy, A., Kröner, A., 2003, Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultra high temperature granulites of Rogaland (SW Norway), in Vance, D., Müller, W., Villa, I.M. (eds.), Geochronology: Linking the Isotopic Record with Petrology and Textures: Geological Society of London Special Publication 220, 65-81.

Muir, R.J., Ireland, T.R., Weaver, S.D., Bradshaw, J.D., 1996, Ion microprobe dating of Paleozoic granitoids: Devonian magmatism in New Zealand and correlations with Australia and Antartica: Chemical Geology, 127, 191-210.

Nourse, J.A., Premo, W.R., Iriondo, A., Stahl, E.R., 2005, Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora-Arizona international border region, in Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B. (eds.), The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 123-182.

Ortega-Gutiérrez, F., Ruiz, J., Centeno-García, E., 1995, Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic: Geology, 23, 1127-1130.

Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., 2013, Permian–Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana: International Journal of Earth Sciences, 103(5), 1287-1300.

Pidgeon, R.T., Macambria, M.J.B., Lafon, J.M., 2000, Th-U-Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajas province, Brazil: Evidence for the ages of granulite facies metamorphism and the protolith of the enderbite: Chemical Geology, 166, 159-171.

Pindell, J.L., 1985, Alleghanian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto-Caribbean: Tectonics, 4, 1-39.

Pindell, J.L., Dewey, J., 1982, Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region: Tectonics, 1, 179-212.

Poole, F.G., Perry, W.J., Jr., Madrid, R.J., Amaya-Martínez, R., 2005, Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate tectonic model, in Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B. (eds.), The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 543-596.

Ramos, V.A., Folguera, A., 2008, Andean flat-slab subduction through time, in Murphy, J.B., Keppie, J.D., Hynes, A.J. (eds.), Ancient Orogens and Modern Analogues: Geological Society of London Special Publication 327, 31-54.

Ratschbacher, L., Franz, L., Min, M., Bachmann, R., Martens, U., Stanek, K., Stübner, K., Nelson, B.K., Herrmann, U., Weber, B., López-Martínez, M., Jonckheere, R., Sperner, B., Tichomirowa, M., Mcwilliams, M.O., Gordon, M., Meschede, M., Bock, P., 2009, The North American-Caribbean plate boundary in Mexico-Guatemala-Honduras, in James, K.H., Lorente, M.A., Pindell, J.L. (eds.), "The Origin and Evolution of the Caribbean Plate": Geological Society of London, 219-293.

Restrepo, J., Toussaint, J., González, H., Linares, E., 1978, Datación de metasedimentos del grupo Ayura-Montebello: Medellín, Universidad Nacional de Colombia, Publicación Especial Geology, 10, 1-5.

Restrepo, J., Toussaint, J., González, H., Cordani, U., Kawashita, K., Linares, E., Parila, C., 1991, Precisiones geocronológicas sobre el occidente colombiano, en Simposio sobre magmatismo andino y su marco tectónico, Volumen 1, Manizales, Colombia, 1-22.

Riggs, N.R., Ash, S.R., Barth, A.P., Gehrels, G.E., Wooden, J.L., 2003, Isotopic age of the Black Forest Bed, Petrified Forest Member, Chinle Formation, Arizona: An example of dating a continental sandstone: Geological Society of America Bulletin, 115, 1315-1323.

Roldán-Quintana, J., McDowell, F.W., Delgado-Granados, H., Valencia-Moreno, M., 2009, East-west variations in age, chemical and isotopic composition of the Laramide batholith in southern Sonora, Mexico: Revista Mexicana de Ciencias Geológicas, 26, 543-563.

Ross, C.A., 1979, Late Paleozoic collision of North and South America: Geology, 7, 41-44.

Ross, C.A., 1986, Paleozoic evolution of southern margin of Permian basin: Geological Society of America Bulletin, 97, 536-554.

Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism: Chemical Geology, 184, 123-138.

Saleeby, J.B., Busby-Spera, C.J., 1992, Early Mesozoic tectonic evolution of the western U.S. Cordillera, in Burchfiel, B.C., Lipman, P.W., Zoback, M.L. (eds.), The Cordilleran orogen: Boulder, Colorado, conterminous, U.S. Geology of North America, Geological Society of America, G-3, 107-168.

Salvador, A., 1991, Origin and development of the Gulf of Mexico basin, in Salvador, A. (ed.), The Gulf of Mexico basin: Boulder, Colorado, Geological Society of America, Geology of North America, J, 389-444.

Schaaf, P., Weber, B., Weis, P., Groß, A., Ortega-Gutiérrez, F., Kohler, H., 2002, The Chiapas massif (Mexico) revised: New geologic and isotopic data and basement characteristics: Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 225(1), 1-23.

Schweickert, R.A., Lahren, M.M., 1993, Triassic-Jurassic magmatic arc in eastern California and western Nevada: Arc evolution, cryptic tectonic breaks, and significance of the Mojave-Snow Lake fault, in Dunne, G.C., McDougall, K.A. (eds.), Mesozoic Paleogeography of the western United States, Volume II: Los Angeles, Pacific Section, Society of Economic Paleontologists and Mineralogists (Society for Sedimentary Geology), Book 71, 653-676.

Sedlock, R.L., Ortega-Gutiérrez, F., Speed, R.C., 1993, Tectonostratigraphic terranes and tectonic evolution of Mexico: Geological Society of America Special Paper 278, 153 p.

Servicio Geológico Mexicano (SGM), 2002, Carta Geológico-Minera Puerto Peñasco H12-1, Sonora, escala 1:250000.

Silver, L.T., Anderson, T.H., 1974, Possible left-lateral early to middle Mesozoic disruption of the southwestern North American Craton margin: Geological Society of America Abstracts with Programs, 6, 955-956.

Singh, S., Barley, M.E., Brown, S.J., Jain, A.K., Manickavasagam, R.M., 2002, SHRIMP U-Pb in zircon geochronology of the Chor granitoid: Evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India: Precambrian Research, 118, 285-292.

Snow, J.K., Asmeron, Y., Lux, D.R., 1991, Permian-Triassic plutonism and tectonics, Death Valley region, California and Nevada: Geology, 19, 629-632.

Solari, L.A., Dostal, J., Ortega-Gutiérrez, F., Keppie, J.D., 2001, The 275 Ma arc-related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry: Revista Mexicana de Ciencias Geológicas, 18, 149-161.

Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Schaaf, P., Norman, M., Torres De León, R., Ortega-Obregón, C., Chiquin, M., Morán-Ical, S., 2009, U-Pb zircon geochronology of Paleozoic units in Western and Central Guatemala: insights into the tectonic evolution of Middle America, in James, K., Lorente, M.A., Pindell, J. (eds.), Origin and evolution of the Caribbean Plate: Geological Society of London, 328 (Special Publications), 293-311.

Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., Beate, B., 2015, The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290 – 75 Ma): Gondwana Research, 27, 95-139.

Stewart, J.H., 1976, Late Precambrian margin of North America: Plate tectonic implications: Geology, 4, 11-15.

Stewart, J.H., 1988, Latest Proterozoic and Paleozoic southern margin of North America and the accretion of Mexico: Geology, 16, 186-189.

Stewart, J.H., Anderson, T.H., Haxel, G.B., Silver, L.T., Wrigth, J.E., 1986, Late Triassic paleogeography of the southern Cordillera: The problem of a source for voluminous volcanic detritus in the Chinle Formation of the Colorado Plateau region: Geology, 14, 567-570.

Stewart, J.H., Blodgett, R.B., Boucot, A.J., Carter, J.L., López, R., 1999, Exotic Paleozoic strata of Gondwanan provenance near Ciudad Victoria, Tamaulipas, Mexico, in Ramos, V.A., Keppie, J.D. (eds.), Laurentia-Gondwana connections before Pangea: Geological Society of America Special Paper 336, 227-252.

Thrane, K., 2002, Relationships between Archean and Paleoproterozoic crystalline basement complexes in the southern part of the East Greenland Caledonides: An ion microprobe study: Precambrian Research, 113, 19-42.

Torres, R., Ruiz, J., Patchett, P.J., Grajales, J.M., 1999, Permo-Triassic continental arc in eastern México: Tectonic implications for reconstructions of southern North America, in Bartolini, C., Wilson, J.L., Lawton, T.F. (eds.), Mesozoic Sedimentary and Tectonic History of North-Central Mexico: Geological Society of America Special Paper 340, 191-196.

Valencia-Moreno, M., Ruiz, J., Barton, M.D., Patchett, P.J., Zurcher, L., Hodkinson, D.G., Roldán-Quintana, J., 2011, A chemical and isotopic study of the Laramide granitic belt of Northwestern Mexico: Identification of the southern edge of the North American Precambrian basement: Geological Society of America Bulletin, 113(11), 1409-1422.

Vavra, G., Schmid, R., Gebauer, D., 1999, Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps): Contributions to Mineralogy and Petrology, 134, 380-404.

Velázquez-Santelíz, A.F., 2014, Efecto del basamento proterozoico sobre el magmatismo de arco cordillerano del SW de Norte América: Estudios en Sierra San Francisco, NW de Sonora: Nuevo León, México, Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, Linares, Tesis de Licenciatura 153 p.

Vidal-Solano, J.R., Demant, A., Paz-Moreno, F.A., Lapierre, H., Ortega-Rivera, M.A., Lee, J.K.W., 2008, Insights into the tectonomagmatic evolution of NW Mexico: Geochronology and geochemistry of the Miocene volcanic rocks from the Pinacate area, Sonora: Geological Society of America Bulletin, 120, 691-708.

Viele, G.W., Thomas, W.A., 1989, Tectonic synthesis of the Ouachita orogenic belt, in Hatcher, R.D., Jr., Thomas, W.A., Viele, G.W. (eds.), The Appalachian-Ouachita orogenic belt in the United States: Boulder, Colorado, Geological Society of America, Geology of North America, F-2, 695-728.

Vinasco, C.J., Cordani, U.G., González, H., Weber, M., Pelaez, C., 2006, Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes: Journal of South American Earth Sciences, 21, 355-371.

Wang, X., Griffin, W.L., Chen, J., Huang, P., Li, X., 2011, U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: Improved zircon-melt distribution coefficients: Acta Geologica Sinica, 85(1), 164-174.

Weber, B., Cameron, K.L., Osorio, M., Schaaf, P., 2005, A late Permian tectonothermal event affected former Grenville crust in the southern Maya terrane: U-Pb zircon ages from the Chiapas massif, SE Mexico: International Geology Review, 47, 509-529.

Weber, B., Iriondo, A., Premo, W.R., Hecht, L., Schaaf, P., 2007, New insights into the history and origin of the southern Maya block, SE Mexico: U-Pb-SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif: International Journal of Earth Sciences, 96, 253-269.

Wilde, S.A., Youssef, K., 2000, Significance of SHRIMP U-Pb dating of the Imperial Porphyry and associated Dokhan Volcanics, Gebel Dokhan, north Eastern Desert, Egypt: Journal of African Earth Sciences, 31, 403-413.

Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago: Nature, 409, 175-178.

Williams, I.S., Claesson, S., 1987, Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: Contributions to Mineralogy and Petrology, 97, 205-217.

Wooden, J.L., Miller, D.M., 1990, Chronologic and isotopic framework for Early Proterozoic crustal evolution in the eastern Mojave Desert region, southeastern California: Journal of Geophysical Research, 95, 20,133-20,146.

Young, D.N., Fanning, C.M., Shaw, R.D., Edgoose, C.J., Blake, D.H., Page, R.W., Camacho, A., 1995, U-Pb zircon dating of tectonomagmatic events in the northern Arunta Inlier, central Australia: Precambrian Research, 71, 45-68.

Zhai, M., Ni, Z., OH, C., Guo, J., Choi, S., 2005, SHRIMP zircon age of a Proterozoic rapavaki granite batholite in the Gyeonggi massif (South Korea) and its geological implications: Geological Magazine, 142, 23-30.

Zheng, Y.F., Fu, B., Li, Y., 1999, Hydrogen and oxygen isotope evidence for fluid–rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains: Science in China, Ser. D (in Chinese), 29(2), 113.

Zhou, M., Yan, D., Kennedy, A.K., Li, Y., Ding, J., 2002, SHRIMP U-Pb geochronology and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China: Earth and Planetary Science Letters, 196, 51-67.

 

1. Muestreo y preparación para análisis geocronológicos

Con base en el estudio cartográfico realizado para reconocer las diferentes unidades geológicas, se realizó un extenso muestreo de las rocas representativas de la Sierra Los Tanques para llevar a cabo estudios geocronológicos. Las muestras se procesaron en los laboratorios del Centro de Geociencias (CGEO), UNAM, Campus Juriquilla, Querétaro (Taller de Molienda, Laboratorio de Separación de Minerales, etc.).

 

2. Preparación y caracterización de zircones para análisis geocronológicos U-Pb

Los zircones fueron obtenidos de muestra de roca pulverizada usando una combinación de técnicas convencionales de separación magnética y líquidos pesados empleadas en el Laboratorio de Separación Mineral del Centro de Geociencias, UNAM, Campus Juriquilla, Querétaro. Alrededor de cien granos de zircón de cada muestra fueron seleccionados cuidadosamente bajo un microscopio binocular con la finalidad de asegurarnos que los cristales fueran representativos de varias poblaciones de zircones (tamaño, forma y color) para después ser montados en una resina epóxica y, posteriormente, desbastados hasta exponer una superficie lo más cercana posible a la mitad ecuatorial de los zircones. Antes de los análisis in situ por ablación láser, las superficies pulidas de los granos de zircón fueron fotografiadas en el Denver Microbeam Laboratory del U.S. Geological Survey en Denver, Colorado, usando un microscopio electrónico de barrido (SEM; Scanning Electron Microscope) marca JEOL 5800LV con detector de cátodoluminiscencia (imágenes SEM-CL). También se obtuvieron imágenes de luz reflejada y transmitida utilizando un microscopio óptico convencional marca Olympus en el Centro de Geociencias, UNAM. Las imágenes de cátodoluminiscencia, luz reflejada y transmitida fueron obtenidas con el propósito de caracterizar la estructura interna de los zircones y elegir los sitios potenciales para los análisis de U-Pb, observando el zoneamiento relacionado a los cambios de composición química de los zircones para poder detectar posibles inclusiones, sobrecrecimientos metamórficos o herencias que cambiarían el sentido de la interpretación de los datos analíticos. Esta es una herramienta ventajosa para interpretar las edades obtenidas.

 

3. Geocronología U-Pb en zircones por LA-ICP-MS

Los análisis isotópicos de U-Pb en zircones fueron realizados en el Laboratorio de Estudios Isotópicos (LEI) en el Centro de Geociencias (CGEO), UNAM, Campus Juriquilla, Querétaro, utilizando la técnica de ablación láser (LA-ICP-MS). En la actualidad, está técnica de microanálisis y fechamiento es ventajosa ya que permite hacer mediciones isotópicas de alta precisión y rapidez para obtener edades y concentraciones geoquímicas en materiales geológicos.

El LEI cuenta con un sistema de ablación láser modelo Resolution M50 de la marca "Resonetics" compuesto por un láser LPX 220 tipo excímero de 193 nm de longitud de onda utilizando una mezcla de fluoruro de argón (ArF) para generar la pulsación. Este se encuentra acoplado a un espectrómetro de masas (ICP-MS) tipo quadrupolo marca "Thermo X-Series". El sistema fue recientemente descrito por Solari et al.(2010), quienes presentaron la metodología para los análisis isotópicos U(Th)-Pb en zircones. Sin embargo, a continuación presentamos de manera breve la metodología básica utilizada en el LEI.

Previo a la medición isotópica, las muestras (probeta con zircones) se limpiaron con HNO3 1M con la finalidad de eliminar o minimizar cualquier posible contaminación por la presencia de Pb común en la superficie de los granos. La ablación láser se realiza en una celda de nueva generación de doble volumen que puede alojar hasta 4 probetas con muestras. Los cristales de zircón fueron ablacionados dentro de esta celda en una atmósfera de He, la cual proporciona una condición óptima para este proceso (Horn y Günther, 2003). Primeramente, el haz del láser incide sobre la superficie del cristal con una energía de ~ 130 – 140 mJ y a una tasa de repetición de 5 Hz creando un hoyo provocado por la volatilización de un área del zircón (spot o punto de análisis) de ~ 33 µm de diámetro y de ~ 25 µm de profundidad para obtener un total de ~ 75 – 85 ng de masa ablacionada durante cada análisis. La ablación se lleva a cabo por alrededor de 30 segundos con el fin de minimizar la profundidad del hoyo de ablación y, de la misma manera, el fraccionamiento elemental. Posteriormente, el material ablacionado (vaporizado) es evacuado de la celda de ablación y transportado al espectrómetro de masas en un flujo de He y N2mezclado con gas Ar (flujos de gas optimizados diariamente) para después ser analizado.

En el caso de los análisis en zircones, una secuencia típica de medición por ablación láser en el LEI inicia con el análisis de dos muestras de referencia certificada (vidrios estándar NIST SRM 610), seguido por cinco análisis de material de referencia natural cuya composición y/o edad han sido ya publicadas (zircón estándar Pleŝovice; Sláma et al., 2008) y finalmente cinco zircones de edad desconocida. Posteriormente, se hace una medición de esta muestra natural de zircón estándar Pleŝovice después de cada cinco mediciones en muestras desconocidas. El experimento finaliza con dos zircones estándar y un vidrio NIST. Esta secuencia es de gran importancia y conocida como un método estándar para poder realizar la corrección por fraccionamiento de masa y deriva instrumental (e.g., Jackson et al., 1992, 1996; Gehrels et al., 2008; Solari et al., 2010). Los análisis del vidrio NIST son utilizados para calcular las concentraciones correctas de U y Th, además de las otras concentraciones de elementos traza y tierras raras medidas durante cada análisis, mientras que los análisis del estándar de zircón Pleŝovice son usados para recalcular las relaciones isotópicas.

La calibración de los datos y correcciones por deriva instrumental (drift) fueron basadas en los estándares de zircón Pleŝovice obtenidos de una granulita potásica que tiene una edad 206Pb/238U concordante con una media ponderada de 337.13 ± 0.37 Ma obtenida utilizando la técnica de dilución isotópica y espectrometría de masas por ionización térmica (ID-TIMS) (Sláma et al., 2008).

Los datos isotópicos fueron adquiridos utilizando el software analítico Thermo PlasmaLab con resolución temporal, permitiendo que las relaciones isotópicas sean calculadas de los datos adquiridos en un intervalo de tiempo específico.

Durante el análisis de cada zircón los isótopos de interés principal para el fechamiento U-Pb como 206Pb, 207Pb, 208Pb, 232Th y 238U fueron determinados, además de otros isótopos importantes como 29Si, 31P, 49Ti, 89Y, 91Zr, 139La, 140Ce, 147Sm, 153Eu, 163Dy, 175Lu y 177Hf. Por ejemplo, el silicio y el zirconio son usados como elementos estándar internos para la cuantificación del contenido de elementos traza, considerando su concentración estequiométrica en el zircón, mientras que elementos como el P, Ti e Y, además de algunas tierras raras, son monitoreados como indicadores de la presencia de inclusiones dentro de los zircones (p.ej., monazita, apatito o titanita), las cuales podrían modificar las relaciones U(Th)-Pb del zircón y proporcionar edades equívocas y mediciones erróneas como en el caso de la presencia de Pb común.

Debido a que el trabajo analítico requiere de una precisa y sistemática reducción de los datos, cálculo de edades y concentraciones elementales de los zircones analizados, en el LEI (UNAM) se ha desarrollado el software "UPb.age" para facilitar a los usuarios una rápida y transparente reducción de datos para los fechamientos U(Th)-Pb por LA-ICPMS (Solari y Tanner, 2011). "UPb.age" fue escrito en R, un software libre de lenguaje y entorno de programación para análisis estadístico y gráfico. Un sencillo script llamado "file.trans" es distribuido junto con el "UPb.age", el cual convierte los datos producidos de los análisis por ablación láser grabados por el Thermo PlasmaLab (csv, comma- separated-value) a un formato de archivo uniforme que pude leer fácilmente el "UPb.age".

Con una serie de comandos introducidos por el usuario, el "UPb.age" aplica diferentes correcciones y, además, recalcula las relaciones U(Th)-Pb, errores y coeficientes de correlación. El "UPb.age" realiza automáticamente el proceso de integración de las señales del ICP-MS y su respectiva corrección por blancos. También identifica, mediante regresión matemática, posibles outlierse inclusiones y los presenta para que éstos sean evaluados por el usuario. El software también ofrece la capacidad de corrección por deriva instrumental usando un modelo linear.

Los resultados y datos generados de los análisis isotópicos después de los diferentes pasos realizados en el proceso de reducción utilizando el "UPb.age" son automáticamente guardados como archivos csv (data.csv y results.csv). Estos archivos contienen información importante como, por ejemplo, las relaciones corregidas de 207Pb/235U, 206Pb/238U, 208Pb/232Th y 207Pb/206Pb con sus respectivos errores estándar reportados a 1 sigma.

Los archivos csv fueron procesados en un programa macro (in house) de Excel desarrollado en el LEI, el cual permite al operador ordenar automáticamente los datos, hacer una corrección por Pb común y generar una tabla de datos lista para publicar con las relaciones isotópicas y edades; también como recalcular las concentraciones de elementos traza y mayores de los zircones analizados y producir un diagrama de REE normalizado a condrita con los datos obtenidos. Las relaciones isotópicas son corregidas por Pb común utilizando la metodología algebraica propuesta por Andersen (2002) para recalcular posteriormente las edades obtenidas. Las edades fueron calculadas y graficadas en diagramas de concordia usando el programa computacional Isoplot 3.0 (add inpara Excel) (Ludwig, 2003).

 

4. Imágenes de Cátodoluminiscencia de zircones

La caracterización de zircones por técnicas de microscopía de luz transmitida y reflejada, además de Cátodoluminiscencia (Cathodoluminescence; CL), es fundamental para poder diseñar los experimentos de geocronología de U-Pb en zircones utilizando la técnica LA-MC-ICPMS (Laser Ablation-Multi-collector-Inductively Coupled Plasma Mass Spectrometry) y/o SHRIMP-RG (Sensitive High Resolution Ion Micro Probe-Reverse Geometry; Micro Sonda Iónica de Alta Resolución Sensible de Geometría Inversa).

La CL a partir de zircones montados en probetas de resina epóxy doblemente pulidas nos permite obtener imágenes de zoneamientos minerales del zircón, que en ocasiones, por si solos, proporcionan información fundamental para entender los procesos de formación de los mismos. Por ejemplo, es posible identificar semillas dentro de los granos únicos de zircón, que de forma preliminar se pueden interpretar como herencia de zircones más antiguos en los que se han nucleado nuevas generaciones de zircón. En ocasiones, también se aprecian bandeados de crecimiento característicos de zircones generados a partir de magmas. Por último, también se pueden observar recrecimientos de zircón que pudieran indicar recrecimientos asociados a metamorfismo. En ocasiones, estas relaciones de crecimiento de zircones nos permiten establecer la edad relativa de estos; sin embargo, son necesarios los fechamientos de U-Pb para establecer la edad absoluta de los mismos.

La cátodoluminiscencia es una herramienta importante en la geocronología U-Pb en zircones ya que el estudio de estas imágenes ayudan a decidir el lugar en donde se muestreará el zircón (núcleo o periferia, etc.), ya sea por la técnica de ablación láser o por la técnica de microsonda iónica.

En el siguiente apartado de geocronología se muestran imágenes de cátodoluminiscencia de algunos zircones para cada muestra de roca fechada de la Sierra Los Tanques, NW de Sonora, donde se presenta el lugar de ablación y la edad para ese punto en el zircón.

Las imágenes fueron tomadas en el U.S. Geological Survey de Denver, Colorado, utilizando un microscopio electrónico de barrido (SEM) marca JEOL modelo 5600. Estos estudios fueron supervisados por la Dra. Heather Lowers con ayuda de Dr. Daniel Miggins, ambos empleados del U.S. Geological Survey.

 

Referencias

Andersen, T., 2002, Correction of common lead in U-Pb analyses that do not report 204Pb: Chemical Geology, 192, 59-79.

Gehrels, G.E., Valencia, V.A., Ruiz, J., 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry: Geochemistry, Geophysics, Geosystems, 9(3), 1-13.

Horn, I., Günther, D., 2003, The influence of ablation carrier gasses Ar, He, and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS: Applied Surface Science, 207, 144-157.

Jackson, S.E., Longerich, H.P., Dunning, R., Fryer, B.J., 1992, The application of laser-ablation microprobe-inductively coupled plasma mass spectrometry LAM-ICP-MS to in situ trace element determinations in minerals: Canadian Mineralogist, 30,1049-1064.

Jackson, S.E., Longerich, H.P., Horn, I., Dunning, R., 1996, The application of laser ablation microprobe (LAM)-ICP-MS to in situ U-Pb zircon geochronology: Journal of Conference Abstracts, 1, 283.

Ludwig, K.R., 2003, ISOPLOT, A geochronological toolkit for Microsoft Excel, Version 3.00: Berkeley Geochronology Center Special Publication 4, 70 p.

Sláma, J., Koŝler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008, Pleŝovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, 249, 1-35.

Solari, L.A., Tanner, M., 2011, UPb.age, a fast data reduction script for LA-ICP-MS U-Pb geochronology: Revista Mexicana de Ciencias Geológicas, 28(1), 83-91.

Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., Tanner, M., 2010, U-Pb zircon geochronology by an integrated LA-ICPMS microanalytical workstation: achievements in precision and accuracy: Geostandards and Geoanalytical Research, 34(1), 5-18.


Anexo. Suplemento electrónico. Técnicas analíticas.

Tabla SE1. Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.


Tabla SE1. (Continuación). Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.

 

Tabla SE1. (Continuación). Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.

Tabla SE1. (Continuación). Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.

 

Tabla SE1. (Continuación). Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.

 

Tabla SE1. (Continuación). Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.

Tabla SE1. (Continuación). Datos analíticos de U-Th-Pb obtenidos por LA-ICP-MS en zircones de granitoides permo-triásicos de Sierra Los Tanques, NW Sonora, México.

#Las concentraciones de U y Th (ppm) son calculadas con relación al análisis del vidrio estándar NIST 612.
Relaciones isotópicas corregidas con relación al análisis de un zircón estándar de edad conocida PLE, Plešovice = ~ 337 Ma; [Sláma et al., 2008; (anexo)] aplicando el método de Andersen (2002) para la corrección de Pb común.
*Todos los errores en las relaciones isotópicas y edades están reportados a nivel 1 sigma con la excepción de la edad media ponderada reportada a 2σ. (abs) = valor absoluto
**Porcentaje de discordancia obtenido con la ecuación ([(edad 207Pb/235U – edad 206Pb/238U)/(edad 207Pb/235U)]*100) propuesta en Ludwig (2003); anexo. Valores positivos indican discordancias normales y valores negativos discordancias inversas.
Las edades en negritas representan las edades utilizadas para calcular la edad media ponderada.


 

Manuscrito recibido: Febrero 7, 2015
Manuscrito corregido recibido: Julio 10, 2015
Manuscrito aceptado: Julio 15, 2015

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 509-516

http://dx.doi.org/10.18268/BSGM2015v67n3a13

pH dependence of Glyphosate adsorption on soil horizons

Hector R. Tévez1, Maria dos Santos Afonso2,*

 

1 Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero. Avenida Belgrano Sur 1912. 4200 Santiago del Estero, Argentina.
2 INQUIMAE, Facultad de Ciencias Exactas y Naturales- Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, 3er Piso, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Pesticides bring many problems to the environment and to human health. The first rationale for their use is increased food production. Glyphosate N-(phosphonomethyl)glycine (PMG) is a non-selective, post emergent, and broad spectrum herbicide, very well known for its extensive application in agriculture worldwide. PMG adsorption experiments were carried out in three horizons of a Typic Haplustoll soil from the Province of Santiago del Estero, Argentina.

Adsorption isotherms were fitted using Freundlich and Langmuir models. The affinity constants (KF and KL), the adsorption intensity (1/n) and the maximum surface coverage (Γmax) were obtained. The results show the dependence of the parameters KL and Γmaxwith pH and also with the different horizons and particle size.

Keywords: Glyphosate, Adsorption isotherm, horizon, profile.

 

Resumen

Los pesticidas producen muchos problemas al ambiente y a la salud humana. La primera racionalización que considera el aumento en su aplicación es incrementar la producción de alimentos. El glifosato, N-fosfonometilglicina (PMG) es un herbicida no selectivo, post-emergente y de amplio espectro que es de uso extensivo en agricultura a nivel mundial. La adsorción de PMG fue llevada a cabo en tres horizontes de un suelo de la Provincia de Santiago del Estero, Argentina, clasificado como Haplustol Típico.

Las isotermas de adsorción fueron ajustadas utilizando los modelos de Freundlich y de Langmuir. Se determinaron las constantes de afinidad (KF y KL), la intensidad de adsorción (1/n) y el recubrimiento superficial máximo (Γmax). Los resultados muestran la dependencia con el pH de los parámetros de KL y Γmax así como con la identidad de los horizontes y el tamaño de partícula.

Palabras clave: Glifosato, isoterma de adsorción, horizonte, perfil.

 

1. Introduction

In the last century the Province of Santiago del Estero, Argentina, lost more than 80 % their natural forest as a result of irrational logging. In the arid soil of the province, agriculture replaced forests. Soybean cultivation was developed at the expense of others crops, native forests and livestock (Pérez-Carrera et al., 2008).

Pesticides are chemicals widely used in agriculture and their use increase with the increasing of crop areas. In particular, glyphosate (N-phosphonomethylglycine, PMG) is used to remove annual grasses and perennial broadleaf weeds and woody species in agricultural, forestry and landscape. Thus, PMG is a non selective, post-emergent and broad-spectrum commercial herbicide used worldwide in soybean agriculture. In the soil, the main way of PMG degradation is microbial mediated, considering that abiotic mineralization of PMG for the horizon A exceeds 1 % reaching a maximum of 12 % degradation for 60 days exposure (Jacobsen et al., 2008).

PMG exhibits fast vertical mobility in soil, reaching high concentrations in deeper horizons where degradation is slower (Veiga et al., 2001).

PMG is a good chelating agent and can coordinate metal ion in aqueous solution, especially at near-neutral pH levels where carboxylate and phosphonate chemicals groups are deprotonated forming strong complexes (Barja et al., 2001). It can also be retained in the soil through adsorption onto aluminum and iron oxides (Nowack and Stone, 1999; Barja and dos-Santos-Afonso, 2005), clays (Damonte et al., 2007; Khoury et al., 2010 and references cited therein) and organic matter (Sposito, 1984; Piccolo et al., 1996).

The PMG adsorption on soils or clays was studied by several authors (Nomura and Hilton, 1977; McConnell and Hossner, 1985; Morillo et al., 2000; Sheals et al., 2002; Pessagno et al., 2008). In all the cases, adsorption decreased with a pH increase following an anionic adsorption behavior.

The study of competitive adsorption between PMG and phosphate on iron oxides had shown that PMG could be exchanged by phosphate (McBride and Kung, 1989; Gimsing and Borggaard, 2001), but the exchange on clays or soils is not so easy to characterize (Dion et al., 2001). When the initial phosphate level is high the glyphosate sorption decreases (Dion et al., 2001).

Thus, the surface coverage and the affinity constants for adsorption on iron oxides are higher than on clays minerals or soils, but the experimental results suggest that phosphonate is the liable chemical group for the surface coordination through inner-sphere surface complexes formation (dos-Santos-Afonso et al., 2004; Pessagno et al., 2005, 2008; Tévez et al., 2008). Previous studies on the surface coverage and the adsorption isotherms of this herbicide on soil fractions from different provinces of Argentina (Santa Cruz, Misiones, and Corrientes) followed similar patterns to those of the pure minerals that form these soils (Pessagno et al., 2005).

The aim of this work is to study the adsorption of PMG onto three different horizons of soils from Santiago del Estero Province, Argentina, with different mineral composition to understand how the mineral composition and pH are controlling the environmental fate of glyphosate.

 

2. Materials and methods

2.1. Chemicals

All chemicals utilized were of analytical reagent grade and were used without further purification. All solutions and soil dispersions were prepared using Milli-Q water.

PMG solutions were fresh and prepared daily by dissolving the herbicide in Milli-Q water. All PMG solution concentrations ranged from 0.05 to 10 mM.

 

2.2. Study area

The study area is located near Quimili in the center-east of Santiago del Estero Province between 62º 06´ W and 61º 52´ W and, 27º 24´ S and 28º 00´ S (Figure 1). Climate is semiarid mesothermal, with an average annual temperature of 19.6 °C and rainfall of between 600 and 750 mm per year concentrated in the spring-summer period (Torres-Bruchman, 1981).

The sampling area is a soil catena corresponding to that found in recent agriculture (9 years) and low for ancient agriculture (25 – 27 years).

The soil is derived from loessic sediments and it is located at a depression relief, and classified as Typic Pachic Haplustoll with grasslands, Elionurus muticus (Lorenz et al., 2000).

Samples were taken up to 130 cm of depth (Figure 2.A) from three very well differenced horizons classified as Ap (0 – 18 cm), AB (18 – 50 cm) and BC (105 – 130 cm). The Ap is the uppermost mineral horizon, disturbed by plowing or other agricultural practices. AB and BC are transitional horizons, wherein the horizon properties are dominated by horizon A properties but also have characteristics of B horizon (AB) or by horizon B properties but also have characteristics of C horizon (BC). The soil at depths between 50 and 105 cm has intermediate characteristics varying in a continuous from AB to BC and was not considered in this study. An schematic top view of pit trial is shown in Figure 2.B, each horizon was sampled at three different places indicated as 1, 2 and 3, and afterward they were mixed to get one sample per horizon.

Figure 1. Map of South America, Argentina and Santiago del Estero Province. The sampling area near Quimilí City is represented by .

 


Figure 2. A: Pit profile from where samples were taken and B: schematic top view of trial pits and sampling site.

 

2.3. Characterizations

The fresh soil samples were air-dried and ground to pass a sieve of 2 mm. pH was measured in 0.01 M CaCl2 solution at 1:2.5 ratio of soil suspension (Hendershot et al., 1993; Schlichting et al., 1995) using a combined glass electrode. Organic matter (OM) content and soils chemical analysis were determined by the dichromate oxidation method (Schlichting et al., 1995). The available phosphorus (P) is the inorganic P, that is extractable at pH 8.5 and was determined following the experimental procedure described in Olsen et al., 1954 and Page et al., 1982. The total surface area (Sw) was measured by H2O adsorption (Torres-Sánchez and Falasca, 1997). The total iron oxides (Fetot) and amorphous iron oxides (Feamorph) were established by dithionite (Holmgren, 1967) and oxalate method (McKeague, 1967), respectively.

Soils samples were mixed with Lithium Metaborate/Lithium Tetraborate (LiBO2 /Li2B4O7) and fused in a furnace. The molten melt was completely dissolved in acidic media of 5 % nitric acid. This solution was analyzed for major and selected trace elements by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES) The sample composition are reported as oxide percentage.

The mineralogical composition and quantitative analysis of the soils were determined by X-ray Diffraction (XRD) and using the Rietveld method (Rietveld, 1969).

Point of zero net proton charge (PZNPC) or point zero salt effect (PZSE) is the pH where the net adsorption of protons and hydroxyl ions on the surfaces is independent of electrolyte concentration. Titration curves, when surface charge is plotted against pH, frequently showed a common intersection point that match with PZNPC.

PZNPC was determined by potentiometric titration of soils dispersions starting from natural pH values near neutrality and by adding increasing amounts of standardized NaOH or HCl 0.1 M at different initial ionic strength (0.1, 0.01 and 0.0012 M KCl) under N2 atmosphere. Soils dispersions were prepared using Milli-Q water free of CO2, and treated by continuous bubbling of N2, for at least one hour before starting the titrations. The extent of adsorbed H+ and OHby soil material was determined by subtracting the quantity of HCl or NaOH required to bring the dispersion and the electrolyte solution without soil to the same pH. The surface charge was calculated as follows:

(1)

 

where Q, VTit, Vb, [tit] and m are the surface charge, the volume of titrant used for dispersion titration, the volume of titrant used for electrolyte titration, titrant concentration and the mass of the solid, respectively.

2.4. Adsorption experiment

The adsorption of herbicide by the soils was studied using batch experiments. Solutions of different concentration of glyphosate in a final volume of 11 mL were added to 0.100 g of soil samples dispersions. Dispersions were kept in constant agitation overnight at constant pH, ionic strength and room temperature to reach equilibrium. pH was adjusted during the experiment using small aliquots of HCl or NaOH solutions (0.10 M) and ionic strength was kept constant (0.1 M) using a KNO3 solution. The sample was filtered through a 0.45 μm membrane and adsorbed glyphosate was calculated from the difference between the total added ligand and the supernatant concentration (Ce). PMG was evaluated by ion chromatography (Zhu et al., 1999) using a DIONEX DX-100 instrument with a conductivity detector, a sample injection valve, and a 25 μL sample loop. Two plastic anion columns were coupled in series to serve both as pre-column (DIONEX AG-4) and analytical chromatographic column (DIONEX AS-4). The suppressor was regenerated with 50 mM H2SO4 with a flow rate of 12.5 mL.min-1. A mixture of NaOH/CO3-2 4 mM/9 mM was chosen as eluent with a flow rate of 1 mL.min-1. The typical experimental error is lower than 5 % for all results.

 

2.5. pH effect

The pH dependence of the glyphosate uptake by soil horizons was investigated using batch isotherm experiments in a pH range from 2 to 8 with a soil concentration of 9.1 g.L-1 and different initial concentrations of PMG at a constant ionic strength of 0.1 M of KNO3. The pH was measured using a Metrohm 644 pH-meter with a combined glass microelectrode, and the pH was adjusted throughout the experiments using 0.1 M HCl or 0.1 M NaOH. Adsorption experiments were conducted in triplicate following the procedure described above. There were no significant differences within each replicate (p < 0.01). The expressed values represent the average of the obtained results.

 

2.6. Isotherms Modeling

The relationship between the ligand uptake and the sorbate equilibrium concentration at constant temperature is known as the adsorption isotherm. The adsorbent capacity of a certain material is related to the material balance adsorption: the sorbate that disappears from solution must be in the adsorbent. There are a considerable number of expressions that describe adsorption isotherms and between them, Freundlich and Langmuir models were chosen and applied for describing the equilibrium data.

 

2.6.1. Freundlich Model

The Freundlich isotherm fits many soil adsorption systems and is represented by equation (2):

 

Γe=KF*Ceq1/n (2)

 

where, Γe is adsorption per unit area of adsorbent; KF is the Freundlich constant indicating the relative adsorption capacity while 1/n is the index of the heterogeneity of the surface or the adsorption intensity and Ceqis the equilibrium concentration of adsorbate in solution.

 

2.6.2. Langmuir Model

The Langmuir isotherm is a well known model that indicates a decrease of the available surface sites as the adsorbent concentration increases. The Langmuir isotherm assumes monolayer adsorption:

(3)

 

where Γ is the amount of glyphosate adsorbed (µmol.m-2), Γmax is the maximum amount of glyphosate adsorbed on the surface (µmol.m-2) at a fixed pH and temperature, KL is the Langmuir adsorption constant (mM-1) which is related to the free energy of the reaction and Ce is the equilibrium concentration of herbicide in the solution (mM). In other words, Γmaxis the concentration of PMG surface saturation.

 

3. Results and Discussion

Soil characteristics, chemical analysis, mineralogical composition and quantitative analysis are presented in Table 1, 2 and 3 respectively. XRD of the three soil horizons are shown in Figure 3.


Figure 3. XRD of the three soil horizons. Q: Quartz, Ar: Clay, F: Feldspar, Mt: Magnetite.

 

Table 1. Characteristics of agriculture soils profile from Santiago del Estero/Argentina.

 

 

Table 2. Chemical Analysis of agriculture soils profile from Santiago del Estero, Argentina.


 

Table 3. Mineralogical Composition of agriculture soils profile from Santiago del Estero, Argentina. Values in parenthesis represent estimated standard deviations.

 

The experimental curves of PZNPC recorded for the BC horizon are illustrated in Figure 4. Similar behavior was found for all the horizons that showed PZNPC values in the range of 7.1 – 8.1 (Table 1) following the sequence: Ap<AB<BC. PZNPC value can be explained by the absence of clay minerals with a negative permanent charge, while the presence of 2:1 clays shift the PZNPC to lower pH values (Table 3).


Figure 4. Potentiometric titration curves of the dispersions of the BC horizon at three ionic strengths (I = ½ Σi cizi2).

 

The higher PZNPC value for the horizons corresponds to horizon BC that contains similar amount of quartz, lower amount of feldspars (andesine) and high amount of illite. PZNPC increase with andesine feldspar content and OM decrease. The determination coefficients of a linear fit were R2andesine = 0.9971 and R2OM = 0.9189. The analysis of the three parameters variations in a 3D plot presented a determination coefficient of R2= 1.0000 and a constant variance test of p < 0.0001.

To describe the adsorption behavior Freundlich and Langmuir models were applied to the equilibrium data.

The PMG adsorption isotherms of soils dispersions equilibrated at different pH values are shown in Figure 5. The Freundlich model parameters values (KFand 1/n ) were calculated using equation 2 and are given in Table 4. The 1/n values vary between 0.1 and 1, which indicates that this model could be used for interpreting the data. The correlation between experimental and calculated curves had a p-level between 0.137 and 0.0035; the determination coefficients were between 0.7578 and 0.9953 for different pHs and horizons.

Figure 5. Adsorption isotherm of PMG on horizon Ap, AB and BC. Solid lines are calculated using Langmuir model with constants and maximum surface coverage detailed in Table 5. ●: pH 2, :pH 3,♦: pH 4, : pH 5, : pH 6 and : pH 8.

 

Table 4. Freundlich parameters (In μmol1-1/n.m-2) for glyphosate adsorption on Santiago del Estero Province soils.

 

Table 5. Langmuir parameters for PMG adsorption on soils of Santiago del Estero Province, Argentina

 

The Langmuir model was also applied to make an interpretation of PMG adsorption isotherms on soils dispersions equilibrated at different pH values. This is shown in Figure 5, where solid lines are calculated using this model (equation 3) and Γmax and KL, are given. The isotherm model parameters were obtained by a non-linear optimization using the Solver-Excel tool. The parameters values were obtained from the plot of the inverse of the surface coverage as a function of the inverse of the equilibrium concentration. Results of the adsorption and surface coverage calculations were normalized with Sw data and the various horizons were contrasted. The correlation between experimental and calculated curves had a p-level between 0.050 and 0.001; the determination coefficients (R2) obtained were between 0.9300 and 0.9999; and were higher than those obtained using the Freundlich model. Thus, the Langmuir model would better represent the adsorption process of PMG on the Santiago del Estero Province soil.

The dependence of the surface coverage with PMG concentration in the various horizons at constant pH = 5 is shown in Figure 6. Horizon Γmaxsequence is Ap<AB <BC. This behavior is similar to those found for PZNPC.


Figure 6. Adsorption isotherm of PMG on horizon Ap, AB and BC at pH 5.

 

The dependence of the surface coverage with pH in the various horizons is also shown in Figure 5. The adsorption capacity increases from pH 8 to 2. This pH effect was normally observed during the adsorption of anionic species. Consequently, PMG interaction with the surface occurs throughout the anionic chemical groups (carboxylate or phosphonate) and not through the amine group (pKa = 10.14) that is positively charged at the studied pH range (Figure 7).


Figure 7. PMG acid-base equilibrium.

 

The surface coverage decrease, ΔΓmax, for horizon Ap is around 41 % for this pHs range (Table 5). This difference is lower for horizons BC, 27 %, and AB, 12 %.

The different composition and properties of the soils (Table 1), will affect sorption of the sorbate. This variability may also be linked to the organic matter content (Table 1) because of the chemical groups present on the OM (carboxyl, hydroxyl, amine, phenoxy, etc) that can coordinate the solid inorganic surface active sites or block the access of PMG to the inorganic surface. In consequence, OM presence can reduce PMG adsorbed on the solid surface. In fact, Γmax varies linearly with OM content with determination coefficients among R2pH = 2 = 0.9548 and R2pH = 8= 1.0000. The affinities of the substances involved in the adsorption process are dependent on the identity and number of chemical groups present on the OM.

The highest adsorption capacity is obtained by horizon BC followed by horizon AB, and the lowest for horizon Ap. A similar sequence was obtained for PZNPC (Table 1), indicating that the horizon with higher positive surface charge presents higher PMG surface coverage.

The ratio of the Γmax of the horizons (RH1/H2) was calculated as follow

(4)

 

where H1 and H2 denote two different horizons, ΓmaxH1 and ΓmaxH2 indicate the maximum coverage of H1 and H2 horizons, respectively. This ratio between the horizons BC and AB was RBC/AB = 46 %, between horizons BC and Ap was RBC/Ap = 72 % and between horizon AB and Ap was RAB/Ap = 50 %. These percentages are opposed to the phosphate content that follows the order of Ap> AB> BC. The high adsorption on deep horizons with regard to horizon Ap could be due to the competition of herbicide with phosphate groups for surface sites (Dion et al., 2001; Gimsing et al., 2007). Adsorption of glyphosate and phosphate in soil is similar to that which occurs on clay minerals (Dion et al., 2001; Gimsing and dos-Santos-Afonso, 2005).

The highest adsorption constants correspond to horizon AB (Table 5). The changes in the adsorption affinity between horizon BC and AB reach ∆KL= 46 % while horizon BC decreases 73 % in respect to horizon Ap.

The relatively high phosphate and low surface area (Table 1) of the Ap horizon, could be the cause for which it reaches its maximum at relatively low concentrations of PMG adsorption. The greater slope of the adsorption curves in the AB horizon indicate that PMG binds more strongly to the active sites of this horizon. Previous studies indicated that PMG bound iron oxides surfaces more strongly than clay minerals (dos-Santos-Afonso et al., 2004). Thus, the active site of PMG adsorption on the AB horizon could be the surface iron atoms and the higher adsorption in this horizon is directly related to higher iron content.

The adsorption on horizon BC does not reach maximum coverage in the experimental conditions. The adsorption isotherms with a low initial slope describe an adsorption process with characteristic adsorption constants of low energy interaction (Figure 5).

Note that in the working pH range an acid-base dissociation of the PMG molecule that contains amine, carboxylate, and phosphonate functional groups take place The constant and the equilibrium reactions of acid-base dissociation of glyphosate (Barja and dos-Santos-Afonso, 1998) are shown in Figure 7, where I, II and III are the main species presents in the studied pH range. Previous studies suggested that the adsorption process occurs by surface complex formation via phosphonate group coordination to the mineral surface (Barja and dos-Santos-Afonso, 2005; Khoury et al., 2010). Similar behavior should be expected for the adsorption of PMG on soils where coordination would occur on the surface of the minerals that compose them.

 

4. Conclusions

The major factor in PMG adsorption on soil samples is given by the pH, which could be due to the influence of this parameter on the PMG molecule and on the surface charge of the soil particles. PMG adsorption increase with acidity, and this increase correspond to the adsorption of a ligand with a negative net charge.

Sorption of glyphosate in soils is similar to the adsorption of the organic molecule on the soil components such as clay minerals, iron oxides and OM. For these soils with a low organic matter contents and/or similar amounts of clay in the various horizons, the adsorption would be determined by the content of phosphorus, iron oxide and the specific surface. Regarding the relative adsorption capacity of the soil, the adsorption process has a different behavior profile, where the deeper horizon (BC) has a higher capacity retention for this herbicide. The lower adsorption in the AB and Ap horizons could be influenced by the higher content of phosphorus. However, the strength of the interaction, as given by the Langmuir Model Constant KLis larger on horizon AB and would be linked to the illite and iron oxide content that have a better distribution in AB.

It should be noted that the Langmuir adsorption model is the best fit to the adsorption experimental results in these soils, although the Freundlich model has a good fit for some pHs.

Given the adsorption extent found in this study, it is expected that pesticides will be retained in these soils. This strong interaction could prevent the pesticides movement into the groundwater. On the other hand, this retention rate could result in the release of the herbicide on the environment due to displacement by runoff.

 

Acknowledgements

The authors acknowledge the Universidad de Buenos Aires, Secretaría de Ciencia y Técnica and MINCyT- ANPCyT- FONCyT for financial support. The authors are also grateful to Susana Conconi and Jorge Maggi from Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC) for Rietveld analysis of soils.

 

References

Barja, B., dos-Santos-Afonso, M., 1998, An ATR-FTIR study of glyphosate and its Fe(III) complex in aqueous solution: Environmental Science and Technology, 32, 3331-3335.

Barja, B., dos-Santos-Afonso, M., 2005, Aminomethylphosphonic acid and Glyphosate adsorption onto goethite: a comparative study: Environmental Science and Technology, 39, 585-592.

Barja, B., Herszaje, J., dos-Santos-Afonso, M., 2001, Iron (III)-phosphonate complexes: Polyhedron, 20, 1821-1830.

Damonte, M., Torres-Sánchez, R., dos-Santos-Afonso, M., 2007, Some aspects of the glyphosate adsorption on montmorillonite and its calcined form: Applied Clay Science, 1-3(36), 86-94.

Dion, H., Harsh, J., Hill Jr., H., 2001, Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils: Journal of Radioanalytical and Nuclear Chemistry, 249(2), 385-390.

dos-Santos-Afonso, M., Barja, B., Pessagno, R., Tevez, H., 2004, Glyphosate adsorption on soils, in Division of Environmental Chemistry, New York, USA.: American Chemical Society.

Gimsing, A., Borggaard, O., 2001, Effect of KCl and CaCl2as background electrolytes on the competitive adsorption of glyphosate and phosphate on goethite, Clays Clay Minerals, 49, 270-275.

Gimsing, A., dos-Santos-Afonso, M., 2005, Glyphosate, in Nowack, B., VanBriesen, J. (ed.), Biogeochemistry of Chelating Agents: ACS Symposium Series, USA, 910, 263-277.

Gimsing, A., Szilas, C., Borggaard, O., 2007, Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania, Geoderma, 138, 127-132.

Hendershot W.H., Lalande, H., Duquette, M., 1993, Soil reaction and exchangeable acidity: In Carter M.R. (ed), Soil sampling and methods of analysis: Lewis Publishers, Boca Raton, 141-145.

Holmgren, G., 1967, A rapid citrate-dithionite extractable iron procedure: Soil Science Society of America Journal, 31, 210-211.

Jacobsen, C.S., van der Keur, P., Ivensen, B.V., Rosenberg, P., Barlebo, H.C., Torp, S., Vosgerau, H., Juhler, R.K., Ernstsen, V., Rasmussen, J., Brinch, U.C., Jac, O.H., 2008, Variation of MCPA, metribuzine, methyltriazine-amine and glyphosate degradation, sorption, mineralization and leaching in different soil horizons: Environmental Pollution, 3(156), 794-802.

Khoury, G., Gehris, T., Tribe, L., Torres-Sánchez, R.M., dos-Santos-Afonso, M., 2010; Glyphosate adsorption on montmorillonite: An experimental and theoretical study of surface complexes: Applied Clay Science, 2(50), 167-175.

Lorenz, G., Bonelli, C., Roldán, S., Araya, C., 2000, Soil quality changes due to land use in a Kastanozem-Phaeozemsoilscape of semiarid Chaco: Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 92, 169-172.

McKeague, J.A., 1967, An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils: Canandian Journal of Soil Science, 47, 2, 95-99.

McBride, M., Kung, K., 1989, Complexation of glyphosate and related ligands with iron (III): Soil Science Society of America Journal, 53, 1668-1673.

McConnell, J., Hossner, L., 1985, pH-dependent adsorption isotherms of glyphosate: Journal of Agricultural Food Chemistry, 33, 1075-1078

Morillo, E., Undabeytia, T., Maqueda, C., Ramos, A., 2000, Glyphosate adsorption on soils of different characteristics. Influence of copper addition: Chemosphere, 40, 103-107.

Nomura, N., Hilton, H., 1977, The adsorption and degradation of glyphosate in five. Hawaiian sugarcane soils: Weed Research, 17, 113-121.

Nowack, B., Stone, A., 1999, Adsorption of phosphonates onto the goethite-water interface: Journal of Colloid Interface Science, 214, 23-30.

Olsen, S., Cole, C., Watanabe, F., Dean, L., 1954, Estimation of available phosphorous in soils by extraction with sodium bicarbonate, United States of America, Department of Agriculture.

Page, A., Miller, R., Keeney, D., 1982, Part 2: Chemical and microbiological properties, in Methods of soil analysis, Madison, Wisconsin, USA.

Pérez-Carrera, A., Moscuzza, C., Fernández-Cirelli, A., 2008, Efectos socioeconómicos y ambientales de la expansión agropecuaria. Estudio de caso: Santiago del Estero, Argentina. Ecosistemas 17(1), 5-15.

Pessagno, R., dos-Santos-Afonso, M., Torres-Sánchez, R., 2005, N-(phosphonomethyl)glycine interactions with soil: The Journal of Argentine Chemical Society. Anales de la Asociación Química Argentina, 4-6(93), 97-108.

Pessagno, R., Torres-Sánchez, R., dos-Santos-Afonso, M., 2008, Glyphosate behavior at soil and mineral-water interfaces: Environmental Pollution, 153, 53-59.

Piccolo, A., Celano, G., Conte, P., 1996, Adsorption of glyphosate by humic substances: Journal of Agricultural and Food Chemistry, 44, 2442-2446.

Rietveld, H.M., 1969, A profile refinement method for nuclear and magnetic structures: Journal Applied Crystallography, 2, 65-71.

Schlichting, E., Blume, H., Stahr, K., 1995, Soils Practical, Wissenschafts-Verlag Blackwell, Berlin, Germany, 295 p.

Sheals, J., Sjöberg, S., Persson, P., 2002, Adsorption of glyphosate on goethite: molecular characterization of surface complexes: Environmental Science and Technology, 36, 3090-3095.

Sposito, G., 1984, The surface chemistry of soils: Oxford University Press, New York, 234 p.

Tévez, H., dos-Santos-Afonso, M., Alvarez-Escalada, F.C., Serrano, M., Ruiz-Mostacero, N., 2008, Glifosato en fracciones de suelo de la provincia de Santiago del Estero, in V Congreso Iberoamericano de Física y Química Ambiental, Mar del Plata, Buenos. Aires, Argentina.

Torres-Bruchman, E., 1981, Climatología general y agrícola de la Provincia de Santiago del Estero, Ed. Universidad Nacional de Tucumán.

Torres-Sánchez, R., Falasca, S., 1997, Specific surface area and surface charges of some argentinian soils: Zeitschrift für Pflanzenernährung und Bodenkunde, 160, 223-226.

Veiga, F., Zapata, J., Marcos, M., Alvarez, E., 2001, Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain: Science of the Total Environment, 271, 135-144.

Zhu, Y., Zhang, F., Tong, C., Liu., W., 1999, Determination of glyphosate by ion chromatography: Journal of Chromatography, 850, 297-301.


 

Manuscript received: October 27, 2014
Corrected manuscript received: February 7, 2015
Manuscript accepted: February 10, 2015

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 493-508

http://dx.doi.org/10.18268/BSGM2015v67n3a12

Surface Complexation Modelling of Arsenic and Copper Immobilization by Iron Oxide Precipitates Derived from Acid Mine Drainage

Alba Otero-Fariña1, Raquel Gago2, Juan Antelo2,*, Sarah Fiol1, Florencio Arce1

1 Department of Physical Chemistry, University of Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain.
2 Department of Soil Science and Agricultural Chemistry. University of Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Acid mine drainage (AMD) constitutes a serious environmental problem in mining areas due to the acidification of soils and aquatic systems, and the release of toxic metals. Many of the pollutants that occur in AMD display a high affinity for the surfaces of the aluminium and iron oxides that are typically present in systems affected by AMD. This binding affinity reduces the mobility of trace metals and metalloids, such as copper and arsenic, thus helping to mitigate contamination of aquatic systems. In the present study, water samples and iron-rich bed sediments were collected in areas affected by copper mining activities. A loose ochre-coloured precipitate occurring on the banks of a river close to an abandoned tungsten and tin mine was also sampled. The composition of the precipitate was established, and adsorption experiments were performed with copper and arsenate ions to determine the ability of natural iron precipitates to reduce the concentration of these ions in solution. Surface complexation models provided a good description of the behaviour of natural iron oxides in terms of copper and arsenate retention. Use of this type of model enables prediction of the distribution of pollutants between the solid and solution phases and analysis of their mobility in relation to environmental conditions (pH, ionic strength, presence of competing species, etc.).

Keywords: Acid mine drainage, iron oxides, adsorption, trace elements, arsenic, surface complexation model.

 

Resumen

El drenaje ácido de mina (AMD) constituye un importante problema ambiental debido a la acidificación y la liberación de metales tóxicos que produce en el suelo y en los sistemas acuáticos próximos a las zonas mineras. Existe una elevada afinidad de muchos de los contaminantes presentes en AMD por la superficie de los óxidos de aluminio y hierro que son constituyentes típicos presentes en los sistemas afectados por AMD. Esta afinidad puede contribuir a atenuar la contaminación por metales traza y metaloides, tales como el cobre o el arsénico, en los sistemas acuáticos mediante la reducción de su movilidad. En el presente estudio se han recogido muestras de agua y de sedimentos con alto contenido en hierro en un área afectada por minería de cobre. Además, se recogió un precipitado amarillo de las orillas de un río situado en las proximidades de una antigua mina de wolframio y estaño. Estos precipitados fueron caracterizados para establecer su composición y se realizaron experimentos de adsorción con los iones cobre y arseniato para determinar la capacidad de los precipitados naturales de hierro para reducir su concentración en disolución. Se comprobó que los modelos de complejación superficial son capaces de reproducir el comportamiento de estos precipitados naturales en términos de retención de cobre y arseniato. Estos resultados permitirán predecir la especiación de estos contaminantes en presencia de óxidos de hierro formados en ambientes afectados por AMD y analizar su movilidad en función de las condiciones (pH, fuerza iónica, presencia de especies que compitan, etc.).

Palabras clave: Drenaje ácido de mina, óxidos de hierro, adsorción, elementos traza, arsénico, modelo de complejación superficial.

 

1. Introduction

Mining and processing of mineral ores constitute major sources of contamination in soils, sediments and aquatic systems worldwide. Oxidation of sulphide minerals (mainly iron sulphides such as pyrite, arsenopyrite and chalcopyrite) leads to acid mine drainage (AMD), which causes acidification of surface waters and the release of trace elements into soils and water systems (Bigham and Nordstrom, 2000; Olías et al., 2006; Nordstrom, 2011). Weathering of iron sulphide minerals produces large amounts of secondary iron precipitates, which may contribute to the removal and immobilization of trace elements present in systems affected by AMD (Regenspurg and Peiffer, 2005; Schroth and Parnell, 2005; Acero et al., 2006; Burgos et al., 2012).

The nature and composition of the secondary iron precipitates present in AMD systems is mainly determined by the concentration of sulphate ions and the pH of the aqueous phase (Bigham and Nordstrom, 2000). Thus, schwertmannite, Fe8O8(OH)6(SO4)2, is commonly formed at pH 3.0 – 4.0, while jarosite, KFe3(OH)6(SO4)2, is usually formed at lower pH values. At circumneutral pH values (6 – 8), ferrihydrite or hydrous ferric oxide, Fe(OH)3, and goethite, α-FeOOH, are the predominant secondary minerals present in the system. The precipitates formed in AMD systems usually contain different secondary iron minerals; some of these mineral phases change within weeks or months as forms such as schwertmannite are metastable and can undergo phase transformation to more crystalline mineral phases (Bigham et al., 1996; Regenspurg et al., 2004).

Study of the surface reactivity of the secondary iron minerals occurring in AMD has been of great concern in the last decade. These minerals are naturally occurring attenuators for species such as arsenic and trace metals that may be present in these systems. Many authors have attempted to elucidate the mechanism of such attenuation in natural precipitates and synthetic analogues (Jönsson et al., 2006; Burton et al., 2009; Paikaray et al., 2011; Antelo et al., 2012; Paikaray et al., 2012; Maillot et al., 2013). Immobilization of trace metals and metalloids by these iron minerals is known to take place via surface adsorption and coprecipitation (Martínez and McBride, 2001; Lee et al., 2002; Antelo et al., 2013). Iron oxide minerals usually have a high specific surface area and variable surface charge, properties that may favour the efficient retention of both anions and cations in systems affected by AMD. Schwertmannite and jarosite may decrease the mobility of trace elements by coprecipitation during formation of the iron mineral oxide or by surface adsorption onto the pre-existing minerals. Moreover, if anionic species such as arsenate are present in the system, the immobilization mechanism may involve anion exchange with the sulphate groups present in the crystalline structure of these minerals (Carlson et al., 2002; Burton et al., 2009; Antelo et al., 2012).

Numerous adsorption studies on synthetic analogues have been reported in the literature; however, this does not guarantee that the analogues are relevant or behave identically in natural systems. The data obtained in such studies do not reflect the fact that natural oxides are formed in multicomponent systems (e.g. AMD usually contains Fe, S, As and multiple trace metals). Therefore, coprecipitation is likely to occur and may lead to the formation of different secondary minerals and to the presence of impurities in the minerals. In order to determine the efficiency of secondary iron minerals as natural contaminant scavengers, as well as the immobilization mechanism involved, it is important to identify the reactions that the mineral adsorbent undergoes following changes in the physico-chemical properties of the system, e.g.pH, ionic strength and temperature. Thermodynamic description of the surface reactivity of iron oxides is crucial for developing surface complexation models that predict the fate of environmentally relevant species. Therefore, detailed description and quantification of adsorption reactions are necessary to predict the mobility and bioavailability of trace elements in soils and aquatic systems. In the present paper, we investigate the adsorption of arsenate and copper on natural iron oxide precipitates collected from aquatic systems affected by AMD. The aim of the study was to improve our understanding of the processes controlling the adsorption of trace elements and to assess the capacity of surface complexation models developed for synthetic analogues to predict the behaviour of arsenate and copper in the presence of natural iron precipitates.

 

2. Materials and methods

2.1. Field sites and sample collection

Iron oxide precipitates were collected in areas close to the abandoned Touro copper mine (NW Spain, 42° 52′ 34′′ N 8° 20′ 40′′ W) and the abandoned Fontao tungsten and tin mine (NW Spain, 42º 45´ 16´´ N 8º 13´ 55´´ W) between September and October 2013. In the area encompassing the Touro mine, which was exploited between 1974 and 1988, the geological substrate predominantly consists of amphibolite, with large quantities of metal sulphides such as pyrite and chalcopyrite. Weathering and oxidative dissolution of these minerals has led to the release of AMD to the neighbouring streams, producing frequent episodes of extreme acidity and mobilization of toxic elements in the surface waters (Álvarez et al., 1993). During the last 15 years, remediation processes and environmental monitoring have been conducted at the most critical sites (Álvarez et al., 2011). The area encompassing the abandoned Fontao mine, which was exploited between 1934 and 1973, includes numerous Sn-W quartz veins, with cassiterite and wolframite as the main ore minerals and with a significant presence of sulphide minerals such as pyrite, chalcopyrite and arsenopyrite.

Two streams were selected as sampling sites for the present study: the Portapego stream (T-PO), which flows from the Touro mine to the river Lañas, and the Orza stream (F-OR), which is close to the Fontao mine. At sampling site T-PO (Figure 1a), iron-rich AMD bed sediments were collected from the upper 10 cm. At sampling site F-OR (Figure 1b), loose ochre-coloured precipitates were collected from the banks of the stream. Both samples were kept in polyethylene flasks and stored at 4 ºC in darkness until analysis, to prevent changes in the chemical and mineralogical composition. The T-PO sediment sample was air-dried, sieved (< 50 μm) and ground to a fine powder for the laboratory study. The F-OR precipitate was washed carefully with ultrapure water and centrifuged for 20 minutes at 12000 rpm to remove soluble ionic species and other impurities, and the solid was then re-suspended in ultrapure water. The conductivity of the supernatant was measured to ensure that no ionic species were present. A fraction of the final suspension was freeze-dried to obtain solid samples for characterization of the iron precipitates, while the remaining fraction was maintained as a suspension for the adsorption experiments.

Water samples were also collected at both sampling sites to assess the physico-chemical properties and the degree of metal contamination. In the field, these samples were immediately filtered through 0.45 μm Millipore filters and subsamples were acidified with 1 % HNO3for metal analysis. The pH, temperature, electrical conductivity (EC) and dissolved oxygen were measured in situ. Water samples were transported to the laboratory and stored at 4 °C until analysis.

Figure 1. Photographs of the sampling sites. a) ochreous precipitates on the Portapego stream bed sediments, and b) loose precipitate in the Orza stream.

 

2.2. Characterization of iron oxide precipitates

Powder X-ray diffraction (XRD) patterns were obtained (in a Phillips PW1710 diffractometer) by measuring the scintillation response to CuKα radiation over the range 15º to 70º 2θ, with a step size of 0.02º and a counting time of 6 seconds per step. XRD patterns of synthetic analogues (goethite, schwertmannite and ferrihydrite), previously prepared in the laboratory by the methods recommended in the literature (Cornell and Schwertmann, 1996), were also obtained for comparative purposes. ATR-FTIR spectra of the precipitates, synthetic schwertmannite and K2SO4, were recorded in a JASCO FTIR-4200 spectrophotometer. The powdered samples were mixed homogeneously and placed on a ZnSe ATR crystal plate (Pike MIRacle Single Reflection ATR). The spectra obtained corresponded to at least 50 co-added scans with a resolution of 4 cm-1. The IR spectra of the sulphate bands were measured in the range 1250 – 900 cm-1. The chemical composition of the iron oxide precipitates was determined after digestion of 0.05 g of the precipitate in 50 mL of 6 M HCl. The concentrations of Fe, Al, Mn, As, Cu, Ni, Pb and Ni were measured in the digested samples by inductively coupled plasma optical emission spectroscopy (ICP-OES, PerkinElmer Optima 3300DV). The sulphate concentration was determined by a turbidimetric method (Clesceri et al., 1998), in a Jasco V-530 UV/VIS spectrophotometer. The poorly crystalline iron oxides were extracted by ammonium oxalate for quantification (McKeague and Day, 1966). Operationally, the difference between the total digestion and the oxalate extraction enables distinction between the poorly crystalline forms (schwertmannite or ferrihydrite) and the more crystalline forms (goethite). The iron precipitates were extracted with 0.2 M acid ammonium oxalate (pH 3.0) in the dark for 4 h at a solid/solution ratio of 10 g/l. Dissolved Fe and Al in the oxalate extracts were measured by ICP-OES. The BET specific surface area (SSA) was measured by N2adsorption in a Micromeritics ASAP 2000 analyzer (V3.03).

Trace metal concentrations in the water samples were analysed by ICP-OES, while the concentrations of major cations (Fe, Al, Ca, Mg, Na, and K) were determined by atomic absorption spectroscopy (AAS, PerkinElmer 1100B). The concentrations of sulphate, nitrate and chloride were determined by standard methods (Clesceri et al., 1998).

 

2.3. Arsenate and copper adsorption on AMD precipitates

The effect of pH on the adsorption of both arsenate and copper was evaluated in batch experiments. Suspensions of the AMD precipitates (1 g/l for the arsenate experiments, and 0.5 g/l for the copper experiments) were prepared in 20 ml of KNO3 as the inert electrolyte. All experiments were carried out with initial arsenate concentrations of 285 and 570 µM or with initial copper concentrations of 100 and 500 µM. Adequate volumes of stock solutions of arsenate (0.04 M KH2AsO4) and copper (0.1 M Cu(NO3)2) were added to produce the desired concentrations on the suspensions of AMD precipitate. The pH of the suspensions was adjusted to within pH 3 – 10 by addition of 0.1 M HNO3 or 0.1 M KOH. This broad pH range was selected to yield measurable adsorption of both arsenate (relatively low pH values) and copper (relatively high pH values) and to enable comparison of ion adsorption on the precipitates with that reported for synthetic analogues. The samples were shaken for 24 hours in a reciprocal shaker (IKA Labortechnik H5501 Shaker), as preliminary experiments indicated that shorter contact times were sufficient to ensure that equilibrium was achieved. During the equilibration period, the pH was measured periodically and, when necessary, readjusted by adding small amounts of HNO3 or KOH solutions. Special care was taken to prevent the presence of CO2, by maintaining the suspensions in N2atmosphere.

In order to analyse the effect of the ionic strength on the adsorption of arsenate to the AMD precipitates, additional experiments were carried out at ionic strength 0.01, 0.1, and 0.5 M in KNO3. Batch experiments were carried out as described above, i.e. arsenate was added (initial concentration of 570 μM) to 20 ml of the AMD suspension (1 g/l), the pH was adjusted (to within pH 4 – 10) with 0.1 M HNO3or KOH, and the samples were shaken for 24 hours until equilibrium was achieved.

Once equilibrium was reached, the samples were filtered through 0.45 µm Millipore membrane filters, and the concentration of arsenate or copper was measured in the filtrate. The concentration of arsenate was determined by the colorimetric method proposed by Lenoble et al.(2003), and the concentration of copper was determined by ICP-OES. The concentration of the adsorbed ion was then calculated as the difference between the initial amount added to the suspension and the final amount remaining in solution.

Each experiment was carried out in duplicate (at least) to confirm the reproducibility. All chemicals were of Merck pro analysis grade quality and the water used in the experiments was ultrapure and CO2free. Polyethylene flasks were used to prevent contamination of the AMD precipitates with silicate, and the temperature was maintained at 25 ± 1 ºC in all adsorption experiments.

 

2.4. Surface complexation modelling

Various geochemical and surface complexation models (SCMs) have been developed in the last few decades to elucidate the processes that control the mobility and bioavailability of chemical species in soil and aquatic systems (Groenenberg and Lofts, 2014). Models of the solid/solution interface are powerful tools that can help unravel the mechanisms controlling ion adsorption and predict the reactivity of the charged mineral surfaces present in soils and sediments. These models are generally divided into two main parts: i) one part that describes the solid surface, including the type and reactivity of surface sites, the species adsorbed, the surface charge, etc.; and ii) another part describes the electrostatics, charge distribution and potential decay at the solid/solution interface. Among many SCMs that have been applied so far, the generalized two-layer (GTL) model, the triple layer (TLM) model and the charge distribution (CD) model have become the most popular for describing the surface reactivity of crystalline and amorphous iron oxides such as goethite and ferrihydrite (Davis et al., 1978; Dzombak and Morel, 1990; Hiemstra and van Riemsdijk, 1996). However, use of these models to describe the adsorption behaviour of iron precipitates present in AMD is rather complicated due to the difficulties that exist in characterizing these natural oxides. AMD precipitates may comprise different crystalline and amorphous iron oxides, depending on the physico-chemical conditions of the system, and may contain impurities not present in the synthetic analogues.

In the present study, arsenate and copper adsorption data for the AMD precipitates were initially modelled using the GTL model, which is less mechanistic and structurally-based than other SCMs. The solid/solution interface is simplified to a surface plane and a diffuse double layer that neutralizes the surface charge. This conceptual interface structure does not distinguish inner- and outer-sphere complexes. More realistic SCMs consider a diffuse double layer with at least one Stern plane, resulting in a basic or an extended Stern layer model to describe the solid/solution interface. The simplicity of the GTL model results in fewer adjustable parameters in the modelling calculations, but may enable accurate description and prediction of the adsorption behaviour of anions and cations over a wide range of conditions (Mathur and Dzombak, 2006; Karamalidis and Dzombak, 2010). A detailed description of the SCM, including its formulation for ion adsorption, has been reported by Dzombak and Morel (1990) for amorphous iron oxides. Briefly, the surface groups (≡FeOH) behave as a diprotic acid and the surface charge behaviour is described using a 2-pK approach (log KH1, log KH2). An electrostatic term that accounts for the coulombic interactions is included in the model in order to obtain intrinsic constants that do not change with surface charge.

As a modelling exercise, the adsorption data were also simulated using the CD model, which assumes a more realistic approach to describe the solid/solution interface and the surface reactions occurring. The contribution of anion exchange reactions with the sulphate ions present in the structure of the precipitates was considered. The CD model considers separate surface groups (≡FeOH and ≡Fe3O) and specific surface complexation reactions. Protons were assumed to bind to ≡FeOH and ≡Fe3O groups, while arsenate and copper ions were assumed to bind only to ≡FeOH groups. Protonation of the surface groups was described using a 1-pK approach, while Pauling’s valence bond concept was used to determine the charge distribution of ions over the coordinating ligands. The CD model also considers a spatial distribution of the charge at the solid/solution interface. Therefore, the charge is distributed in 3 electrostatic planes: i) the 0-plane, corresponding to the mineral surface and where the charged surface groups are located; ii) the 1-plane, which divides the Stern layer; and iii) the 2-plane, which separates the Stern layer from the diffuse layer. The charge of inner-sphere complexes is distributed between the 0-plane and 1-plane, while outer-sphere complexes are assumed to be single point charges and are usually situated in the 1-plane (separated from the surface by water molecules). The interfacial charge distribution of a surface complex between the electrostatic planes can be calculated using the Brown bond valence concept.

Modelling calculations for the Generalized Two-Layer model were carried out using Visual MINTEQ (Gustafsson, 2012). The parameters required for describing the adsorption of both arsenate and copper were optimized by a trial-and-error procedure. Constants were systematically varied in order to minimize the root-mean-square error in the adsorbed fraction. CD model simulations were conducted with the Equilibrium Calculation of Speciation and Transport (ECOSAT) program (Keizer and van Riemsdijk, 1998).

 

3. Results and Discussion

3.1. Water chemistry

Sampling site T-PO is severely affected by AMD as indicated by the chemical composition and physico-chemical properties of the water samples, i.e. low pH, high electrical conductivity and high concentrations of Fe and SO4 (Table 1). Oxidation of sulphide minerals releases high concentrations of sulphate and Fe ions (Nordstrom, 2011). The concentrations of Fe were lower than expected, indicating that most of the dissolved Fe was precipitated, via hydrolysis reactions, to form iron oxide minerals (Burgos et al., 2012). The bed sediments were coated with reddish-yellowish iron precipitates (Figure 1a). Moreover, the concentrations of dissolved trace metals in samples from the Portapego watercourse were higher than the recommended limits for drinking water, established by the EU (European Commission, 1998). However, the newly formed iron oxides can easily remove trace metals from solution either by coprecipitation or by adsorption processes.

The results obtained for the Orza stream indicate that the AMD had only a slight effect on the water quality. The pH, EC and concentrations of major elements were within the usual ranges for uncontaminated surface waters. The concentrations of most of the trace elements analysed were below detection limits, and the concentrations of Cu and Zn were 2 – 3 orders of magnitude lower than those found in the Portapego stream. Unlike in T-PO, As was detected in F-OR, [As] = 17.2 µg/l, indicating potential enrichment of the stream sediments with arsenic-rich mineral forms.

Table 1. Chemical analysis of the water samples from the Portapego (T-PO) and Orza (F-OR) streams.

 

3.2. Characterization of iron oxide precipitates

The iron oxides present in sampling sites T-PO and F-OR were characterized by XRD and the diffractograms were compared with those obtained for the synthetic analogues. The X-ray diffractograms revealed significant differences in the mineralogy of the iron oxides collected at both sampling sites (Figure 2). The dominant mineral phase in sample F-OR is an amorphous iron oxide that resembles ferrihydrite. The diffractogram shows a broad band at ~ 35º and a low intensity band at higher 2θ, ~ 60 – 65º. No additional peaks indicating the presence of goethite or schwertmannite were found for this sampling site. The absence of schwertmannite phases confirms that sampling site F-OR was not greatly affected by AMD discharges from the nearby abandoned tungsten-tin mine. Sample T-PO presents several peaks that can be assigned to the presence of goethite. According to Asta et al. (2010), the weak XRD peaks of schwertmannite can be masked by the peaks of more crystalline phases, which are usually of higher intensity. The XRD data do not clarify whether goethite is the only iron oxide phase formed or schwertmannite is also present. The metastable character of schwertmannite particles favours phase transformation to goethite or other iron crystalline phase within weeks or months, depending on the physico-chemical conditions and water chemistry of the AMD system. Studies by Kumpulainen et al. (2007) and Peretyazko et al.(2009) on the mineralogy of AMD precipitates showed seasonal variations in the occurrence of both mineral phases. Schwertmannite was the dominant mineral present during spring, but it was then partially transformed to goethite during the warmer summer months because of changes in the water chemistry.

Figure 2. X-ray diffractograms of the iron oxide precipitates T-PO and F-OR and of goethite (GOET), ferrihydrite (FERR) and schwertmannite (SCHW).

As already pointed out, poorly crystalline oxides, such as schwertmannite, may be difficult to detect by XRD in mixtures containing more crystalline forms. Nevertheless, on the basis of the concentration of Fe (4.41 mmol/g) measured in the ammonium oxalate extract, the amount of poorly crystalline forms exceeded the amount of the more crystalline forms. Partition of Fe between the oxalate and total extractable phases showed that 77.9 % of the total Fe corresponded to poorly crystalline oxides (schwertmannite-like). According to the concentrations of sulphate measured in the digested samples (Table 2), sample T-PO contained a large amount of sulphate in its crystalline structure (or adsorbed to the mineral surface). The ideal chemical formula for schwertmannite is Fe8O8(OH)8-2x(SO4)x, where x ranges between 1 and 1.75. Although the sulphate content range proposed by Bigham et al. (1990) is widely accepted, a recent study by Caraballo et al. (2013) pointed out that the proposed range was obtained with the data available in the 1990s. However, when more recent information on the chemical composition of natural schwertmannite particles is taken into account, a wider range (0.52 – 1.84) is obtained. The concentration of SO4 measured after complete dissolution of the T-PO precipitate (Table 2) is within the latter range. The Fe:SO4 molar ratio, which is commonly used to characterize the composition of schwertmannite particles, is 6.14. This molar ratio falls within the range proposed for ideal schwertmannite (4 – 8) and also within the broader range proposed by Caraballo et al. (2013), for natural schwertmannite samples (3.77 – 15.53). These results suggest the presence of schwertmannite particles in the sample collected at the T-PO site. The concentration of trace elements in the AMD precipitate was low (Table 2) or negligible. Although a higher concentration of Cu may be expected, the measured value is comparable with the values obtained by Kumpulainen et al.(2007) for AMD precipitates collected from the surroundings of copper mines.

Table 2. Concentration of major and trace elements in the iron precipitates collected from the Portapego and Orza streams.

Abbreviations: tot = total digestion; oxa = ammonium oxalate extraction.

 

The concentrations of Fe and SO4 in sample F-OR were higher than those in sample T-PO. The Fe:SO4 molar ratio was 2.84, which is outside the range proposed by Caraballo et al. (2013), confirming the XRD results indicating the absence of schwertmannite particles in the F-OR precipitate. The high concentration of sulphate may be associated with surface adsorption to the newly formed precipitate resembling ferrihydrite. Iron oxides such as goethite and ferrihydrite are known to act as scavengers for dissolved species and may immobilize sulphate ions under suitable conditions, i.e. pH < 7.0 (Fukushi et al., 2013). The Fe extracted with ammonium oxalate accounts for almost 95 % of the total iron content, indicating that ferrihydrite (or hydrous iron oxide) is the main mineral phase present in the F-OR precipitate. The concentration of the trace elements analysed was rather low, which was expected because, as stated above, this sampling site was not greatly affected by AMD.

Figure 3 shows the ATR-FTIR spectra obtained for the iron precipitates and the synthetic analogues. Data analysis focuses on the 1200 – 900 cm-1 region, in which bands associated with sulphate vibrations (S-O stretching bands) are usually found. Bands at a lower wavenumber (represented by the dotted lines shown in Figure 3) can be assigned to Fe-O stretching. The number of peaks observed between 1200 and 900 cm-1, along with their relative intensity and position, are characteristic of the molecular symmetry and coordination of sulphate ions (Zhang and Peak, 2007). Clear differences between samples are observed. In the case of sample T-PO, three bands were detected in this region, which might be assigned to asymmetric stretching (ν3) bands (~ 1096 and ~ 1032 cm-1) and to a symmetric stretching (ν1) band (~974 cm-1). These bands, previously identified in different studies involving synthetic (Peak et al., 1999) and natural (Kumpulainen et al., 2007) iron oxides, are indicative of the presence of adsorbed or structural sulphate groups. Splitting into separate ν3 bands is common for iron oxides formed at low pH (Fukushi et al., 2013; Tresintsi et al., 2014) and was also observed in the synthetic schwertmannite analysed (~ 1110 and ~ 1066 cm-1). This suggests that sulphate groups are present as inner-sphere complexes on the mineral surface and on the crystalline structure. If outer-sphere complexes were dominant, a broader band (with no peak splitting) would be observed at 1100 cm–1, resembling the FTIR spectra of free sulphate groups. In the case of the F-OR precipitate, these bands were not present, which suggests that sulphate groups were not adsorbed as inner- or outer-sphere complexes. Considering the results reported by Kumpulainen et al. (2007), iron oxides collected from mine soils of neutral pH (as in the present case) do not display S-O stretching bands. Therefore, the broad band at 945 cm–1could be assigned to Fe-O-Si, indicating co-precipitation or adsorption of silicate groups. However, the nature of sulphate groups present in the F-OR precipitates and detected by analysis of the chemical composition remains unresolved. Further analysis using more advanced techniques, such as X-ray absorption spectroscopy or X-ray photoelectron spectroscopy, should be carried out to clarify the nature and the location of the sulphate groups present in the iron precipitates under study.

The SSA of the T-PO precipitate determined by the BET method was 127 m2/g, which falls within the range for schwertmannite particles (100 – 300 m2/g) reported by Bigham et al. (1990). Slow crystallization may favour higher surface area values for schwertmannite particles (Regenspurg et al., 2004). On the other hand, lower SSA (< 100 m2/g) would be expected if goethite were the dominant mineral phase of the T-PO precipitate. The SSA obtained for the F-OR precipitate was 216 m2/g, which is similar to the surface area determined for synthetic ferrihydrite by the same method (Antelo et al., 2010; Zhu et al., 2011).


Figure 3. ATR-FTIR spectra of the iron precipitates collected at sampling sites T-PO and F-OR. The spectra of synthetic schwertmannite and K2SO4 are also shown.

 

3.3. Arsenate removal by AMD precipitates

The adsorption of arsenate as a function of pH and ionic strength is shown in Figure 4, along with the GTL modelling predictions. Adsorption decreased gradually and continuously as pH increased in the range 3 – 10. This decrease can be explained by the fact that the surface of the iron oxide becomes negatively charged (or less positively charged) as the pH increases. Greater electrostatic repulsion will occur towards the less protonated arsenate species that predominate at the highest pH values, favouring the mobilization of arsenate. In addition to surface complexation with the iron hydroxyl groups present at the mineral surface, adsorption of arsenate on sample T-PO, which can be defined as a mixture of goethite and schwertmannite particles, involves anion exchange reactions with the sulphate ions present in the schwertmannite crystalline structure. Evidence for anion exchange reactions involving sulphate release from schwertmannite has been obtained in different studies (Burton et al., 2009; Antelo et al., 2012). The exchange coefficient (Rex) values obtained in those studies were pH dependent and always lower than 0.5 mol SO4/mol AsO4. An exchange coefficient below 1 can be interpreted as being due to partial substitution of the structural sulphate by the arsenate ions and the co-existence of both adsorption mechanisms. However, as the pH increases, structural sulphate may be substituted by OHions and surface complexation with the iron hydroxyl groups will become the main adsorption mechanism. Unfortunately, in the present study sulphate concentration was not measured after arsenate adsorption and therefore the exchange coefficients cannot be calculated.


Figure 4. Adsorption envelopes for arsenate in (a) T-PO and (b) F-OR precipitates obtained at different ionic strengths and with an initial arsenate concentration of 570 μM. Symbols represent the experimental data. Solid, dashed and dotted lines correspond to the simulations of the GTL model at ionic strength 0.01 M, 0.1 M, and 0.5 M, respectively.

 

For both precipitates, the effect of ionic strength on arsenate adsorption is rather low at pH < 5. A minimal effect of ionic strength at low pH was previously observed for synthetic goethite and ferrihydrite particles (Antelo et al., 2005, 2010). At pH > 5, an increase in ionic strength produces an increase in the adsorption of arsenate on the iron precipitates. Ions that form inner-sphere complexes bind directly to the hydroxyl surface groups via ligand exchange and might not be affected by electrolyte ions or by changes in ionic strength. However, several cases of inner-sphere complexation and increased adsorption with increasing ionic strength have been reported (Rahnemaie et al., 2007; Antelo et al., 2010) and have been attributed to changes in the electrostatic potential at the solid/solution interface. An increase in the ionic strength produces a decrease in the electrostatic repulsion between the charged mineral surface and the arsenate ions, favouring adsorption. The opposite effect may occur at low pH, as an increase in the ionic strength may lower the electrostatic attraction between the positively charged mineral surface and the arsenate ions, minimizing the differences in the adsorption levels at the different ionic strengths.

The adsorption of arsenate on T-PO and F-OR precipitates is compared in Figure 5 for two different arsenate loadings. At the lower pH, adsorption on both precipitates is similar, but at pH above 5 – 6, adsorption on T-PO is higher at both arsenate loadings. The specific surface area of sample F-OR (216 m2/g) is greater than that of sample T-PO (127 m2/g) and therefore the former is expected to be more reactive. Nevertheless, as stated above, the structure of sample T-PO partly resembles that of schwertmannite particles, while sample F-OR can be described as ferrihydrite-like. In addition to the surface complexation of arsenate on the surface hydroxyl groups, which is possibly the only adsorption mechanism in sample F-OR, anion exchange reactions may occur in sample T-PO. Another possible explanation for the observed differences in the reactivity of both samples is the presence of co-precipitated trace metals. The T-PO precipitate contains larger amounts of Cu, Zn and Ni. The presence of trace metals in the crystalline structure may increase the adsorption of arsenate by 20 – 30 %, as already observed for schwertmannite and goethite (Mohapatra et al., 2006; Antelo et al., 2013). The presence of co-precipitated ions and their incorporation in the crystalline structure may lead to changes in the surface properties of the oxides (specific surface area, surface charge and point of zero charge).


Figure 5. Comparison of arsenate adsorption on F-OR (circles) and T-PO (triangles) precipitates as a function of pH at ionic strength 0.1 M. Filled and empty symbols correspond to an initial arsenate concentration of 570 and 285 μM, respectively. Solid and dashed lines represent GTL model simulations for F-OR and T-PO precipitates, respectively.

 

3.4. Copper removal by AMD precipitates

Copper adsorption on the natural precipitates shows the typical trend observed for metal retention by iron oxides (Jönsson et al., 2006; Ponthieu et al., 2006; Moon and Peacock, 2013) (Figure 6). Thus, the level of adsorption varied from 0 to 100 % within approximately two pH units. Both iron precipitates exhibited very similar behaviour, with the curves for F-OR shifted slightly towards higher pH. A previous study by Swedlund and Webster (2001) showed that copper has a higher affinity for synthetic schwertmannite than for synthetic ferrihydrite. These authors reported that at pH 4, 10 % of the copper was adsorbed on ferrihydrite and 30 % on schwertmannite, and at pH 5 the levels of adsorption were 80 % and 90 %, respectively. In the present study, more copper was adsorbed onto the T-PO precipitate (schwertmannite-like) than onto the F-OR precipitate (ferrihydrite-like) at the same pH. This result is consistent with the previous finding for arsenate, which displays a higher affinity for the surface of the T-PO sample. The difference observed in the case of arsenate was explained by the anion exchange reactions between structural sulphate groups and arsenate ions; however, this adsorption mechanism should not contribute to cation binding. Nevertheless, the presence of sulphate in the crystalline structure, along with other co-precipitated ions (Table 2), may alter the surface properties of these iron oxides. Assuming the same site density for iron hydroxyl groups in both precipitates, the observed differences in copper adsorption may be attributed to differences in the protonation constants or the metal affinity constants.

The percentage of Cu adsorption increased with increasing pH, during which the surface of the precipitates becomes more negatively charged, and with increasing the initial amount of metal ion present. The processes involved in the adsorption of copper by iron oxides have previously been reported (Rodda et al., 1996) and are mainly described as adsorption reactions on the surface - with and without the release of protons and exchange reactions between Cu2+ and H+ions. The pH dependence is mainly caused by the decrease in competition from protons for the binding sites as the pH increases. Moreover, electrostatic attraction between the metal cation and the iron hydroxyl groups becomes stronger as the pH increases, because the surface of the iron oxide becomes more negatively (or less positively) charged.


Figure 6. Copper adsorption envelopes in (a) T-PO and (b) F-OR precipitates obtained at two different initial concentrations: 100 μM (circles) and 500 μM (diamonds), and ionic strength, 0.1 M. Solid and dashed lines represent GTL model simulations for the copper loading 100 μM and 500
μM, respectively.

 

3.5. Surface complexation modelling of arsenate and copper immobilization

3.5.1. Arsenate modelling

To describe the experimental results using the GTL model, we assumed that only ligand exchange reactions occurred between the arsenate and the hydroxyl surface groups. In order to minimize the fitting parameters, i.e. parameters that need to be adjusted, anion precipitation and anion exchange reactions were not considered in the modelling calculations. The default values proposed by Dzombak and Morel (1990) for the surface parameters (specific surface area, site density) of hydrous iron oxides were initially considered in the calculations, along with the protonation constants, log KH1 and log KH2. Finally, the values for the arsenate surface complexation constants were initially taken from the database available in Visual MINTEQ, and extra fitting, or adjustment, was conducted when necessary. The arsenate surface complexation constants are shown in Table 3, and the corresponding model predictions for adsorption on both iron precipitates are shown in Figures 4 and 5. Use of the default SSA value for hydrous iron oxide (600 m2/g) in the calculations led to overestimation of the adsorption of arsenate on the precipitates. Although the BET method may underestimate the real surface area of amorphous iron oxides due to the aggregation of particles, the experimental values obtained were considered in the modelling calculations.

Table 3. Surface complexes of arsenate considered in the GTL model and the corresponding log K values.

Note. Surface site density and protonation constants were set at the values proposed by Dzombak and Morel (1990). The SSA values used in the modelling calculations were 264 and 216 m2/g for sample T-PO and F-OR, respectively.
aDefault constants obtained by Dzombak and Morel (1990).
bFitted constants.

 

As shown in Figure 4b, arsenate adsorption on sample F-OR was reasonably well simulated using the experimental SSA and the default values for the different surface complexation reactions. At the highest ionic strength, I = 0.5 M, the complexation parameters slightly underestimated adsorption at lower pH. Although extra fitting of the surface complexation constants improved the model estimates at this ionic strength, arsenate adsorption was then overestimated for the other conditions. In the case of sample T-PO, modelling predictions using the experimental SSA (127 m2/g) underestimated the adsorption of arsenate by ~ 50 %. This is consistent with the existence of an additional adsorption mechanism due to the presence of structural sulphate groups, which are not taken into account in these calculations. As explained above, in order to simplify the calculations, anion exchange reactions were not considered in GTL modelling. Therefore, we assumed that the modelling underestimation is due to an incorrect value of SSA (or site density) and that extra fitting was needed. An SSA of 264 m2/g yielded reasonable levels of arsenate adsorption; however, arsenate adsorption was slightly overestimated at pH below 7 and the effect of ionic strength was minimized when the default complexation constants were used. Additional fitting was conducted to improve the simulations, but the model was only adjusted for the complexation constants of the arsenate surface complexes that contributed to the adsorption at acidic pH (≡FeOAsO(OH)2 and ≡FeOAsO2OH). The fitted constants (see Table 3) yielded optimal simulation of the arsenate adsorption on the T-PO precipitate (Figure 4a) throughout the whole pH range and adequately described the effect of ionic strength. Overall, the GTL model adequately reproduced the adsorption of arsenate on these natural iron precipitates with a minimum number of fitting parameters. However, anion exchange reactions were not taken into account.

In a more realistic approach, CD model calculations were also conducted by initially assuming that the iron precipitates behave like ferrihydrite particles. Hiemstra and Van Riemsdijk (2009) proposed a ferrihydrite surface model based on goethite, with equal proportions of the crystal faces (110), (001), and (021). Surface site densities of 6 nm-2 and 1.2 nm-2 were considered for the singly and triply coordinated groups respectively, while the SSA determined by BET were used in the calculations. The affinity constants for protons and electrolyte ions were taken from Antelo et al. (2010) and are shown in Table 4. Arsenate adsorption was modelled by assuming the presence of protonated and non-protonated bidentate complexes, because the available data on iron oxides indicates both complexes as predominant (Waychunas et al., 1993; Stachowicz et al., 2006); formation of a protonated monodentate complex was also considered. The surface reactions for the three surface complexes can be formulated as follows:

 

≡FeOH1/2- + 2H+ + AsO43- ≡FeOAsO2OH3/2- + H2O (1)
≡2FeOH1/2- + 2H+ + AsO43- ≡Fe2O2AsO22- + 2H2O (2)
≡2FeOH1/2- + 3H+ + AsO43- ≡Fe2O2AsOOH- + 2H2O  (3)

 

Arsenate complexation constants previously obtained for goethite (Stachowicz et al., 2006) were used as initial estimates. In the case of the T-PO precipitate, it was not possible to reproduce the arsenate adsorption correctly with the structural parameters of ferrihydrite (Antelo et al., 2010). Adsorption was greatly underestimated across the whole pH range, indicating both that a higher surface area or surface site density would be necessary, and also that ligand exchange with the surface hydroxyl groups is not the only mechanism controlling the adsorption of arsenate. As explained above, the T-PO precipitate mainly comprises (~ 80 %) schwertmannite particles, and therefore the immobilization of arsenate may also involve sulphate anion exchange. This additional adsorption mechanism is specific to schwertmannite, as some of the sulphate groups present in the crystalline structure are weakly bound. Exchange coefficients between SO4 and AsO4 (Rex) were derived by Burton et al. (2009) and by Antelo et al. (2012) for synthetic schwertmannite particles. In both cases, the Rex values were lower than 1 molSO4/molAsO4, which may indicate the existence of both adsorption mechanisms, and the values were pH-dependent. The differences between the Rex values for the two synthetic analogues were attributed to differences in the concentrations of outer-sphere sulphate complexes (Antelo et al., 2012).

Table 4. Surface species and CD model parameters for proton and arsenate adsorption to the surface of the iron precipitates, estimated using the Extended Stern layer model and considering C1 = 0.74 F/m2 and C2 = 0.93 F/m2. Δz0, Δz1, and Δz2 represent the change of the charge (or charge distribution) in the 0-, 1-, and 2-planes, respectively.

a From Antelo et al.(2010).
b From Stachowicz et al.(2006).
c From Weng et al. (2008).

 

Assuming that the natural precipitate behaves similarly to the synthetic analogues and that the Rex values obtained in both studies are valid, it would be possible to calculate the amount of arsenate exchanged with the sulphate groups in sample T-PO. As Rex value and pH were correlated [r2 values of respectively 0.99 and 0.92 were obtained by Antelo et al. (2012) and Burton et al. (2009)], the Rex values at the different pH values considered here can be calculated. Taking into account that the concentration of sulphate groups in sample T-PO (0.92 mmol/g) is similar to that of the synthetic analogue obtained by Antelo et al. (2012) (1.02 mmol/g), extrapolation of Rex at the different pH values was initially conducted with the observed correlation for this synthetic analogue. At I = 0.1 M, the exchange coefficient ranges from 0.29 mmolSO4/mmolAsO4 at pH 3.94 to 0.10 mmolSO4/mmolAsO4 at pH 8.39. With these Rex values, and with the concentration of adsorbed arsenate measured at the different pH values, it is possible to calculate the amount of arsenate that was exchanged with the sulphate groups present in the T-PO precipitate (Figure 7). As seen in Figure 7a, the sum of the amount of arsenate adsorbed to the hydroxyl groups (simulated with the CD model) and the amount of arsenate exchanged with the sulphate groups (calculated with these Rex values) slightly underestimates the adsorption of arsenate. Extrapolation of Rex at the different pH values by considering the correlation reported by Burton et al. (2009) yielded values ranging from 0.56 to 0.31 mmolSO4/mmolAsO4. Using these Rex values to calculate the exchangeable arsenate yields a higher contribution of the anion exchange mechanism than in the previous case (Figure 7b) (up to 50 % of the total adsorbed arsenate). Overall, the sum of the contributions from surface adsorption and anion exchange provides an adequate prediction of the arsenate adsorption in the T-PO precipitates. The exchange coefficients used here were obtained from two schwertmannite analogues with opposite sulphate content. The schwertmannite prepared by Burton et al. (2009), Fe8O8(OH)4.80(SO4)1.60, contained a large amount of outer-sphere complexes that may readily react with arsenate, while the schwertmannite synthesised by Antelo et al. (2012), Fe8O8(OH)5.95(SO4)1.02, mainly comprised inner-sphere complexes, and anion exchange is therefore less likely to occur. This modelling strategy was chosen as initial calculations showed that surface complexation modelling alone could not account for the amount of arsenate adsorbed under the experimental conditions used. Future studies should use a thermodynamic approach to account for the anion exchange reactions. This possibility will be best explored when more spectroscopic and molecular data become available.

Arsenate adsorption onto the F-OR precipitate was reasonably well simulated using the CD model (Figure 8), indicating that surface complexation to the iron hydroxyl groups is the main adsorption mechanism and no additional reactions needed to be considered. Modelling simulations were conducted using the SSA obtained by the BET method, the surface site densities proposed for ferrihydrite particles and with the modelling parameters shown in Table 4. Optimization of the affinity constants may yield better prediction of the arsenate adsorption at the lower pH values, although for reasons of simplicity no extra fitting was conducted. Figure 8 also shows the abundance of arsenate surface species as a function of pH according to the CD model predictions. Under these conditions, the dominant surface species are the bidentate complexes, which are protonated at low pH and non-protonated at high pH. These calculations showed that the non-protonated bidentate complex is the major surface species at intermediate to high pH. The protonated monodentate complex, at the lower pH values, contributes to the arsenate adsorption to a lower extent than the protonated bidentate complex, although it makes a higher contribution at relatively high pH.


Figure 7. Arsenate adsorption envelope on T-PO precipitate at ionic strength 0.1 M, an initial arsenate concentration of 570 μM and with Rex values taken from (a) Antelo et al. (2012) and (b) Burton et al. (2009). Triangles correspond to the experimental data, while solid, dotted and dashed lines represent the total adsorption of arsenate, the amount of arsenate exchanged with the structural sulphate groups, and the amount of arsenate adsorbed to the hydroxyl surface groups calculated with the CD model for ferrihydrite, respectively.

 

 


Figure 8. Adsorption envelope for arsenate in F-OR precipitate, at ionic strength 0.1 M and with an initial arsenate concentration of 570 μM. Triangles correspond to the experimental data, solid lines correspond to CD model predictions and dashed, dotted and dot-dashed lines correspond to the arsenate surface species ≡Fe2O2AsOOH, ≡Fe2O2AsO2 and ≡FeOAsO2OH, respectively.

 


Figure 9. Cu adsorption envelope and surface speciation on T-PO. Symbols represent experimental data at [Cu] = 100 µM, and lines represent the adsorption percentage of the four surface complexes according to the CD model.

 

 

3.5.2. Copper modelling

The adsorption was simulated with the GTL model and, as explained for arsenate modelling, we tried to minimize the number of fitting parameters. We chose this approach because, rather than obtaining a set of complexation constants for each natural sample, we aimed to obtain a general set of constants that could be successfully applied to natural iron precipitates in addition to synthetic iron oxides. In the present modelling approach, cation adsorption is assumed to occur at the two types of surface sites available: high affinity or strong sites (≡FesOH) and low affinity or weak sites (≡FewOH). The same surface complex stoichiometry is usually considered for both types of site (≡FesOCu+ and ≡FewOCu+, respectively). Copper adsorption on the T-PO precipitate was well predicted (Figure 6a, Table 5) using the intrinsic adsorption constants obtained by Dzombak and Morel (1990) for the two surface complexes defined by the GTL model (2.89 and 0.6, respectively). The model-derived SSA obtained in the arsenate modelling (264 m2/g) was used here. Use of the original SSA proposed by Dzombak and Morel (1990) for hydrous iron oxides (600 m2/g) overestimated the copper adsorption on both iron precipitates. For the F-OR precipitate, use of the experimental SSA value (216 m2/g) slightly underestimated the adsorption and additional fitting of the complexation constant was therefore needed. The modelling simulations shown in Figure 6b were obtained following optimization of the first adsorption constant (log K = 3.19), whereas the second constant remained unchanged (Table 5).

Table 5. Surface complexes of Cu considered in the GTL model and the corresponding log K values.

aDefault constant obtained by Dzombak and Morel (1990).
b Fitted constant.

 

The CD model was also used to simulate copper adsorption on T-PO and F-OR precipitates. The intrinsic proton affinities and structural parameters of the precipitates required for CD model calculations were the same as in the arsenate adsorption modelling. One bidentate surface complex, (FeOH)2CuOH, was initially considered, as proposed by Tiberg et al. (2013), to model copper adsorption on synthetic ferrihydrite, with a charge distribution between the 0-plane and the 1-plane, Δz0 = 0.5 and Δz1 = 0.5, and a log K = 0.97. Adsorption of copper on T-PO and F-OR was greatly underestimated by the model. However, further optimization of the surface complex constant was not sufficient to improve the model prediction. This appears reasonable if we consider the difference between the SSA reported by Tiberg et al. (2013) for ferrihydrite (650 m2/g) and the experimental SSA measured for T-PO (127 m2/g) and F-OR (216 m2/g). Only a significant increase in the SSA of the precipitates, far from their BET values, would lead to a better description of the copper adsorption on the natural precipitates.

In the next step, the surface complexes postulated by Weng et al.(2008) for describing Cu adsorption on goethite were used (Figure 9). Four bidentate inner-sphere complexes were considered between copper and the singly coordinated surface sites of the goethite, allowing for hydrolysis and dimer formation in copper surface species. The stoichiometry of the surface species and the charge distribution between the planes that comprise the solid/solution interface are shown in Table 4 and the corresponding surface reactions are:

 

≡2FeOH1/2- + Cu2+ ≡(FeOH)2Cu+ (4)
≡2FeOH1/2- + Cu2+ + H2O ≡(FeOH)2Cu(OH)0 + H+ (5)
≡2FeOH1/2- + 2Cu2+ + 2H2O ≡(FeOH)2Cu2(OH)2+ + 2H+ (6)
≡2FeOH1/2- + 2Cu2+ + 3H2O ≡(FeOH)2Cu2 (OH)30 + 3H+ (7)

 

 

 

Combining these complexation constants and the specific parameters for the natural iron oxides yielded a good description of Cu adsorption on sample T-PO at pH > 5, whereas the adsorption was overestimated at lower pH. The modelling was finally improved by fitting one of the constants. The decision about which complexation constant should be fitted was based on the distribution of the four surface complexes, which indicated that ≡(FeOH)2Cu(OH) was the predominant species at the pH range where the model overestimated the copper adsorption (pH < 5). The fitted value of log K for the ≡(FeOH)2Cu(OH) complex was 2.55 instead of 3.60. Although adsorption on sample F-OR was slightly overestimated throughout the entire pH range, irrespectively of whether the complexation constants were those proposed by Weng et al. (2008) or the fitted constants that described the adsorption on T-PO, no further fitting was done. As stated above, the idea of this modelling exercise was to simulate the adsorption on the iron precipitates using model parameters derived for synthetic analogues. Ideally, no fitting would be necessary.

Analysis of the distribution of the total percentage of adsorption across the different surface complexes shows that ≡(FeOH)2Cu species dominate at pH < 5.2. From this pH onwards ≡(FeOH)2Cu(OH) is the dominant species, although the other two hydroxylated forms also become important (Figure 9). This distribution of surface species is in agreement with that found by Weng et al.(2008). Modelling simulations on goethite showed that the monomer bidentate inner-sphere species is important at low pH, whereas the hydrolysed monomer bidentate species dominates at higher pH.

 

4. Conclusions

The findings of the present study suggest that the natural iron precipitates behave similarly to synthetic analogues. The iron-rich precipitates collected at two sites affected by AMD occurred as mixtures of varying proportions of schwertmannite-, goethite-, and ferrihydrite-like particles. The dominant mineralogy of the precipitates changed in the two sampling sites due to the differences in the water chemistry and the overall impact by AMD. The iron-rich bed sediments collected at the copper mine site (T-PO), which is greatly affected by AMD, were mainly constituted by amorphous schwertmannite (~ 78 %) and goethite-like (~ 22 %) particles. The loose precipitate collected in the sampling site close to the tungsten and tin mine (F-OR) was slightly affected by AMD and the mineralogy was dominated by the presence of ferrihydrite or amorphous iron oxides.

The arsenate and copper adsorption experiments carried out showed that mobility of these two trace elements was mainly governed by the presence of the iron oxides. Adsorption trends for both elements are identical to those found for their synthetic analogues, but the adsorption levels were always greater in the precipitates collected in the sampling site that was more affected by AMD. The main difference between the two iron precipitates is the existence of structural sulphate groups in the sample resembling schwertmannite, for which the arsenate adsorption process is controlled by two mechanisms: surface complexation with the iron hydroxyl groups and anion exchange with the structural sulphate groups present in the mineral particles. For copper, adsorption mechanisms should be the same for both precipitates, and differences can be assigned to the differences in the proton or metal affinity caused by the presence of metal impurities and sulphate ions. These adsorption mechanisms may be confirmed in the future by conducting a detailed surface chemical analysis with spectroscopic techniques.

The experimental results obtained for arsenate and copper were satisfactorily simulated with the GTL and the CD models. Despite the fact that the nature of the iron precipitates has been demonstrated to be different, most of the surface parameters available in the literature for synthetic iron oxides could be used as initial estimates. The good modelling predictions obtained at the different experimental conditions for both arsenate and copper adsorption indicate that using these estimates, obtained either for ferrihydrite or goethite, is a suitable approach. In general, the model simulations could be improved if additional fitting of the SSA or surface complexation constants was conducted. Among the two SCM studied, the CD model represents a more realistic approach, allowing the determination of the arsenate and copper surface species formed. Finally, if the sulphate-arsenate exchange coefficients obtained for synthetic analogues are considered, it is possible to determine the contribution of both anion exchange and surface complexation in the adsorption process of arsenate on the iron precipitates resembling schwertmannite. Although this is a simple approach, and the obtained results are promising, future studies should focus on the formulation of a thermodynamic approach to describe the anion exchange reactions.

 

Acknowledgements

The present work was financially supported by the Ministerio de Ciencia e Innovación under research project CTM2011-24985 and by the Xunta de Galicia under the research project EM2013/040. The authors thank Pilar Bermejo of the Department of Analytical Chemistry, Nutrition, and Bromatology of the University of Santiago de Compostela for the ICP-OES measurements and Alvaro Gil from the Ceramic Institute of the USC for the BET measurements. We thank Darío de la Iglesia and Carla Otero for their experimental work. We also acknowledge the assistance of Felipe Macías-García, Cristina Pastoriza, and María Santiso during the collection and the characterization of the samples. We thank two anonymous reviewers for their comments and suggestions, and guest editor Mario Villalobos for his time and effort.

 

References

Acero, P., Ayora, C., Torrentó, C., Nieto, J.M., 2006, The behaviour of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite: Geochimica et Cosmochimica Acta, 70, 4130-4139.

Álvarez, E., Pérez, A., Calvo, R., 1993, Aluminium speciation in surface waters and soil solutions in areas of sulphide mineralization in Galicia (N.W. Spain): Science of the Total Environment, 133, 17-37.

Álvarez, E., Fernández-Sanjurjo, M., Otero, X.L., Macías, F., 2011, Aluminum speciation in the bulk and rhizospheric soil solution of the species colonizing an abandoned copper mine in Galicia (NW Spain): Journal of Soils and Sediments, 11, 221-230.

Antelo, J., Avena, M., Fiol, S., López, R., Arce, F., 2005, Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface: Journal of Colloid and Interface Science, 285, 476-486.

Antelo, J., Fiol, S., Pérez, C., Mariño, S., Arce, F., Gondar, D., López, R., 2010, Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model: Journal of Colloid and Interface Science, 347, 112-119.

Antelo, J., Fiol, S., Gondar, D., López, R., Arce, F., 2012, Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange: Journal of Colloid and Interface Science, 386, 338-343.

Antelo, J., Fiol, S., Gondar, D., Pérez, C., López, R., Arce, F., 2013, Cu(II) incorporation to schwertmannite: Effect on stability and reactivity under AMD conditions: Geochimica et Cosmochimica Acta, 119, 149-163.

Asta, M.P., Ayora, C., Román-Ross, G., Cama, J., Acero, P., Gault, A.G., Charnock, J.M., Bardelli, F., 2010, Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates: Chemical Geology, 271, 1-12.

Bigham, J.M., Schwertmann, U., Carlson, L., Murad, E., 1990, A poorly crystallized oxyhydroxisulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters: Geochimica et Cosmochimica Acta 54, 2743-2758.

Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., Wolf, M., 1996, Schwertmannite and the chemical modeling of iron in acid sulfate waters: Geochimica et Cosmochimica Acta, 60, 2111-2121.

Bigham, J.M., Nordstrom, D.K., 2000, Iron and aluminium hydroxysulfates from acid sulphate waters, in Alpers, C.N., Jambor, J.L., Nordstrom, D.K. (eds.), Reviews in mineralogy and geochemistry – Sulfate minerals: Crystallography, geochemistry, and environmental significance: Washington, DC, The Mineralogical Society of America, 351-403 pp.

Burgos, W.D., Borch, T., Troyer, L.D., Luan, F., Larson, L.N., Brown, J.F., Lambson, J., Shimizu, M., 2012, Schwertmannite and Fe oxides formed by biological low-pH Fe(II) oxidation versus abiotic neutralization: Impact of trace metal sequestration: Geochimica et Cosmochimica Acta, 76, 29-44.

Burton, E.D., Bush, R.T., Johnston, S.G., Watling, K.M., Hocking, R.K., Sullivan, L.A., Parker, G.K., 2009, Sorption of arsenic(V) and arsenic(III) to schwertmannite: Environmental Science & Technology, 43, 9202-9207.

Caraballo, M.A., Rimstidt, J.D., Macías, F., Nieto, J.M., Hochella Jr., M.F., 2013, Metastability, nanocrystallinity and pseudo-solid solution effects on the understanding of schwertmannite solubility: Chemical Geology, 360-361, 22-31.

Carlson, L., Bigham, J.M., Schwertmann, U., Kyek, A., Wagner, F., 2002, Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues: Environmental Science & Technology, 36, 1712-1719.

Clesceri, L.S., Greenberg, A.E., Eaton, A.D., 1998, Standard Methods for the Examination of Water and Wastewater: Washington, DC, USA, American Public Health Association, 1220 p.

Cornell, R.M, Schwertmann, U., 1996, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses: New York, USA, VCH, 573 p.

Davis, J.A., James, R.O., Leckie, J.O., 1978, Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes: Journal of Colloid and Interface Science, 63, 480-499.

Dzombak, D.A, Morel, F.M.M., 1990, Surface Complexation Modeling. Hydrous Ferric Oxide: New York, USA, John Wiley & Sons, 416 p.

European Commission, 1998, Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption: Official Journal of European Union L, 330, pp. 32-54.

Fukushi, K., Aoyama, K., Yang, C., Kitadai, N., Nakashikma, S., 2013, Surface complexation modeling for sulfate adsorption on ferrihydrite consistent with in situ infrared spectroscopic observations: Applied Geochemistry, 36, 92-103.

Groenenberg, J.A., Lofts, S., 2014, The use of assemblage models to describe trace element partitioning, speciation, and fate: A review: Environmental Toxicology and Chemistry, 33, 2181-2196.

Gustafsson, J.P., 2012, Visual MINTEQ 3.0: Available from http://vminteq.lwr.kth.se/

Hiemstra T., van Riemsdijk W.H., 1996, A surface structural approach to ion adsorption: the charge distribution (CD) model; Journal of Colloid and Interface Science, 179, 488-508.

Hiemstra, T., van Riemsdijk, W.H., 2009, A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density: Geochimica et Cosmochimica Acta, 73, 4423-4436.

Jönsson, J., Sjöberg, S., Lövgren, L., 2006, Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter: Water Research, 40, 969-974.

Karamalidis, A.K., Dzombak, D.A., 2010, Surface Complexation Modeling: Gibbsite: New Jersey, USA, John Wiley & Sons.

Keizer, M.G., van Riemsdijk, W.H., 1998, ECOSAT: Equilibrium Calculation of Speciation and Transport: Wageningen, The Netherlands, Department Soil Science and Plant Nutrition, Wageningen Agricultural University, Technical Report, 76 p.

Kumpulainen, S., Carlson, L., Räisänen, M.L., 2007, Seasonal variation of ochreous precipitates in mine effluents in Finland: Applied Geochemistry, 22, 760-777.

Lee, G., Bigham, J.M., Faure, G., 2002, Removal of trace elements by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee: Applied Geochemistry, 17, 569-581.

Lenoble, V., Deluchat, V., Serpaud, B., Bollinger, J.C., 2003, Arsenite oxidation and arsenate determination by the molybene blue method: Talanta, 61, 267-276.

Maillot, F., Morin, G., Julliot, F., Bruneel, O., Casiot, C., Ona-Nguema, G., Wang, Y., Lebrun, S., Aubry, E., Vlaic, G., Brown Jr., G.E., 2013, Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation: Geochimica et Cosmochimica Acta, 104, 310-329.

Martínez, C.E., McBride, M.B., 2001, Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: Aging effects on metal solubility and extractability by citrate: Environmental Toxicology and Chemistry, 20, 122-126.

Mathur, S.S., Dzombak, D.A., 2006, Surface complexation modeling: Goethite, in Lützenkirchen, J. (ed.), Interface science and technology - Surface complexation: Amsterdam, The Netherlands, Academic Press, pp. 443-468.

McKeague, J.A., Day, J.H., 1966, Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils: Canadian Journal of Soil Science, 46, 13-22.

Mohapatra, M., Sahoo, S.K., Anand, S., Das, R.P., 2006, Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples: Journal of Colloid and Interface Science, 298, 6-12.

Moon, E.M., Peacock, C.L., 2013, Modelling Cu(II) adsorption to ferrihydrite and ferrihydrite-bacteria composites: Deviation from additive adsorption in the composite sorption system: Geochimica et Cosmochimica Acta, 104, 148-164.

Nordstrom, D.K., 2011, Mine waters: Acid to circumneutral: Elements, 7, 393-398.

Olías, M., Cánovas, C.R., Nieto, J.M., Sarmiento, A.M., 2006, Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain): Applied Geochemistry, 21, 1733-1749.

Paikaray, S., Göttlicher, J., Peiffer, S., 2011, Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway: Chemical Geology, 283, 134-142.

Paikaray, S., Göttlicher, J., Peiffer, S., 2012, As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure: Chemosphere, 86, 557-564.

Peak, D., Ford, R.G., Sparks, D.L., 1999, An in situ ATR-FTIR investigation of sulphate bonding mechanisms on goethite: Journal of Colloid and Interface Science, 218, 289-299.

Peretyazko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D., 2009, Mineralogical transformation controlling acid mine drainage chemistry: Chemical Geology, 262, 169-178.

Ponthieu, M., Julliot, F., Hiemstra, T., van Riemsdijk, W.H., Benedetti, M.F., 2006, Metal ion binding to iron oxides: Geochimica et Cosmochimica Acta, 70, 2679-2698.

Rahnemaie, R., Hiemstra, T., van Riemsdijk, W.H., 2007, Geometry, charge distribution, and surface speciation of phosphate on goethite: Langmuir, 23, 3680-3689.

Regenspurg, S., Brand, A., Peiffer, S., 2004, Formation and stability of schwertmannite in acidic mining lakes: Geochimica et Cosmochimica Acta, 68, 1185-1197.

Regenspurg, S., Peiffer S., 2005, Arsenate and chromate incorporation in schwertmannite: Applied Geochemistry, 20, 1226-1239.

Rodda, D.P., Wells, J.D., Johnson B.B., 1996, Anomalous adsorption of copper(II) on goethite: Journal of Colloid and Interface Science, 184, 564-569.

Schroth, A.W., Parnell Jr., R.A., 2005, Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT: Applied Geochemistry, 20, 907-917.

Stachowicz, M., Hiemstra, T., van Riemsdijk, W.H., 2006, Surface speciation of As(III) and As(V) in relation to charge distribution: Journal of Colloid and Interface Science, 302, 62-75.

Swedlund, P.J., Webster, J.G., 2001, Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite: Applied Geochemistry, 16, 503-511.

Tiberg, C., Sjösdest, C., Persson, I., Gustafsson, J.P., 2013, Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite: Geochimica et Cosmochimica Acta, 120, 140-157.

Tresintsi, S., Simeonidis, K., Pliatsikas, N., Vourlias, G., Patsalas, P., Mitrakas, M., 2014, The role of SO42-surface distribution in arsenic removal by iron oxy-hydroxides: Journal of Solid State Chemistry, 213, 145-151.

Waychunas, G.A., Rea, B.A., Fuller, C.C., Davis, J.A., 1993, Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate: Geochimica et Cosmochimica Acta, 57, 2251-2269.

Weng, L., van Riemsdijk, W.H., Hiemstra, T., 2008, Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids: Geochimica et Cosmochimica Acta, 72, 5857-5870.

Zhang, G.Y., Peak, D., 2007, Studies of Cd(II)-sulfate interaction at the goethite-water interface by ATR-FTIR spectroscopy: Geochimica et Cosmochimica Acta, 71, 2158-2169.

Zhu, J., Pigna, M., Cozzolino, V., Caporale, A.G., Violante, A., 2011, Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands: Journal of Hazardous Materials, 189, 564-571.


Manuscript received: October 21, 2014
Corrected manuscript received: January 8, 2015
Manuscript accepted: January 16, 2015

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 479-491

http://dx.doi.org/10.18268/BSGM2015v67n3a11

Identification of diagenetic calcium arsenates using synchrotron-based micro X-ray diffraction

Francisco Castillo1,2,3, Miguel Avalos-Borja4,5, Heather Jamieson6, Gerardo Hernández-Bárcenas1, Nadia Martínez-Villegas1,*

1 IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4a Sec. 78216, San Luis Potosí, SLP, México.
2 IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, San Luis Potosí, SLP, México.
3 CONACYT Research Fellow, Instituto de Geología, Universidad Autónoma de San Luis Potosí.
4 Centro de Nanociencias y Nanotecnología-UNAM, Ensenada, BC, México.
5 On leave at IPICyT, Instituto Potosino de Investigación Cientifica y Tecnológica, División de Materiales Avanzados, San Luis Potosí, SLP, México.
6 Department of Geological Engineering, Queen's University, Kingston, ON, Canada.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

In this work, we identify the type of calcium arsenates found in sediment samples from an aquifer located in Matehuala, San Luis Potosí, México. Sediments in contact with levels up to 158 mg/L of arsenic in neutral pH water were studied by X-ray diffraction, scanning electron microscopy coupled to energy dispersive X-ray analyses (SEM-EDS), and synchrotron based X-ray diffraction. Identification of these calcium arsenates by X-ray analysis has proved to be very difficult to achieve because the precipitates of interest are on the microscale and immerse in a matrix of calcite, gypsum, and quartz comprising nearly 100 % of the samples. Needle-like specimens composed of calcium, arsenic, and oxygen were, however, commonly observed in sediment samples during SEM-EDS analyses in backscattered mode. Synchrotron based X-ray analyses revealed some peaks that were compared with published data for guerinite, haindingerite, and pharmacolite suggesting that these were the calcium arsenates present in sediments, the calcium arsenates that control the solubility of arsenic in the contaminated aquifer in Matehuala, and the calcium arsenates that prevail in the long-term in the environment after cycles of dissolution and precipitation. The identification of these calcium arsenates is consistent with the environmental conditions prevailing at the study area and the SEM-EDS observations. However, its identification is not unequivocal as the comparison of experimental data collected in single crystal specimens against X-ray diffraction references collected in powders prevents a strictly proper identification of the specimens analyzed. In this way, scorodite was also identified by synchrotron based X-ray analyses however its presence is inconsistent with the environmental conditions and the calcium arsenate associations found in this study. Scorodite identification was therefore considered tentative. A thorough examination, with additional and/or improved analytical techniques, should be undertaken to find an environmentally sound explanation for the diffraction peaks assigned to scorodite, which might be from a clay a mineral, probably with no arsenic.

Keywords: calcium arsenates, arsenic contamination, guerinite, haindingerite, pharmacolite, diagenetic calcium arsenates.

 

Resumen

En este trabajo identificamos el tipo de arseniatos de calcio que se encuentran en muestras de sedimento de un acuífero altamente contaminado con arsénico ubicado en Matehuala, San Luis Potosí, México. Los sedimentos en contacto con hasta 158 mg/L de arsénico en agua a pH neutro se estudiaron por difracción convencional de rayos X, microscopía electrónica de barrido acoplado a análisis de dispersión de energía de rayos X (SEM- EDS) y micro difracción de rayos X en sincrotrón. La identificación de arseniatos de calcio por análisis convencionales de difracción de rayos X no fue posible debido a que los especímenes de interés son de tamaño microscópico y se encuentran en una matriz de calcita, yeso y cuarzo que comprende casi el 100 % de las muestras, lo que imposibilita separar la señal de los arseniatos de la señal de la matriz y/o el ruido. No obstante, especímenes aciculares compuestos de calcio, arsénico y oxígeno se observaron comúnmente en las muestras de sedimento durante los analices SEM-EDS utilizando un detector de electrones retrodispersados. En contraste, los análisis de rayos X en sincrotrón permitieron revelar algunos picos característicos de guerinita, haidingerita y farmacolita, lo que sugiere que estos son los arseniatos de calcio presentes en los sedimentos, los arseniatos de calcio que controlan la solubilidad del arsénico en el acuífero contaminado en Matehuala y los arseniatos de calcio que prevalecen a largo plazo en el ambiente después de ciclos de disolución y precipitación. La identificación de estos arseniatos es consistente con las condiciones ambientales del sitio de estudio y las observaciones SEM-EDS, sin embargo, dicha identificación no es inequívoca debido a la comparación de patrones experimentales de difracción de rayos X tomados en monocristales contra tarjetas de difracción de polvos, lo que previene la identificación estrictamente apropiada de los especímenes analizados. En este sentido, también se identificó escorodita pero su presencia es cuestionable a pH 7 y en presencia de guerinita, haidingerita y farmacolita por lo que este último resultado debe tomarse con reserva y un estudio más profundo, con técnicas analíticas adicionales y/o mejoradas, debe llevarse a cabo para encontrarle una explicación ambientalmente consistente a los picos de difracción de rayos X asignados a la escorodita, mismos que podrían corresponder a algún mineral arcilloso que podría no contener arsénico.

Palabras clave: arseniatos de calcio, contaminación con arsénico, guerinita, haidingerita, arseniatos de calcio diagénicos.

 

1. Introduction

In the past, lime neutralization has been used to precipitate arsenic from process solutions as calcium arsenates (Bothe and Brown, 1999a; Robins, 1981; Swash and Monhemius, 1995). Typical precipitates derived from this stabilization technology comprise a range of compounds with variously described stoichiometries, degrees of hydration and solubilities (Bothe and Brown, 1999a, 1999b; Nishimura and Robins, 1998; Zhu et al., 2006) that are further disposed of in soils (Robins, 1981).

An examination of the information available in the literature resulted in 22 calcium arsenates, including several dimorphs and hydrates (Table 1). Although it is not clear whether all arsenates with such stoichiometry indeed do exist (Nordstrom et al., 2014), no calcium arsenate will be suitable for arsenic immobilization unless the pH remains high in soils and large amounts of calcium are present (Magalhaes and Williams, 2007; Swash and Monhemius, 1995).

In the presence of excess lime, calcium arsenates appear to have low solubility (Table 1) (Bothe and Brown, 1999b; Nordstrom et al., 2014; Swash and Monhemius, 1995; Zhu et al., 2006) but these are expected to dissolve after the pH buffering effect of the excess lime is reduced through lime solubility and carbonation (Swash and Monhemius, 1995). Arsenic mobilization from calcium arsenates has proved to lead to ultrahigh concentrations of arsenic in surface and groundwater (Martínez-Villegas et al., 2013). Literature indicates, however, a lack of knowledge as to the calcium arsenates that are actually present in the environment controlling arsenic mobilization after long-term disposal.

Calcium hydroxide arsenate hydrates, johnbaumite, and calcium arsenate hydrates (Table 1) are the major phases reported to precipitate during arsenic stabilization using lime followed by guerinite, ferrarisite, pharmacolite, and haindengerite as the calcium/arsenic ratio and pH decreased (Table 1) (Bothe and Brown, 1999a, 1999b; Nishimura and Robins, 1998; Zhu et al., 2006). Guerinite, ferrarisite, pharmacolite, and haindengerite are therefore the calcium arsenates more likely to prevail in the environment, where soil pH and aqueous calcium concentrations are usually controlled by equilibrium with less soluble calcium compounds (Magalhaes, 2002). To the best of our knowledge, no study has specifically identified calcium arsenates precipitates after their disposal in soils. Nevertheless, sainfeldite, guerinite, pharmacolite, haindingerite, and weillite have been reported to occur on primary ores containing arsenic or native arsenic in carbonate gangue (Ondrus et al., 1997), mines (Bowell and Parshley, 2005; Pierrot, 1964), industrial sites (Julliot et al., 1999), and laboratory experiments at circumneutral pHs and low calcium/arsenic ratios (Bothe and Brown, 2002, 1999b; Nishimura and Robins, 1998; Pierrot, 1964; Swash and Monhemius, 1995). Unequivocal calcium arsenate identification is challenging in natural (Onac et al., 2007; Ondrus et al., 1997) or impacted environments (Donahue and Hendry, 2003; Pantuzzo and Ciminelli, 2010) due to the presence of (many different) calcium arsenates in samples largely dominated by other major minerals and/or because the X-ray patterns do not compare closely to published data and, in laboratory experiments, due to lack of reproducible and ambiguous X-ray patterns that do not match any known phases (Bothe and Brown, 1999a, 1999b; Myneni et al., 1997).

The present investigation pertains to an environment contaminated with calcium arsenates collected in a demolished smelter located in Matehuala, San Luis Potosi, Mexico (Figure 1), which originated from the stabilization of arsenic in metallurgical effluents with lime. In this study, we determine the identity of diagenetic calcium arsenates collected in sediments of the contaminated aquifer. Given the difficulties encountered in the identification of these calcium arsenates immersed in a matrix largely comprised of other calcium rich phases, such as calcite and gypsum, we describe in detailed the different approaches used in this study.

Table 1. X-ray diffraction “cards” and solubility products available in the literature for calcium arsenates showing lower solubility products for the more alkaline calcium arsenates.

*Natural calcium arsenates. (1) Ondrus et al. (1997), (2) Worzala (1993), (3) Chiari and Ferraris (1971), (4) Ferraris and Jones (1972), (5) Herpin (1963), (6) Ferraris and Chiari (1970), (7) Ferraris et al. (1972a), (8) Binas (1966), (9) Cassien and Herpin (1966), (10) Calleri and Ferraris (1967), (11) Pierrot (1964), (12) Ferraris (1969), (13) Ferraris et al. (1971), (14) Brasse (1970), (15) Catti and Ferraris (1973), (16) Ferraris et al. (1972b), (17) Ferraris and Abbona (1972), (18) Catti and Ivaldi (1981), (19) Bari (1980), (20) Catti and Ferraris (1974), (21) Bari (1982), (22) Catti and Ivaldi (1983), (23) Dunn et al. (1980), (24) Bothe and Brown (1999), (25) Zhu et al. (2006), (26) Rodríguez-Blanco et al. (2007), (27) Nishimura and Robins (1998), (28) Mahapatra et al. (1986).


Figure 1. Location and pictures of the demolished smelter (332383"W, 2618114"N) and the arsenic contaminated spring (332802"W, 2617518"N) located in Matehuala, San Luis Potosi, Mexico.

 

2. Materials and methods

2.1. Mineralogy and total arsenic, calcium and iron analyses in sediment samples

Sediment samples contaminated with calcium arsenates were collected in a spring grossly polluted with arsenic. The spring is located in the vicinity of an abandoned smelter where residues of calcium arsenates from a former process of arsenic stabilization using lime took place six decades ago (Martínez-Villegas et al., 2013). The abandoned smelter and the spring are located in Matehuala, an urban center in San Luis Potosi, Mexico (Figure 1) where the long-term disposal of calcium arsenates has led to cycles of dissolution and precipitation of soluble calcium arsenates that cause ultrahigh concentrations of arsenic in surface and groundwater (Martínez-Villegas et al., 2013). Ultrahigh concentrations of arsenic in the spring vary from 36 to 158 mg/L in the water overlying the sediments (Martínez-Villegas et al., 2013). The spring is found within a perched aquifer that runs in a W to E direction and is believed not to mix with a low-As shallow aquifer (< 21 µgAs/L) that runs NW to SE between 15 and 50 m in depth (Martínez-Villegas et al., 2013). Procedures used in the sampling and determination of arsenic in the overlying water are described in detail in Martínez-Villegas et al. (2013). Briefly, water samples were collected over a year on a monthly basis at the spring in 120 mL polypropylene bottles previously washed with 10 % HNO3and rinsed with deionized water. Water samples were filtered through a 0.45 µm-pore membrane, acidified to pH < 2, and stored at 4 ºC until analysis. Total dissolved arsenic was determined by inductively coupled plasma mass spectroscopy (ICP-MS).

Sediment samples were collected using a shovel within the first 0 – 5 cm of depth. Sediments were stored in polyethylene bags and maintained at 4 ºC until air-dried, ground and homogenized. Bulk mineralogy was determined by X-ray diffraction (XRD) in sediment samples using a Bruker D8 ADVANCE X-ray diffractometer fitted with a Cu Kα source. Sediment samples for X-ray powder diffraction were compacted into a glass holder covering an area of 1.5 cm2 and analyzed from 5º to 90º 2Ɵ with a step interval of 0.01 2Ɵ and a counting time of 4s per step. Phase identification was made by matching the experimental diffractogram with data from PDF4 of the ICDD (International Center of Diffraction Data). Total arsenic, calcium, and iron were determined by inductively coupled plasma optical emission spectroscopy (ICP-EOS) in digests of sediment samples. For the digestion of samples, a representative 0.1 g sample was digested with 10 mL of aqua regia (HNO3/HCl 3:2 V/V) in an Ethos 1 advanced microwave digestion system for 10 min at 150 ºC using a 750 W lamp with a ramp heating of 10 min and a ramp cooling of 30 min. For ICP analyses, the resultant digests were filtered through a 0.45 µm membrane, and then diluted to a final volume of 25 mL.

 

2.2. Methods initially used to identify calcium arsenates

As mentioned previously, calcium arsenate identification is challenging. Attempts include conventional X-ray analyses, imaging and elemental analyses by SEM-EDS, and sample preparation in a Helios NanoLab for electron diffraction analyses in transmission electron microscopy (TEM). Small amounts of sediment samples were directly mounted on a carbon tape. Each carbon tape was fixed on an aluminum holder. Scanning electron microscope (SEM) analyses in sediment samples were done in a FEI Quanta 200 SEM coupled to an EDAX energy dispersive system. SEM analyses were performed using either a large field or a backscattered electron detector at low vacuum (10 – 130 kPa). Additionally, sample manipulations were performed in a Helios NanoLab Dual Beam 600 to try to extract calcium arsenates specimens from sediment samples for milling until producing suitable quality samples for TEM imaging and diffraction analyses.

 

2.3. Micro X-ray diffraction analyses

Liftable thin sections of calcium arsenate contaminated sediment samples were prepared to identify selected targets of calcium arsenates by synchrotron microanalysis using petrographic techniques (Walker et al., 2009). Sections were first prepared on pure silica glass slides and then explored by SEM-EDS to identify those regions with specimens of interest. Sections where calcium arsenates were found were removed from the glass slide by soaking the slide in acetone and lifting it on kapton tape to be then analyzed at Beamline X26A at the National Synchrotron Light Source at Brookhaven National Laboratory, New York. Beamline X26A has proved to be suitable for obtaining high-resolution microdiffraction data on very small (5 µm) crystals (Jamieson et al., 2011; Walker et al., 2009). Once mounted on the X26-A beamline, liftable thin sections were explored by optical microscopy to identify those regions of interest. A detailed elemental map was obtained to identify spots with high levels of arsenic, calcium, and iron. Micro X-ray diffraction was completed in transmission mode using a Rayonix SX-165 CCD Image Plate area detector. The incident X-ray beam was tuned to a wavelength of 0.7093 Å, and the distance from the sample detector was 247 mm. Calibration of the detector was done using the SRM674a diffraction standard α-Al2O3 and Ag-Behenate (AgC22H43O2). 2-D X-ray patterns were recorded on selected spots. Calibrations and corrections for detector distortions (camera sample distance, the camera tilt and rotation, and the beam center on the camera plane) were done using Fit2DTMsoftware (Hammersley, 1998). One dimensional X-ray patterns were obtained and matched with those compiled in the PDF4 database of the ICDD. Calcium arsenates in the database are shown in Table 1. A total of 15 target spots were analyzed within three different liftable thin sections (Table 2).

Table 2. Arsenic, calcium, and iron counts from X-ray fluorescence analyses at each target spot selected for X-ray diffraction analyses.

 

3. Results

3.1. Mineralogy and total arsenic, calcium, and iron concentrations in sediment samples

According to peak matching with simulated data from the PDF4 of the ICDD, conventional X-ray diffraction analyses consistently show sediments comprise gypsum, calcite, and quartz (Figure 2). Total arsenic concentrations in sediment samples varied from 261 mg/kg to 1753 mg/kg without a clear trend with the concentration of arsenic in the overlying water (Figure 3). Total arsenic concentrations in sediment samples are due to a process of diagenetic precipitation of calcium arsenates firstly dissolved upstream in the terrains of a currently demolished smelter (Martínez-Villegas et al., 2013). In the case of calcium, total calcium concentrations vary from 8.7 % to 10.2 % and might rather be controlled by calcite and gypsum. Due to the commanding role of iron in the regulation of arsenic mobility in the environment, we also measured total iron concentrations in sediment samples. Total iron concentrations vary from 1.1 % to 1.3 %, however no correlation has been observed between arsenic and iron in this study area (Martínez-Villegas et al., 2013).


Figure 2. X-ray diffractograms representative of sediments in the study area showing how experimental peaks match with simulated gypsum, calcite, and quartz; which is not the case for guerinite, haidinguerite, pharmacolite, and scorodite. According to PDF4 of the ICDD database.

 


Figure 3. Arsenic concentration in sediments and the overlying water. Arsenic data in the overlying water was taken from Martínez-Villegas, et al. (2013).

 

3.2. Failed methods used to attempt to identify calcium arsenates

Factors complicating calcium arsenate identification in calcareous sediments include the relatively low concentration of the minerals of interest as compared with bulk sample, sample heterogeneity, sample composition, and sample properties.

The relatively low concentration of calcium arsenates in bulk samples hinders calcium arsenate data in X-ray diffraction analyses and makes impossible its identification. In this study, no calcium arsenates were possible to identify by conventional X-ray analysis in sediment samples (Figure 2). These results were consistent with previous studies that had failed to identify calcium arsenates using conventional X-ray diffraction analysis even in highly contaminated soils containing up to 5 % of arsenic on a mass basis (Martínez-Villegas et al., 2013).

On the other hand, the heterogeneous nature of sediment samples greatly complicates their analyses by SEM-EDS. Despite clear evidences of the presence of calcium arsenates in contaminated sediment samples (Figures 4 and 5), we were unable to confirm their presence using chemical spot analyses. This could be due to the small particle size of the arsenates and the “pear” effect of the analytical technique, where both the particle and the matrix are sampled simultaneously. Composition analyses were besides highly deterred by the nonconducting nature of the samples. Image distortions or severe cases of charging during secondary electron SEM analyses, observed as bright regions surrounded by dark haloes (Figure 4a), made difficult to acquire good quality images and therefore good quality chemical information results. Calcium arsenates in Figure 4b were obtained using a backscattered electron detector, which is less affected by electric charge but with less image resolution, making significantly more difficult to analyze smaller specimens like the diagenetic calcium arsenates present in sediment samples (Figure 5). The disadvantages of sample heterogeneity could have been overcome, in part, and in theory, by preparing ultrathin samples for electron diffraction analyses after TEM, however calcium arsenate specimens were unstable under the Helios NanoLab and no specimens could have ever been extracted for milling and TEM analyses (Figure 4c and d).


Figure 4. Image distortion, specimen charging, and sample instability problems during SEM observations. (a) Image distortion and calcium arsenate charging occurring during SEM analyses using a large field detector (LFD) of secondary electrons in low vacuum (10 – 130 kPa) in a FEI Quanta 200 SEM. (b) Image distortion and charging were usually overcome using a backscattered electron detector (BSD) at expenses of resolution but producing atomic number contrast. The use of a BSD was key to help localize calcium arsenate specimens by contrast in gypsum rich samples. (c) Calcium arsenate specimen found in sediment samples using a Helios NanoLab. (d) Track of the calcium arsenate shown in (c) after sublimation during Helios NanoLab manipulations.


Figure 5. Backscattered SEM images of samples A (a and b) , B (c and d) and D (e and f) showing diagenetic needle-like minerals commonly found in sediments of the contaminated spring (brighter areas indicate zones of higher atomic number).

 

3.3. Micro X-ray diffraction results

Figure 5 shows SEM images of specimens of calcium arsenates found on silica glass slides and their corresponding EDS analyses. As can be observed, all specimens show a needle-like morphology where EDS analyses revealed the presence of arsenic, calcium, oxygen, carbon, aluminum, silica, sulfur, potassium and iron (Figures 5 a to f) likely due to the presence of calcium arsenates, calcite, gypsum, and quartz. Aluminum and potassium might derive from phyllosilicate clays. Element counts detected by X-ray fluorescence collected in areas where calcium arsenates were observed are shown in Table 2. 2D diffraction patterns collected at each specific target spot were transformed to 1D.

Figure 6 shows the micro-X-ray diffractogram for sample A as compared with data from the PDF4 of the ICDD for gypsum, calcite, quartz, guerinite, haindingerite, pharmacolite, and scorodite. As it can be observed, a large set of peaks showed at positions 2.9, 9.1, 10.6, 12.2, 12.7, 13.4, 14.4, 15.8, 16.3, 17.8, 19.5, 21.4, 21.8, 22.5, 25.5 and 27.2. Because of the acquisition of data at a micron scale of very specific specimens (Figure 5), it was completely unexpected to observe that calcite, gypsum, and quartz from the sediment matrix were still dominant in the diffraction patterns (Figures 6). Peak positions accounting for calcite, gypsum, and quartz were found at 12.2, 12.7, 13.4, 14.4, 15.8, 17.8, 19.5, 21.4, 21.8, 22.5, 25.5 and 27.2. Remaining peaks (at positions 2.9, 9.1, 10.6 and 16.3) were explained by the presence of guerinite, haindingerite, pharmacolite, and scorodite (Figure 6) that show peaks at these specific positions as well as some other peaks that overlap with the matrix and other calcium arsenates (Figure 6). For example, the peak found at position 2.9, was explained by guerinite, whose reference data show another peak at 13.4 that overlaps with calcite, gypsum, and pharmacolite (Figure 6). Peak overlap was a major limiting factor on the identification of calcium arsenates in this study. Another factor that greatly deterred the identification of calcium arsenates was the collection of single crystal diffraction data as determined by micro-X ray results. Different to X-ray powder measurements, where the random orientation of crystals allows for peak acquisition at every characteristic position with proportional intensities, in single crystal measurements peak acquisition and their relative intensities depend on the orientation of the crystal analyzed. That is, in a single crystal diffractogram, not all the characteristic peaks of the mineral may show up and the intensities might not correspond to those of powder references. In this study, only a few crystal orientations might have diffracted, obtaining therefore incomplete sets of peaks with non-proportional intensities. These complications were observed even for dominant matrix minerals such as gypsum, for which not a whole set of peaks of proportional intensities was obtained (Figure 6). Guerinite, haindingerite, pharmacolite, and scorodite were consistently identified in the rest of the targets analyzed using synchrotron based X ray analyses (Figures 7 and 8). The presence of guerinite, haindingerite, and pharmacolite as secondary calcium arsenates has been reported to occur at circumneutral, calcium rich environments (Julliot et al., 1999) and in near neutral pH laboratory experiments in the presence of calcium (Bothe and Brown, 1999a, 1999b). In this study, the identification of guerinite and pharmacolite is thermodynamically consistent with data from the water overlying the sediments (Figure 9). While this data does not overlap with the equilibrium of haindingerite, the presence of this phase can be explained by the close association of this mineral with the precipitation of guerinite (Bothe and Brown, 1999a, 1999b; Julliot et al., 1999). On the other hand, the identification of scorodite is inconsistent with the environmental conditions referred in this paper (circumneutral, calcium rich environments) and very unlikely to occur in association with guerinite, haindingerite, and pharmacolite (Figure 9). Furthermore, no additional microscopic, spectroscopy, and/or hydrogeochemical evidences have been observed for the presence of scorodite in the study area therefore a thorough examination, with additional and/or improved analytical techniques, should be undertaken to find an environmentally sound explanation to the diffraction peaks assigned to scorodite, which might be from a clay mineral, probably with no arsenic.

Figure 6. X-ray diffractograms of sample A revealing experimental peaks that match with simulated guerinite, haindingerite, pharmacolite, scorodite, gypsum, calcite, and quartz according to PDF4 of the ICDD database.





Figure 7. X-ray diffractograms of sample B revealing experimental peaks that match with simulated guerinite, haindingerite, pharmacolite, scorodite, gypsum, calcite, and quartz according to PDF4 of the ICDD database.




Figure 8. X-ray diffractograms of sample D revealing experimental peaks that match with simulated guerinite, haindingerite, pharmacolite, scorodite, gypsum, calcite, and quartz according to PDF4 of the ICDD database.


Figure 9. Activity ratio diagram illustrating the data of the water overlying the studied sediments (black dots) is reasonably consistent with the equilibriums of guerinite and pharmacolite but inconsistent with formation of scorodite. The range denoted by the hatched region is where arsenic would be controlled by scorodite dissolution at the spring conditions. Data for this figure was taken from Martínez-Villegas et al. (2013). Guerinite, pharmacolite, and haindingerite equilibriums correspond to the solubility products shown in Table 1.

 

4. Conclusions

In this study, guerinite, haindingerite, and pharmacolite were identified in contaminated sediment samples as determined by X-ray synchrotron diffraction that revealed some peak positions that compared with these minerals. Guerinite, haindingerite, and pharmacolite are diagenetic calcium arsenates present in the aquifer after long-term disposal on soils of (other) original calcium arsenates upstream. Guerinite, haindingerite, pharmacolite are calcium arsenates highly soluble (Table 1). Results from this paper are in agreement with those of our previous paper (Martínez-Villegas et al., 2013) in that calcium arsenates would explain the ultrahigh concentrations of arsenic found in the aquifer. Our current results, however, differ from our previous paper in that we first observed that none of these minerals explained arsenic contamination according to geochemical calculations using PHREEQC (Martínez-Villegas et al., 2013). In that case, arsenic contamination was explained by calcium arsenate that showed the same stoichiometry than guerinite but a different solubility product. The challenge today is to match solubility data in the aquifer with their corresponding precipitating phases. In order to do so, an evaluation of the internal consistency of thermodynamic data on calcium arsenates and improved approaches for calcium arsenate identification are needed.

 

Acknowledgements

This study was supported by grants CB-2012-183025 and IPICYT S-2694 funded by CONACyT and Curso-Taller de Calidad del Agua y Modelación Hidrogeoquímica, respectively. Synchrotron-based X-ray diffractions were collected at beamline X-26A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. X26A is supported by the Department of Energy (DOE) - Geosciences (DE-FG02-92ER14244 to The University of Chicago - CARS). Use of the NSLS was supported by DOE under Contract No. DE-AC02-98CH10886. F. Castillo and G. Hernández-Barcenas thank CONACyT for postdoctoral and undergrad fellowships, respectively. Special thanks are due to Gladis Labrada, Beatriz Adriana Rivera Escoto and Ana Iris Peña Maldonado from LINAN-IPICyT, Tyler Nash from Queen´s University, and Sue Wirick from University of Chicago.

 

References

Bari, H., 1980, Ferrarisite Ca5H2(AsO4) 9H2a new mineral dimorphous with guerinite: Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 103, 533-540.

Bari, H., 1982, Phaunouxite Ca3(AsO4)2·11H2O a new mineral strictly associated with Rauenthalite: Bulletin de Minéralogie, 105, 327-332.

Binas, H.Z., 1966, Die Struktur des Haidingerits CaHAsO4•H2O: Zeitschrift für anorganische und allgemeine Chemie, 347, 133.

Bothe, J.V., Brown, P.W., 1999a, Arsenic immobilization by calcium arsenate formation: Environmental Science & Technolog, 33, 3806-3811.

Bothe, J.V., Brown, P.W., 1999b, The stabilities of calcium arsenates at 23+/-1ºC: Journal of Hazardous Materials, 69, 197-207.

Bothe, J.V., Brown, P.W., 2002, CaO-As2O5-H2O system at 23º+/-1ºC: Journal of the American Ceramic Society, 85, 221-224.

Bowell, R.J., Parshley, J.V., 2005, Control of pit-lake water chemistry by secondary minerals, Summer Camp Pits, Getchell mine, Nevada: Chemical Geology, 215, 373-385.

Brasse, R., 1970, Les orthoarseniates bicalciques et le system Ca-As2O5-H2O 20ºC: Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 2069-2072.

Calleri, M., Ferraris, G., 1967, Struttura della Haidingerite: CaH(AsO4)H2O: Periodico di Minerogia, 36, 1.

Cassien, M., Herpin, P., 1966, Structure cristalline de la haindingerite: Bulletin de la Société Francaise de Minéralogie et de Cristallographie, Cristal, 89, 18-22.

Catti, M., Ferraris, G., 1973. Hydrogen Bonding in the Crystalline State. Crystal Structure of CaHAsO4 • 3H2O: Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry, 29, 90.

Catti, M., Ferraris, G., 1974, Crystal Structure of Ca5(HAsO4)2(AsO4)2•9H2O (Guerinite): Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry, 30, 1789-1794.

Catti, M., Ivaldi, G., 1981. Mechanism of the reaction Ca5H2(AsO4)4•9H2O (ferrarisite) -> Ca5H2(AsO4)4•5H2O) (dimorph of vladimirite), and structure of the latter phase: Kristallografiya, 157, 119.

Catti, M., Ivaldi, G., 1983. On the topotactic dehydration Ca3(AsO4)2(H2O)11 (phaunouxite)- Ca3(AsO4)2(H2O)10(rauenthalite), and the structure of both minerals: Acta Crystallographica Section B: Structural Science, 39, 4.

Chiari, G., Ferraris, G., 1971, The crystal structure of calcium dihydrogen arsenate Ca(H2AsO4)2: Chemical communications, 105, 725-743.

Donahue, R., Hendry, M.J., 2003, Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Applied: Geochemestry. 18, 1733-1750.

Dunn, P.J., Peacor, D.R., Sturman, B.D., 1980, Hauckite, Fe33+ (Mg,Mn)24Zn18(SO4)4(CO3)2 (OH)81, a new mineral from Sterling Hill, New Jersey: American Mineralogist, 65, 192-195.

Ferraris, G., 1969, The Crystal Structure of Pharmacolite, CaH(AsO4)•2H2O": Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry, 25, 1544.

Ferraris, G., Chiari, G., 1970. The Crystal Structure of CaHAsO4(Weilite). Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry. 26, 403.

Ferraris, G., Abbona, F., 1972, The crystal structure of Ca5(HAsO4)2(AsO4)2•4H2O (Sainfeldite): Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 95, 33.

Ferraris, G., Jones, D.W., 1972. A Neutron Diffraction Study of the Crystal Structure of Calcium Bis(dihydrogen arsenate), Ca(H2AsO4)2. Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry 28, 2430.

Ferraris, G., Jones, D.W., Yerkess, J., 1971. Determination of hydrogen atom positions in the crystal structure of pharmacolite, CaHAsO4•2H2O, by neutron diffraction. Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry, 27, 349.

Ferraris, G. Jones, D.W, Yerkess, J., 1972a. A Neutron and X-ray Refinement of the Crystal Structure of CaHAsO4•H2O (Haidingerite). Acta Crystallographica Section B: Structural Crystallography Crystal Chemestry. 28, 209.

Ferraris, G., Franchini, A.M., Catti, M., 1972b. Crystal structure and hydrogen bonding in arsenates: MgHAsO4•7H2O (rosslerite), MgNH4AsO4•6H2O (As-struvite), CaHAsO4•3H2O: Acta Crystallographica Section A, 28, S65b.

Hammersley, A., 1998, Fit2D V10.3 V4.0 (online), Grenoble, France, European Synchrotron Research Facility, published [January 2004], available at <http://www.esrf.eu/computing/scientific/FIT2D/>, consulted [June 2014 and November 2015], Paper ESRF98-HA01T, Reference Manual.

Herpin, P., 1963, La weilite, CaH(AsO4), Un nouvel arseniate de calcium isomorphe de la monetite: Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 86, 368-372.

Jamieson, H.E., Walker, S.R., Andrade, C.F., Wrye, L.A., Rasmussen, P.E., Lanzirotti, A., Parsons, M.B., 2011. Identification and characterization of arsenic and metal compounds in contaminated soil, mine tailings, and house dust using shynchrotron-based microanalysis: Human and Ecological Risk Assesment 17, 1292-1309.

Julliot, F., Ildefonse, P., Morin, G., Calas, G., Kersabiec, A.M., Benedetti, M., 1999, Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control: Applied Geochemestry, 14, 1031-1048.

Magalhaes, M.C., Williams, P.A., 2007. Apatite group minerals: Solubility and environmental remediation, in Letcher, T.M. (ed.), Thermodynamics, Solubility and Environmental Issues: The Netherlands, Elsevier, 327-340.

Magalhaes, M.C.F., 2002, Arsenic. An environmental problem limited by solubility: Pure and Applied Chemestry, 74, 1843-1850.

Mahapatra, P., Mahapatra, L., Mishra, B., 1986, Solubility of calcium hydrogen arsenate in aqueous medium: Indian Journal of Chemestry, Section, A25, 647-649.

Martínez-Villegas, N., Briones-Gallardo, R., Ramos-Leal, J.A., Avalos-Borja, M., Castañón-Sandoval, A.D., Razo-Flores, E., Villalobos, M., 2013, Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem: Environmental Pollution, 176, 114-122.

Myneni, S.C.B., Traina, S.J., Logan, T.J., Waychunas, G.A., 1997, Oxyanion Behavior in Alkaline Environments:  Sorption and Desorption of Arsenate in Ettringite: Environmental Science & Technology, 31, 1761-1768.

Nishimura, T., Robins, R.G., 1998. A re-evaluation of the solubility and stability regions of calcium arsenites and calcium arsenates in aqueous solution at 25 ºC. Mineral Processing and Extractive Metallurgy Review: An International Journal, 18, 283-308.

Nordstrom, D.K., Majzlan, J., Königsberger, E., 2014, Thermodynamic Properties for Arsenic Minerals and Aqueous Species: Review in Mineralogy and Geochmistry: 79, 217-255.

Onac, B.P., Hess, J.W., White, W.B., 2007, The relationship between the mineral composition of speleothems and mineralization of breccia pipes: Evidence from Corkscrew Cave, Arizona, Usa: The Canadian Mineralogist, 45, 1177-1188.

Ondrus, P., Veselovsky, F., Skala, R., Cisarova, I., Hlousek, J., Fryda, J., Vavrin, I., Cejka, Gabasova, A., 1997, New naturally occurring phases of secondary origin from Jáchymov: Journal of the Czsech Geological Society, 42, 4, 77-108.

Pantuzzo, F.L., Ciminelli, V.S.T., 2010, Arsenic association and stability in long-term disposed arsenic residues: Water Research, 44, 5631-5640.

Pierrot, R., 1964, Contribution to the mineralogy of natural calcium and calcium-magnesium arsenates: Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 87, 169.

Robins, R.G., 1981, The solubility of metal arsenates. Metallurgical Transactions B, 12, 103-109.

Rodríguez-Blanco, J.D., Jimenez, A., Prieto, M., 2007, Oriented overgrowth of pharmacolite (CaHAsO4.2H2O) on gypsum (CaSO4.2H2O). Crystal Growth & Design, 7, 2756-2763.

Swash, P.M., Monhemius, A.J., 1995. Synthesis, characterization and solubility testing of solids in the Ca-Fe-AsO4 system (abstract), in Sudbury ‘95-Mining and the Environment: Sudbury, Ontario Canada, CANMET, 17-28.

Walker, S.R., Parsons, M.B., Jamieson, H.E., Lanzirotti, A., 2009, Arsenic mineralogy of near surface tailings and soils: influences on arsenic mobility and bioaccesibility in the Nova Scotia gold mining districs: The Canadian Mineralogist, 47, 533-556.

Worzala, H., 1993. Zentrum fuer Anorganische Polymere.

Zhu, Y.N., Zhang, X.H., Xie, Q.L., Wang, D.Q., Cheng, G.W., 2006, Solubility and stability of calcium arsenates at 25 ºC: Water Air & Soil Pollution, 169, 221-238.


Manuscript received: November 28, 2014
Corrected manuscript received: April 21, 2015
Manuscript accepted: May 5, 2015

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 467-478

http://dx.doi.org/10.18268/BSGM2015v67n3a10

A concise synchrotron X-ray microdiffraction field guide for the Earth scientists

Nobumichi Tamura1,*, Martin Kunz1

1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720, USA.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Most geological samples are intrinsically heterogeneous at the micron scale making their quantitative study with conventional laboratory techniques challenging. The use of synchrotron radiation, which provides high quality data with unprecedented spatial and angular resolution, has become quite ubiquitous in many branches of experimental sciences, and geology, geochemistry, Earth and environmental sciences are no exception. The present chapter offers an overview of what can be measured using synchrotron X-ray microdiffraction using an X-ray beam size in the range between 100 nm to a few microns. Experiments using geological samples are described. Two techniques, their strengths and limitations, are emphasized: powder microdiffraction and Laue microdiffraction.

Keywords: X-ray microdiffraction, synchrotron, Laue diffraction, powder diffraction, stress, microstructure.

 

Resumen

La mayoría de las muestras geológicas son intrínsecamente heterogéneas en la escala del micrón, lo que convierte a su estudio cuantitativo realizado con técnicas de laboratorio convencionales en algo desafiante. El uso de radiación sincrotrón, que proporciona datos de calidad con una resolución espacial y angular sin precedentes, se ha convertido en ubicua en varias de las ramas de las ciencias experimentales, y la geología, la geoquímica, las ciencias de la Tierra y las ciencias del medio ambiente no son una excepción. El presente capítulo ofrece una visión general de lo que puede ser medido utilizando microdifracción de rayos X en sincrotrón, con el tamaño de haz de rayos X en el intervalo entre 100 nm y unas pocas micras. En el presente trabajo se describen los experimentos utilizando muestras geológicas. Se enfatizan dos técnicas, sus fortalezas y limitaciones: microdifracción de polvo y microdifracción Laue.

Palabras clave: microdifracción de rayos X, sincrotrón, difracción Laue, difracción de polvo, estrés, microestructura.

 

1. Introduction

Natural samples often exhibit higher levels of heterogeneity than manufactured materials and therefore their microstructure, chemical and crystalline phase distribution and level of deformation are often more challenging to characterize in a quantitative way. A piece of rock, a piece of meteorite, a sample of soil, when looked under a microscope generally appear as agglomerates of multiple crystalline and non-crystalline phases with varying compositions, impurities and defect contents, structures and different grain sizes. Deciphering the particular history of a sample, such as how a particular meteorite has formed or how much stress a particular piece of rock near an earthquake fault has experienced over time, requires a thorough understanding of the microstructure. A probe is needed, capable of providing as much information as possible at the relevant length scale (typically from a few microns down to a few nanometers). Moreover, the interpretation of some measurements, such as the crystalline phase distribution resulting from a transition between two states, requires that the probe perform the measurement without destroying the sample.

Among the arsenal of characterization tools available today at synchrotron facilities, techniques such as absorption spectroscopy, including XANES (X-ray Absorption Near Edge Structure), EXAFS (Extended X-ray absorption fine structure), X-ray fluorescence, high resolution powder diffraction, SAXS (Small Angle X-ray scattering), X-ray imaging such as STXM (Scanning Transmission X-ray Microscopy) and X-ray Tomography, are increasingly used by the Earth Science community. In particular, synchrotron microfocus techniques such as X-ray microdiffraction, μSAXS, X-ray microfluorescence (μXRF), μXANES and μEXAFS, which add high spatial resolution, have become increasingly attractive as effective in situcharacterization tools. The intrinsic high brightness and collimation of X-ray beams produced at synchrotron facilities around the world make possible the routine generation of very small but intense micron to submicron size X-ray beams ideally suited to probe sample heterogeneity at this length scale. Synchrotron facilities such as the Advanced Light Source (ALS) in Berkeley, CA, the Advanced Photon Source (APS) at Argonne, IL, the European Synchrotron Research Facility (ESRF) in Grenoble, France or the 8 GeV Super Photon Ring (Spring-8) in Hyogo, Japan are very large machines financed, built and maintained to the greater part by government agencies for the benefit of academics and industries to perform experiments that generally cannot be conducted anywhere else. The electron storage rings at the core of synchrotron facilities deliver X-rays to some 20 to 40 “beamlines”, each specialized in a few specific techniques. Experiment time, also known as “beamtime”, is allocated to users based on scientific merit through a peer review system. Access to most synchrotron facilities is free and the cost of using such facilities generally amount only to travel cost. As demand is generally high and therefore the amount of allocated beamtime scarce, for maximum efficiency of beamtime it is imperative that each experiment be planned carefully in collaboration with the beamline personnel. Multiple techniques over several beamlines, sometimes across a few facilities, are generally applied in succession to answer a particular question about a sample. For instance, elemental distribution can be obtained by scanning X-ray microfluorescence, while X-ray microdiffraction would be used to identify the structure or determine the crystallinity of particular phases. μXANES is typically used for finding the degree of oxidation of particular elements while μEXAFS can help identify semi-amorphous materials. X-ray microtomography would be used as a 3D imaging tool based on absorption contrast. The present review will focus on synchrotron X-ray microdiffraction (also called micro X-ray diffraction or μXRD). Following a brief description of the instrumentation, the review will show how such a beamline can be used effectively to solve many problems that are relevant to geochemists, earth scientists and geologists.

 

2. The X-ray microdiffraction toolkit

X-ray microdiffraction is in essence the century old X-ray diffraction technique optimized to the best of today’s technology in terms of X-ray focus, with, however, a few caveats. Producing a very small X-ray beam comes at a cost, but starting with high photon counts and very small beam divergence is certainly helpful in achieving this goal. This is why X-ray microdiffraction with a beam size in the order of a micron or below only appeared feasible at 3rd generation synchrotron sources. Progress in X-ray focusing technologies combined with efficient vibration damping systems allow today for an X-ray beam in the order of a few tens of nanometers in size, but more routinely in a micron size range. All X-ray focusing optics are based on one, sometimes two, of the three following physical phenomena arising when a wave of X-rays encounter solid material: diffraction, total external reflection and refraction. They are therefore often classified into diffractive, reflective and refractive optics. Fresnel zone plates (or simply zone plates, ZPs) are examples of diffractive optics, consisting of concentric rings of alternating X-ray transparent and opaque material with widths inversely proportional to the radius of the ring. Their intrinsic chromaticity (focal length depends on X-ray wavelength) restrict their use to monochromatic applications. A focus size in the range of 10 nm has been achieved (Chao et al., 2005) and zone plates are therefore highly popular with “soft” and “tender” (energy below 10 keV) X-ray microscopy (Kirz et al., 1995; Larabell and Le Gros, 2004). For hard X-rays, zone plates need to be thick enough for absorption in the opaque regions to be effective, but high aspect ratio rings are quite challenging to manufacture (Feng et al., 2007a; Chu et al., 2008) and therefore zone plates are often replaced by other optics for X-ray above 10 keV. X-ray mirrors, consisting of a metal coating on top of a rigid substrate, use total external reflection to deflect the X-ray beam path. Bent to an elliptical profile, an X-ray mirror can be used to focus the beam in one direction. Kirkpatrick-Baez (KB) mirrors consist of an orthogonal pair of elliptically shaped mirrors to focus a beam in two directions (Kirkpatrick and Baez, 1948). Spot sizes of a few tens of nanometers have been achieved in the last decade with ultrasmooth KB mirrors (Mimura et al., 2005). KB mirrors offer the advantages of high efficiency and relatively high acceptance, making them ideal for “hard” X-ray (energy above 10 keV) applications. Since they are achromatic, they are the tool of choice for polychromatic and spectroscopic applications. Compound refractive lenses (CRLs) consist of a series of concave lenses carved out of light elements that are an alternate low-cost hard X-ray focusing optics (Snigirev et al., 1998; Schroer et al., 2003). CRLs are, however, highly achromatic and work for monochromatic beams only. Currently, ZPs, KBs and CRLs are the three most widely used X-ray focusing optics at synchrotrons. However, there are many other concepts that have been developed such as X-ray waveguides (Jark et al., 2001), Bragg-Fresnel lenses (Aristov et al., 1989), kinoform lenses (Evans-Lutterodt et al., 2007), X-ray capillaries (Bilderback, 2003) and prism array lenses (Jark et al., 2004).

For medium angular resolution measurements, the X-ray diffraction detectors of choice today are two dimensional area detectors that output diffraction patterns in easy-to-handle digital format. Examples of 2D detectors include X-ray charge coupled devices (CCDs), pixel array detectors and image plates. They come in increasingly larger sizes, number of pixels and speed and can capture in a single shot a large angular portion of the reciprocal space, making experiments much faster as the detector remains stationary throughout the duration of the measurement (Tate et al., 1995; Broennimann et al., 2006).

Many beamlines around the world offer microdiffraction capabilities, but only a few are fully dedicated stations. One such example is given by BL12.3.2 at the Advanced Light Source (Kunz et al., 2009b; Tamura et al., 2009). The outline of this beamline is shown in Figure 1. The source is a superconducting bending magnet that provides X-rays with a critical energy around 12 keV, i.e., well into the hard X-ray regime. A toroidal mirror refocuses the beam onto the entrance of the experimental hutch where a pair of slits are used as a virtual secondary source that is size adjustable. Final focusing is provided by a pair of elliptically bent KB mirrors with tungsten coating working at a nominal incidence angle of 3.5 mrad (Yashchuk et al., 2013). Nominal X-ray beam size on the sample is about 1 μm by 1 μm. A four-bounce constant-exit monochromator consisting of two identical channel-cut Si(111) crystals can be inserted in the path of the beam for an easy and rapid switch between polychromatic (white) beam and monochromatic beam, while illuminating the same spot on the sample. This is one capability which is rather unique to BL12.3.2, the possibility to conduct both white and monochromatic X-ray experiments on the same micron area of the sample (Dejoie et al., 2015). The available photon energy range is between 5 and 24 keV. The sample sits on a flexible xyzχϕ stage. X-ray diffraction patterns are collected using a DECTRIS Pilatus 1M hybrid pixel array detector, while X-ray fluorescence spectra can be collected with a VORTEX EM silicon drift detector. More technical details about the beamline can be found in Kunz et al., 2009b.

Besides ALS BL12.3.2, we can cite the APS undulator beamline 34 ID-E (Ice et al., 2005) specialized into a depth resolved technique called Differential Aperture X-ray Microscopy (DAXM), which uses polychromatic or monochromatic beam and a scanning wire near the surface of the sample to ray trace the reflections along the penetration depth of the beam into the sample (Larson et al., 2002). DAXM is one of the so-called 3D X-ray microdiffraction techniques that can reconstruct the volumetric distribution of grains and strains with submicron resolution. The VESPERS beamline at the Canadian Light Source (Feng et al., 2007b) and BM32 at the ESRF (Ulrich et al., 2011) offer capabilities similar to the ALS beamline. Undulator beamlines such as the 2-ID-D at the APS (Cai et al., 2000) and the Microfocus beamline ID 13 at the ESRF (Engström et al., 1995) provide monochromatic X-ray diffraction with high spatial resolution on the order of a few tens of nanometers. The ESRF Materials Science beamline ID11 offers a wide range of monochromatic diffraction techniques including 3D X-ray Diffraction (3DXRD), which is capable of mapping grains in 3D in deformed materials (Poulsen et al., 2001). The ESRF Microdiffraction Imaging beamline ID01 provides a submicron monochromatic beam for the study of engineered materials (Diaz et al., 2009), and the High Energy Scattering beamline ID15 has a high energy microdiffraction (HEMD) setup. Microspectroscopy beamlines such as the ALS BL10.3.2 often offer powder microdiffraction capability as well. For historical reasons, we also want to mention the now decommissioned NSLS X26C beamline (Wang et al., 1998) where some of the very first synchrotron microdiffraction experiments were performed with a 10 μm size white beam, as well as X26A (Lanzirotti et al., 2010) and X27A (Ablett et al., 2006) environmental science beamlines at NSLS.

Note that the X-ray photon flux (number of photons per second) reaching the sample, even with today’s 3rdgeneration synchrotron sources, is still often a limiting factor for micro- and nano-focus applications, especially when a monochromatic beam is used. This is particularly true for the often weakly scattering environmental and geological samples where better signal-to-noise ratio and better diffracted intensity are needed. To that effect, several synchrotron facilities such as the ESRF, Spring8, APS and ALS are undertaking upgrades for smaller electron beam emittance to provide more photon flux and beam coherence.

Targeting a small micron-sized X-ray beam onto a specific small micron-sized area on the sample is difficult, so an efficient navigation system towards the point of interest has to be devised. This is generally provided by combining a good optical viewing system aimed at the sample and carefully calibrated to the focal point of the X-ray beam, and markings on the sample that are visible to X-rays, such as platinum marks deposited by Focused Ion Beam (FIB) that can be easily found by monitoring X-ray fluorescence. One caveat of microdiffraction is that sample rotation is generally to be avoided when the feature of interest is in the same order of size as the beam. Even the best diffractometer comes with a “sphere of confusion” exceeding today’s small beam sizes, which therefore moves the sample out of the beam during rotation (Noyan et al., 1999). Moreover, X-ray penetration also makes the volume of diffraction change with each angle, resulting in systematic errors when comparing reflections taken at different angles (Ice et al., 2000). This is why some methods used in X-ray microdiffraction differ from conventional ones used for regular “macroscopic” X-ray diffraction. Avoiding rotation in microdiffraction has been the driving force to seek alternate solutions to standard single crystal diffraction techniques for structure solution, reciprocal space mapping and residual stress measurement. Although the results may not always be as satisfying as those obtained by the well-established macroscopic techniques, these alternate methods offer the advantage of speed, as rotation is time consuming and not well suited for time resolved experiments. Besides, some samples, such as a precious small mineral embedded in a heterogeneous matrix or a high pressure compound inside a diamond anvil cell (DAC), are not suited to be freely rotated under the beam and the use of one of these alternate methods could be the only way to get around the limitation. Two methods, namely polychromatic X-ray microdiffraction and powder X-ray microdiffraction, are discussed in details in the following sections.


Figure 1. Outline of the BL12.3.2 dedicated to X-ray microdiffraction at the Advanced Light Source.

 

3. Sample preparation

Hard X-rays are penetrating, providing an advantage over electron microscopy or soft X-rays when it comes to sample preparation and sample environment. Sample preparation can be kept to a minimum and measurements performed in air (unless oxidation becomes an issue). This is particularly attractive for cases where the sample is buried inside a matrix or confined in a pressure chamber such as a DAC. A reasonably flat surface obtained through regular polishing is often all that is required for an experiment in reflective geometry. It is important, however, to complement mechanical polishing with chemical or electrochemical polishing for samples that are subject to mechanical deformation, such as metals and alloys, to remove the damaged surface layers. A note of caution, however, shall be given as X-ray penetration can also work against you if one is not careful; make sure that the sample is not too thick or that there is nothing underneath the sample that can diffract equally well. The superimposition of multiple diffraction patterns coming from different layers beneath the surface may become very difficult to interpret. If using a thin section on a glass slide, note that the slide itself would produce a contribution in the shape of a broad diffraction ring in monochromatic mode (Gräfe et al., 2014) and a large scattering background signal in polychromatic mode. These parasitic contributions can generally be digitally subtracted from the diffraction patterns, but may, however, become overwhelmingly high for weakly scattering samples. For transmission experiments, the thickness of the sample to use is determined by the average atomic number of the compound to be measured, but 20 – 40 μm is a good number for most geological samples.

 

4. Powder microdiffraction

Powder microdiffraction is the technique of choice for polycrystalline samples when the average size of crystallites or coherently diffracting units in the sample is much smaller than the X-ray beam size illuminating them (for a micron size X-ray beam, this means crystallite size of less than 100 nm). This is almost always the case for soil samples, and the fine fraction of industrial residues. When a monochromatic beam with a selected wavelength hits the sample, cones of diffraction specific to particular hkl crystallographic planes are formed and intersect the plane of the 2D detector as a portion of conics. The shape of the conics in the resulting diffraction pattern depends on the position and angle of the detector relative to the incident beam. It can be circular (direct transmission geometry), elliptic, parabolic or hyperbolic (Figure 2). The resulting diffraction patterns are called 2D powder patterns or Debye-Scherrer ring patterns. The angular positions and relative intensities of the rings are characteristics of the crystal structure of the diffracting materials and can be used for identifying the phases present in the sample. The common analytical practice is to integrate the 2D pattern along the azimuthal (χ) direction to form a 1D diffractogram that can be easily plugged into a database to search for matching crystal structures. The advantage of using a small beam becomes evident when a heterogeneous sample is considered. With a larger beam and such a sample, it can indeed become very difficult to disentangle reflections from a dozen different phases when there are many peaks overlapping and when some of the intensities are modified by texture.

Since most of the rings that help to unambiguously identify a crystalline structure occur at low angle, powder microdiffraction is generally best performed with the detector placed at a low 2θ angle, preferentially in transmission geometry, if the sample is thin enough. Poorly crystallized phases, such as clays, exemplify this very well as rings are broadened by the very small size of the constitutive crystallites; high angle rings have not only weakened intensities due to the decreasing form factor, but being more numerous, are also subject to strong overlaps. Clays are often identified by their lowermost angle of reflection. For example, for that of kaolinite and nontronite, 2θ = 9.2 and 4.6°, respectively, at 10 keV. For thicker samples, the sample surface will need to be put at a very shallow angle with respect to the incoming beam, which results in loss of spatial resolution in one direction as the beam footprint on the sample increases.

Reducing 2D patterns into 1D diffractograms is not always helpful, as much information about texture, crystal size and strain may be lost this way and is then difficult to retrieve in the final spectrum. The uneven intensity distribution along the azimuthal directions of diffraction rings reflects preferential orientation or texture, for instance. Highly textured samples show incomplete rings in the form of arcs that can be interpreted into pole figures. The level of graininess of the rings along the azimuthal direction is also a good qualitative indication of grain size. For a micron-sized beam, spotted rings are characteristics of samples with an average grain size that are about an order of magnitude smaller than the beam, while continuous rings indicate grain sizes two or more orders of magnitude smaller. In the latter case, the width of the rings in the radial direction is inversely proportional to the grain size, according to the Scherrer equation (Patterson, 1939). Perhaps a little less relevant for geological or environmental samples, mechanically or chemically induced strain can, in principle, be measured by powder microdiffraction. The standard distinction between “microstrain” and “macrostrain” is somewhat arbitrary, but as a rule of thumb, microstrain refers to strain distributions that vary within the X-ray illuminated area, which would cause a spread of interatomic spacings of hkl planes, resulting in a broadening of the rings associated to those planes. Formula such as the one provided by the Stokes-Wilson equation (Stokes and Wilson, 1944) can then be used to assess microstrain. Macrostrain, on the other hand, refers to a deformation which is uniform within the X-ray illuminated area. Such strain does not affect the broadening of the rings but their ellipticity. By fitting the shapes of multiple rings to a generalized sin2 ψ equation, it is possible to derive the entire strain tensor of the crystal (Noyan and Cohen, 1987; Tamura, 2014). Finally, Rietveld refinement (Rietveld, 1969; McCusker et al., 1999) is a technique developed to refine the crystal structure of unknown compounds through a high resolution powder X-ray diffractogram (although originally formulated for neutron diffractograms). Note that Rietveld refinement could become quite problematic if not all reflections of the material are visible because of angular constraints or preferred orientation (texture). This well-established technique can be used for a wide variety of refinement such as size and strain distribution (Lutterotti and Scardi, 1990; Balzar and Popa, 2005) and texture (Popa, 1992; von Dreele, 1997).

A large variety of software exists to handle powder X-ray diffraction data obtained with an area detector, and can readily be used to treat powder microdiffraction data. Fit2D has been a pioneer in that area and was for a while the most widely used code for transmission geometry (Hammersley, 1996). The package contains all the standard tools such as distance calibration, center determination, intensity integration and peak fitting that have been adopted in all subsequent software. The Windows-based application XRD2DScan provides hands-on routines for determining average crystal size and quantification of preferential orientation (Rodriguez-Navarro, 2006) and can batch-process file series. XRDUA (De Nolf et al., 2014) is relatively new software that can also process diffraction tomography data. MAUD (Lutterotti et al., 1999) specializes in texture analysis via Rietveld refinement. XMAS (X-ray Microdiffraction Analysis Software) developed at the ALS (Tamura, 2014) can process data taken in both transmission and reflection geometries and can process raster scans into maps. Let’s also mention XPLOT2D of the XOP package (Sanchez del Rio and Dejus, 2004) and PyFAI (Kieffer and Karkoulis, 2013), both designed for performing azimuthal integrations of 2D detector data. Companies selling 2D X-ray detectors sometimes provide their own suite of software such as GADDS developed by Bruker AXS Inc. (Rowe, 2009). This list is in no way complete.

Powder microdiffraction has been widely used to identify minority phases in a wide range of geological samples. Some examples include speciation studies in ferromanganese nodules (Manceau et al., 2002), identification of interplanetary particles from the STARDUST mission (Nakamura et al., 2008), the study of acid mine drainage (Soler et al., 2008; Courtin-Nomade et al., 2012) or establishing the phase distribution at a heterogeneous cement-clay interface (Dähn et al., 2014). With regard to powder diffraction in general, we would like to stress the importance of crystallographic databases for phase identification. The International Centre for Diffraction Data (ICDD) has the most comprehensive database of inorganic compounds, but it is quite expensive and not always available at the institution hosting the beamline. Free but less complete databases available online includes the Crystallography Open Database (COD) (http://www.crystallography.net), the RRUFF project (http://rruff.info) and MINCRYST (http://database.iem.ac.ru/mincryst/).

Used in scanning mode, powder microdiffraction becomes an effective way to map phase distribution in a heterogeneous rock. Typical examples for very fine-scaled heterogeneous rocks can be found in partially weathered mine tailings, whose composition and evolution is of considerable interest since they pose a significant hazard to the environment due to their potential for toxic element release. To understand the processes occurring in acid mine tailings during exposure to atmospheric conditions, a detailed description, not only of the chemical composition but also of their mineralogical phase distribution on multiple scales from μm to km is required. A particular concern is the mobilization and transport of arsenic, which is present at toxic concentrations in tailings, where metals were mined in sulfide ore bodies. In an example from two former mines (gold and tungsten) in France (Courtin-Nomade et al., 2012), micro-spectroscopy is combined with powder microdiffraction to unravel the pH dependent dissolution and precipitation behavior of As. Combining chemical maps with powder microdiffraction-derived phase maps allows researchers to follow the speciation of As in different pH environment (Figure 3).

The possibility to mount thin sections of samples in transmission geometry and probe them with a small monochromatic beam also allows researchers to test in situ the spatial variation of texture. This has been nicely shown for authigenically grown ettringite in microscopic veins (Figure 4a) within decaying concrete (Wenk et al., 2009). The diffraction pattern in Figure 4b shows strong preferred orientation as evidenced by the significant azimuthal intensity variations. These intensity variations can be converted into pole figures and inverse pole figures, revealing a strong fiber texture with the c-axis perpendicular to the crack surface. This is interesting since ettringite (trigonal structure, space group P31c, a = 11.23 Å, c = 21.44 Å) exhibits the strongest stiffness parallel to c as opposed to another frequent secondary crack filling mineral phase, portlandite, Ca(OH)2, which grows with its softest direction perpendicular to the crack surfaces.


Figure 2. Example of powder diffraction data taken with an area detector in transmission mode (left) and reflection mode (right).


Figure 3. Combining chemical mapping as for example derived from X-ray fluorescence (left) with phase maps (right) as obtained from powder microdiffraction in mapping mode, allows to deduce not only the distribution of As in mine tailings on a micron-scale, but also the mineralogical speciation. The white rectangle in the XRF map corresponds to the powder microdiffraction map (right); Ps = Parasymplesite, S0 = Sulfur, G = Goethite (From Courtin-Nomade et al., 2012).


Figure 4. (a) Optical micrograph of ettringite (white arrow) coating a microcrack in a decaying concrete. (b) Powder microdiffraction pattern. The strong azimuthal intensity variation along the Debye-Scherrer rings is evidence for a strong fiber texture perpendicular to the crack surface. (c) Pole figure and inverse pole figure (perpendicular to crack surface) of diffraction pattern displayed in (b) (from Wenk et al., 2009).

 

5. Polychromatic (Laue) microdiffraction

When crystallite sizes are in the order of magnitude of the X-ray beam size, monochromatic beam diffraction becomes challenging because of the necessity to bring sets of hkl planes into Bragg conditions. To that effect, sample rotation is a possibility if using a medium-sized beam (a few microns) large enough to accommodate sample motions during rotation. Single crystal diffraction conditions may be achieved this way; however, as noted in the introduction, the crystallite of interest would first need to be extracted first from the matrix. Another possibility is to reproduce a powder pattern. This method is more generally applied to polycrystalline samples where sample displacements become an ally rather than a hindrance; as many different crystals come into diffraction while rotating the sample, a powder pattern is generated and analytical methods described in section 3 can be applied. Raster scanning the polycrystalline sample is another solution to produce powder diffraction conditions, but this comes at the expense of spatial resolution. A better and less time consuming way to circumvent sample rotation is to use a polychromatic instead of monochromatic X-ray beam, simultaneously satisfying the Bragg condition for a number of reflections. The resulting diffraction pattern is called a Laue pattern (Figure 5). Since a single shot is all that is needed to obtain a Laue pattern, polychromatic microdiffraction is very fast and is suitable not only for samples having crystallite size larger than the beam size but also for time resolved studies. The interpretation of such patterns is usually not as easy; indexing requires matching a number of angles between reflections within the Laue pattern with those theoretically calculated for a given structure (Wenk et al., 1997). As the wavelength of each reflection is not known a priorifrom the Laue pattern alone, interplanar spacing values cannot be associated to it simply from the position of the reflection on the detector as with monochromatic beams. Nevertheless, successful indexing of a Laue pattern not only identifies the crystalline phase (although isomorphous compounds cannot be distinguished this way) but provides the full crystallographic orientation of the crystallite with respect to an arbitrarily chosen coordinate system (usually the sample coordinate system).

Small shifts in reflection positions relative to their ideal ones, as calculated from a perfect unit cell, can also be measured and converted into the deviatoric strain tensor and therefore can be used to assess the crystallite’s elastic deformation (Chung and Ice, 1999). Moreover, local lattice bendings generated by geometrically necessary dislocations will result in asymmetric broadening of the reflections. These reflections can be directly compared to simulations in order to determine such information as dislocation densities and crystallographically active slip systems (Barabash et al., 2001). This can be used to assess the local level of plastic deformation in the sample.

For a beamline with a maximum energy around 20 keV, Laue microdiffraction works best in reflection geometry with the detector placed at a higher 2θ angle. This stems from the fact that a sufficient number of reflections have to be visible on a diffraction pattern in order to unambiguously index it, and the population of possible reflections is denser at high angles. Indeed, most minerals have small to medium size unit cells that create only a few reflections at low angles. High energy beamlines do not have this limitation and Laue microdiffraction in that case works perfectly well in transmission geometry, but the detector has to be translated further back from the sample to preserve angular resolution. Since data collection is rather fast (second to sub second exposure time for each frame), Laue microdiffraction is often used in scanning mode. Thus, a raster scan of the sample can be used to map crystalline phase distribution, crystal orientation, as well as elastic and plastic strains. Figure 6 shows an example of such maps.

Analytical software capable of rapidly analyzing in a fully automated way tens of thousands of Laue patterns is a necessity for such experiments. The XMAS software, already cited in section 3, was originally written for that purpose. Additionally, part of its core capabilities are Laue X-ray microdiffraction patterns, reflection search and fitting, indexing and strain refinement, as well as many add-on routines for simulations and data visualization, and monochromatic beam data analysis. The open source code LaueTools developed at the ESRF (Robach et al., 2011) reproduces many of the Laue analysis functionalities of XMAS in an open source environment, providing publication ready outputs, and has lately gained increasing popularity among Laue microdiffraction users in Europe.

Synchrotron Laue microdiffraction had its initial successes in the study of the mechanical properties of functional materials and microelectronic devices (Valek et al., 2003; Rogan et al., 2003; Mehta et al., 2007), but has now expanded its range of applicability to many other scientific areas. Probably because the data interpretation is less straightforward and the methodology is less widely distributed, Laue microdiffraction has scarcely been used for geochemical and geological studies. However, recent studies show that it can be effectively employed to assess the level of stress in shocked quartz from a meteor impact site (Chen et al., 2011a) and to derive the hierarchy and sequence of mechanical twins in geological calcite, opening the prospect of using Laue microdiffraction measurements as a palaeopiezometer (Chen et al., 2011b).

A series of initial studies applying Laue X-ray microdiffraction to geological samples explored the possibilities to measure residual stresses in quartz crystals from a variety of rocks (Kunz et al., 2009a; Chen et al., 2011a). Quartz is a quite obvious choice as paleo-piezometer, since it shows very little chemical substitution giving rise to chemically induced variations in cell parameters, occurs in a wide variety of rocks and exhibits relatively high trigonal symmetry thus facilitating accurate determination of the deviatoric strain tensor. Figure 6 shows an example of high-resolution maps showing the variation in lattice orientation as well as the dislocation density within a grain of quartz from the Bergell granite intrusion. The resolution in orientation lies around 0.01°, therefore enabling the measurement of subtle changes in lattice orientations leading to undulatory extinction in quartz. The dislocation density map displays the accumulation of dislocations in the vicinity of cracks.

Figure 7 compares histograms of equivalent strain as defined by Liu (2005) for three different quartz crystals with different deformation histories, ranging from synthetic fully unstrained quartz to 2 billion year old quartz subject to a meteor impact. While the synthetic quartz showed no strain signal above experimentally inherent noise, the shocked crystal shows a distribution of equivalent strain values centered around 1.5 microstrains. In between these values is the strain distribution measured on a quartz crystal extracted from granite, which underwent some moderate deformation.

Figure 5. Examples of X-ray microdiffraction Laue patterns. From left to right and top to bottom: textured gold film on silicon, garnet crystal, silicon blister, shocked quartz, aragonite from abalone shell. The treatment of Laue patterns is usually more complex than for monochromatic patterns.



Figure 6. Orientation (top) and peak broadening (bottom) maps of a piece of quartz obtained by scanning Laue X-ray microdiffraction. Orientation varies up to 4o in the entire crystal and dislocation pile-up at subgrain boundaries are indicated by reflection broadening.



Figure 7. Distribution of equivalent strain within 3 different quartz crystals with strongly different deformation histories. Synthetic quartz is a synthetic, strain free crystal. ‘Granite’ denotes a sample from moderately deformed granite from the Santa Rosa granite (California); ‘Vredefort’ refers to shocked quartz granite from the Vredefort impact site (South Africa). The grain showed planar deformation features attributed to a meteor impact 2 billion years ago (Chen et al., 2011).

 

6. Conclusions and future perspectives

Synchrotron X-ray microdiffraction is a powerful but underutilized tool to study the microstructure of geological and environmental samples. It can be used effectively for mapping phase distribution, determining crystal structure of minute elements and measuring strain and dislocation densities. Monochromatic (powder) and polychromatic (Laue) microdiffraction can be used together in heterogeneous samples to map both nanocrystallized, or poorly crystallized, and microcrystallized phases using powder and Laue microdiffraction, respectively. For example, this combination has been exploited to maximum effect in the study of ancient ceramics (Leon et al., 2010; Dejoie et al., 2014; Dejoie et al., 2015). Initially, in an effort to avoid the sphere of confusion problem, X-ray microdiffraction experiments were confined to techniques that avoided sample rotation. However, due to developments in data reduction software, the absence of sample rotation has become the principal strength of microdiffraction. Today, area detectors work at unprecedented speed and angular resolution that take full advantage of the high photon flux provided by synchrotron beamlines (Gruner et al., 2002; Broennimann et al., 2006; Henrich et al., 2011; Ponchut et al., 2011). A full diffraction pattern can be collected in subsecond to a few seconds time with negligible instrumental downtime. This, combined with the exponential increase in computing power that we are currently experiencing, is triggering the next evolution for the X-ray microdiffraction technique that has been developed in the last decade. We are in the process of transitioning from a microstructure mapping tool where a few hundreds of diffraction patterns are obtained from a raster scan and processed off-line at the home institution of the experimenter, to a real-time microstructure imaging tool where several tens of thousands of patterns are collected in a reasonable amount of time (no more than a few hours for a few days of beamtime) and processed transparently and directly during the beamline. Codes such as XMAS have already been exported onto supercomputers allowing extraction of information such as crystal orientation and strains from thousands of patterns within minutes instead of hours, rendering the study of dynamic processes such as crack propagation within reach. Structure solution by Laue microdiffraction is another area that is benefiting geology (Dejoie et al., 2013). This might indeed be the only possible way to solve the atomic structure of tiny unknown crystals embedded in a heterogeneous, rocky matrix, or new phases generated under high pressure and temperature inside a DAC. There are, therefore, strong indications that synchrotron microdiffraction could become one of the standard techniques for the geologist and geochemist among the arsenal of already available tools such as synchrotron X-ray and Raman microspectroscopies, soft and hard X-ray imaging, and electron microscopies.

 

Acknowledgements

The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory (LBNL). The authors would like to thank the reviewers for their useful comments on how to improve the manuscript.

 

References

Ablett, J.M., Kao, C.C., Reeder, R.J., Tang, Y., Lanzirotti, A., 2006, X27A—A new hard X-ray micro-spectroscopy facility at the National Synchrotron Light Source: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 562 (1), 487–494.

Aristov, V.V., Basov, Y.A., Kulipanov, G.N., Pindyurin, V.F., Snigirev, A.A., Sokolov, A.S., 1989, Focusing properties of a Bragg-Fresnel lens in the white spectrum of synchrotron radiation: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 274 (1–2), 390–393.

Balzar, D., Popa, N. C., 2005, Analyzing microstructure by Rietveld refinement: The Rigaku Journal, 22 (1), 16–25.

Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.-S., Yang, W., 2001, White microbeam diffraction from distorted crystals: Applied Physics Letters, 79 (6), 749–751.

Bilderback, D.H., 2003, Review of capillary X-ray optics from the 2ndInternational Capillary Optics Meeting: X-ray Spectrometry, 32 (3), 195–207.

Broennimann, C., Eikenberry, E. F., Henrich, B., Horisberger, R., Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M., Tomizaki, T., Toyokawa, H., Wagner, A., 2006, The PILATUS 1M detector: Journal of Synchrotron Radiation, 13 (Pt 2), 120–30.

Cai, Z., Lai, B., Yun, W., Ilinski, P., 2000, A hard X-ray scanning microprobe for fluorescence imaging and microdiffraction at the advanced photon source: AIP Conference Proceedings, 507, 472–477.

Chao, W., Harteneck, B.D., Liddle, J.A., Anderson, E.H., Attwood, D.T., 2005, Soft X-ray microscopy at a spatial resolution better than 15 nm: Nature, 435 (7046), 1210–1213.

Chen, K., Kunz, M., Tamura, N., Wenk, H.-R., 2011a, Evidence for high stress in quartz from the impact site of Vredefort, South Africa: European Journal of Mineralogy, 23 (2), 169–178.

Chen, K., Kunz, M., Tamura, N., Wenk, H.-R., 2011b, Deformation twinning and residual stress in calcite studied with synchrotron polychromatic X-ray microdiffraction: Physics and Chemistry of Minerals, 38 (6), 491–500.

Chu, Y.S., Yi, J.M., De Carlo, F., Shen, Q., Lee, W.-K., Wu, H.J., Wang, C.L., Wang, J.Y., Liu, C.J., Wang, C.H., Wu, S.R., Chien, C.C., Hwu, Y., Tkachuk, A., Yun, W., Feser, M., Liang, K.S., Yang, C.S., Je, J.H., Margaritondo, G., 2008, Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution: Applied Physics Letters, 92 (10), 103119.

Chung, J., Ice, G., 1999, Automated indexing for texture and strain measurement with broad-bandpass X-ray microbeams: Journal of Applied Physics, 86 (9), 5249–5255.

Courtin-Nomade, A., Rakotoarisoa, O., Bril, H., Grybos, M., Forestier, L., Foucher, F., Kunz, M., 2012, Weathering of Sb-rich mining and smelting residues: Insight in solid speciation and soil bacteria toxicity: Chemie der Erde – Geochemistry, 72, 29–39.

Dähn, R., Popov, D., Schaub, P., Pattison, P., Grolimund, D., Mäder, U., Jenni, A., Wieland, E., 2014, X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations: Physics and Chemistry of the Earth, Parts A/B/C, 70–71, 96–103.

De Nolf, W., Vanmeert, F., Janssens, K., 2014, XRDUA: crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction: Journal of Applied Crystallography, 47 (3), 1107–1117.

Dejoie, C., McCusker, L.B., Baerlocher, C., Kunz, M., Tamura, N., 2013, Can Laue microdiffraction be used to solve and refine complex inorganic structures?: Journal of Applied Crystallography, 46 (6), 1805–1816.

Dejoie, C., Sciau, P., Li, W., Noé, L., Mehta, A., Chen, K., Luo, H., Kunz, M., Tamura, N., Liu, Z., 2014, Learning from the past: rare ε-Fe2O3in the ancient black-glazed Jian (Tenmoku) wares: Scientific Reports, 4, 4941.

Dejoie, C., Kunz, M., Tamura, N., Goudeau, P., Sciau, P., 2015, Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials: Journal of Applied Crystallography 48 (5), 1522–1533.

Diaz, A., Mocuta, C., Stangl, J., Vila-Comamala, J., David, C., Metzger, T. H., Bauer, G., 2009, Spatially resolved strain within a single SiGe island investigated by X-ray scanning microdiffraction: Physica Status Solidi (a), 206 (8), 1829–1832.

Engström, P., Fiedler, S., Riekel, C., 1995, Microdiffraction instrumentation and experiments on the microfocus beamline at the ESRF: Review of Scientific Instruments, 66 (2), 1348.

Evans-Lutterodt, K., Stein, A., Ablett, J., Bozovic, N., Taylor, A., Tennant, D., 2007, Using Compound Kinoform Hard-X-ray Lenses to Exceed the Critical Angle Limit: Physical Review Letters, 99 (13), 134801.

Feng, Y., Feser, M., Lyon, A., Rishton, S., Zeng, X., Chen, S., Sassolini, S., Yun, W., 2007a, Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25 (6), 2004.

Feng, R., Gerson, A., Ice, G., Reininger, R., Yates, B., McIntyre, S., 2007b, VESPERS: A Beamline for Combined XRF and XRD Measurements: AIP Conference Proceedings, 879, 872–874.

Gräfe, M., Klauber, C., Gan, B., Tappero, R.V., 2014, Synchrotron X-ray microdiffraction (μXRD) in minerals and environmental research: Powder Diffraction, 29(S1), S64–S72.

Gruner, S.M., Tate, M.W., Eikenberry, E.F., 2002, Charge-coupled device area X-ray detectors: Review of Scientific Instruments, 73 (8), 2815.

Hammersley, A., 1996, Two-dimensional detector software: from real detector to idealised image or two-theta scan: High Pressure Research, 14, 235–248.

Henrich, B., Becker, J., Dinapoli, R., Goettlicher, P., Graafsma, H., Hirsemann, H, Klanner, R., Krueger, H., Mazzocco, R., Mozzanica, A., Perrey, H., Potdevin, G., Schmitt, B., Shi, X., Srivastava, A.K., Trunk, U., Youngman, C., 2011, The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 633, S11–S14.

Ice, G., Chung, J., Larson, B., Budai, J., Tischler, J.Z., Tamura, N., Lowe, W., 2000, Design and performance of X-ray optics optimized for polycrystalline microdiffraction: AIP Conference Proceedings, 521, 19–24.

Ice, G.E., Larson, B.C., Yang, W., Budai, J.D., Tischler, J.Z., Pang, J. W.L., Barabash, R.I., Liu, W., 2005, Polychromatic X-ray microdiffraction studies of mesoscale structure and dynamics: Journal of Synchrotron Radiation, 12 (Pt 2), 155–62.

Jark, W., Cedola, A., Di Fonzo, S., Fiordelisi, M., Lagomarsino, S., Kovalenko, N.V., Chernov, V.A., 2001, High gain beam compression in new-generation thin-film X-ray waveguides: Applied Physics Letters, 78 (9), 1192.

Jark, W., Pérennès, F., Matteucci, M., Mancini, L., Montanari, F., Rigon, L., Tromba, G., Somogyi, A., Tucoulou, R., Bohic, S., 2004, Focusing X-rays with simple arrays of prism-like structures: Journal of Synchrotron Radiation, 11 (Pt 3), 248–53.

Kieffer, J., Karkoulis, D., 2013, PyFAI, a versatile library for azimuthal regrouping: Journal of Physics: Conference Series, 425 (20), 202012.

Kirkpatrick, P., Baez, A.V., 1948, Formation of optical images by X-rays: Journal of the Optical Society of America, 38 (9), 766–774.

Kirz, J., Jacobsen, C., Howells, M., 1995, Soft X-ray microscopes and their biological applications: Quarterly Reviews of Biophysics, 28 (1), 33–130.

Kunz, M., Chen, K., Tamura, N., Wenk, H.-R., 2009a, Evidence for residual elastic strain in deformed natural quartz: American Mineralogist, 94 (7), 1059–1062.

Kunz, M., Tamura, N., Chen, K., Macdowell, A.A, Celestre, R.S., Church, M.M., Fakra, S., Domning, E.E., Glossinger, J.M., Kirshman, J.L., Morrison, G.Y., Plate, D.W., Smith, B.V., Warwick, T., Yashchuk, V.V., Padmore H.A., Ustundag, E., 2009b, A dedicated superbend X-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source: The Review of Scientific Instruments, 80 (3), 035108.

Lanzirotti, A., Tappero, R., Schulze, D.G., 2010, Practical application of synchrotron-based hard X-ray microprobes in soil sciences: Developments in Soil Science, 34, 27–72.

Larabell, C., Le Gros, M., 2004, X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution: Molecular Biology of the Cell, 15 (March), 957–962.

Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., 2002, Three-dimensional X-ray structural microscopy with submicrometre resolution: Nature, 415 (6874), 887–90.

Leon, Y., Sciau, P., Goudeau, P., Tamura, N., Webb, S., Mehta, A., 2010, The nature of marbled Terra Sigillata slips: a combined μXRF and μXRD investigation: Applied Physics A, 99 (2), 419–425.

Liu, A.F., 2005, Mechanics and Mechanisms of Fracture: An Introduction, Materials Park: OH, ASM International, 654 p.

Lutterotti, L., Scardi, P., 1990, Simultaneous structure and size–strain refinement by the Rietveld method: Journal of Applied Crystallography, 23 (4), 246–252.

Lutterotti, L., Matthies, S., Wenk, H.R., 1999, MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld texture analysis and more: Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 1, 1599.

Manceau, A., Tamura, N., Marcus, M.A., Macdowell, A.A., Celestre, R. S., Sublett, R.E., Sposito, G., Padmore, H.A., 2002, Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution: American Mineralogist, 87 (10), 1494–1499.

McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louër, D., Scardi, P., 1999, Rietveld refinement guidelines: Journal of Applied Crystallography, 32 (1), 36–50.

Mehta, A., Gong, X.-Y., Imbeni, V., Pelton, A.R., Ritchie, R.O., 2007, Understanding the Deformation and Fracture of Nitinol Endovascular Stents Using In Situ Synchrotron X-Ray Microdiffraction: Advanced Materials, 19 (9), 1183–1186.

Mimura, H., Matsuyama, S., Yumoto, H., Hara, H., Yamamura, K., Sano, Y., Shibahara, M., Endo, K., Mori, Y., Nishino, Y., Tamasaku, K., Yabashi, M., Ishikawa, T., Yamauchi, K., 2005, Hard X-ray diffraction-limited nanofocusing with Kirkpatrick-Baez mirrors: Japanese Journal of Applied Physics, 44 (18), L539–L542.

Nakamura, T., Tsuchiyama, A., Akaki, T., Uesugi, K., Nakano, T., Takeuchi, A., Suzuki, Y., Noguchi, T., 2008, Bulk mineralogy and three-dimensional structures of individual Stardust particles deduced from synchrotron X-ray diffraction and microtomography analysis: Meteoritics & Planetary Science, 43 (1–2), 247–259.

Noyan, I.C., Cohen, J.B., 1987, Residual stress, Measurement by Diffraction and Interpretation: New York, Springer Verlag, 276 p., ISBN: 978-1-4613-9571-3.

Noyan, I.C., Kaldor, S.K., Wang, P.-C., Jordan-Sweet, J., 1999, A cost-effective method for minimizing the sphere-of-confusion error of X-ray microdiffractometers: Review of Scientific Instruments, 70 (2), 1300–1304.

Patterson, A., 1939, The Scherrer Formula for X-ray Particle Size Determination: Physical Review, 56 (10), 978–982.

Ponchut, C., Rigal, J.M., Clément, J., Papillon, E., Homs, A., Petitdemange, S., 2011, MAXIPIX, a fast readout photon-counting X-ray area detector for synchrotron applications: Journal of Instrumentation, 6 (01), C01069–C01069.

Popa, N.C., 1992, Texture in Rietveld refinement: Journal of Applied Crystallography, 25 (5), 611–616.

Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies L., Lorentzen T., Juul Jensen, D., 2001, Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders: Journal of Applied Crystallography, 34 (6), 751–756.

Rietveld, H.M., 1969, A profile refinement method for nuclear and magnetic structures: Journal of Applied Crystallography, 2 (2), 65–71.

Robach, O., Micha, J.-S., Ulrich, O., Gergaud, P., 2011, Full local elastic strain tensor from Laue microdiffraction: simultaneous Laue pattern and spot energy measurement: Journal of Applied Crystallography, 44 (4), 688–696.

Rodriguez-Navarro, A.B., 2006, XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction: Journal of Applied Crystallography, 39 (6), 905–909.

Rogan, R.C., Tamura, N., Swift, G.A,, Ustündag, E., 2003, Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction: Nature Materials, 2 (6), 379–81.

Rowe, R., 2009, New statistical calibration approach for Bruker AXS D8 Discover microdiffractometer with Hi-Star detector using GADDS software: Powder Diffraction, 24 (3), 263–271.

Sanchez del Rio, M., Dejus, R.J., 2004, Status of XOP: an X-ray optics software toolkit: Proceedings of the SPIE, 5536: Advances in Computational Methods for X-ray and Neutron Optics, 171-174.

Schroer, C.G., Kuhlmann, M., Hunger, U.T., Günzler, T.F., Kurapova, O., Feste, S., Frehse F., Lengler B., Drakopoulos, M., Somogyi, A., Simionovici, A.S., Snigirev, A., Snigireva, I., Schug, C., Schröder, W.H., 2003, Nanofocusing parabolic refractive X-ray lenses: Applied Physics Letters, 82 (9), 1485.

Snigirev, A., Kohn, V., Snigireva, I., Souvorov, A., Lengeler, B., 1998, Focusing high-energy X rays by compound refractive lenses: Applied Optics, 37 (4), 653–62.

Soler, J.M., Boi, M., Mogollón, J.L., Cama, J., Ayora, C., Nico, P.S., Tamura N., Kunz, M., 2008, The passivation of calcite by acid mine water. Column experiments with ferric sulfate and ferric chloride solutions at pH 2: Applied Geochemistry, 23 (12), 3579–3588.

Stokes, A., Wilson, A., 1944, The diffraction of X rays by distorted crystal aggregates-I: Proceedings of the Physical Society, 61 (3), 174–181.

Tamura, N., 2014, XMAS: a versatile tool for analyzing synchrotron X-ray microdiffraction data, in Barabash, R., Ice, G. (eds), Strain and dislocation gradients from diffraction: London, Spatially-Resolved Local Structure and Defects, Imperial College Press, 125–155.

Tamura, N., Kunz, M., Chen, K., Celestre, R.S., Macdowell, A.A., Warwick, T., 2009, A superbend X-ray microdiffraction beamline at the advanced light source: Materials Science and Engineering, A, 524 (1–2), 28–32.

Tate, M.W., Eikenberry, E.F., Barna, S.L., Wall, M.E., Lowrance, J.L., Gruner, S.M., 1995, A large-format high-resolution area X-ray detector based on a fiber-optically bonded charge-coupled device (CCD): Journal of Applied Crystallography, 28 (2), 196–205.

Ulrich, O., Biquard, X., Bleuet, P., Geaymond, O., Gergaud, P., Micha, J.S., Robach, O., Rieutord, F., 2011, A new white beam X-ray microdiffraction setup on the BM32 beamline at the European Synchrotron Radiation Facility: The Review of Scientific Instruments, 82 (3), 33908.

Valek, B.C., Tamura, N., Spolenak, R., Caldwell, W.A, Macdowell, A.A.., Celestre, R.S., Padmore, H.A., Bravman, J.C., Batterman, B.W., Nix, W.D.,Patel, J.R., 2003, Early stage of plastic deformation in thin films undergoing electromigration: Journal of Applied Physics, 94 (6), 3757.

Von Dreele, R.B., 1997, Quantitative texture analysis by Rietveld refinement: Journal of Applied Crystallography, 30 (4), 517–525.

Wang, P.C., Cargill III, G.S., Noyan, I.C., Hu, C.K., 1998, Electromigration-induced stress in aluminum conductor lines measured by X-ray microdiffraction: Applied Physics Letters, 72 (11), 1296–1298.

Wenk, H.R., Heidelbach, F., Chateigner, D., Zontone, F., 1997, Laue orientation imaging: Journal of Synchrotron Radiation, 4 (2), 95–101.

Wenk, H.R., Monteiro, P.J.M., Kunz, M., Chen, K., Tamura, N., Lutterotti, L., Del Arroz, J., 2009, Preferrred orientation of ettringite in concrete fractures: Journal of Applied Crystallography, 42 (3), 429–432.

Yashchuk, V.V, Morrison, G.Y., Church, M., Artemiev, N.A, Celestre, R., Domning, E.E., Howells, M., Kunz, M., McKinney, W.R., Merthe, D.J., Smith, B.V., Tamura, N., Padmore, H.A., 2013, Bendable Kirkpatrick-Baez mirrors for the ALS micro-diffraction beamline 12.3.2: optimal tuning and alignment for multiple focusing geometries: Journal of Physics: Conference Series, 425 (15), 152004.


Manuscript received: October 30, 2014.
Corrected manuscript received: May 12, 2015.
Manuscript accepted: May 15, 2015.


 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 457-465

http://dx.doi.org/10.18268/BSGM2015v67n3a9

Modeling the additive effects of Pb(II) and Cu(II) on the competitive attenuation of As(V) through solid precipitation versus adsorption to goethite

Katherine Vaca-Escobar1, Mario Villalobos2,*

1 Posgrado en Ciencias de la Tierra, Instituto de Geología, UNAM, Ciudad Universitaria, Coyoacán, México DF 04510, México.
2 Departamento de Geoquímica, Instituto de Geología, UNAM, Ciudad Universitaria, Coyoacán, México DF 04510, México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Mine-related activities cause widespread contamination of aqueous environments with high concentrations of arsenic and accompanying heavy metals. The natural attenuation of As(V) in soils and groundwater under oxic conditions occurs mainly through sorption processes to iron and aluminum (hydr)oxides; as well as through the formation of highly insoluble heavy metal(II) arsenates.

In the present investigation we used thermodynamic modeling to predict the environmental geochemical behavior of As(V) in the presence of Pb(II), Cu(II) and goethite, in an effort to approach the complexity of multi-component real contaminated scenarios. The key to this modeling was the coupling of a highly robust Surface Complexation Model of As(V) adsorption to goethite, which uses combined tenets of the Triple-Layer and CD-MUSIC models, together with appropriate metal(II) arsenate solid formation constants as well as those of all chemical equilibria taking place in the aqueous phase. Mixed-metal arsenates were predicted to form and increase the predominance region of the precipitation reactions for a highly surface-reactive goethite, at the expense of the adsorption mechanism, but the model yielded no aqueous As(V) released at any condition investigated.

Keywords: Adsorption, precipitation, arsenate, goethite, lead, copper, Surface Complexation Model, Triple-Layer Model, CD-MUSIC Model.

 

Resumen

Las actividades relacionadas con la minería provocan contaminación extendida de ambientes acuosos conjuntamente de arsénico y metales pesados. La atenuación natural de As(V) en suelos y acuíferos en condiciones óxicas ocurre principalmente a través de procesos de adsorción a (hidr)óxidos de hierro y aluminio; así como a través de la formación de arseniatos de metales(II) pesados altamente insolubles.

En esta investigación utilizamos modelación termodinámica para predecir el comportamiento geoquímico ambiental del As(V) en presencia de Pb(II), Cu(II) y goetita, tratando de aproximarnos a la complejidad de escenarios multicomponentes de contaminación real. La clave de esta modelación fue el acoplamiento de un modelo de complejación superficial altamente robusto de adsorción de As(V) en goetita, el cual utiliza postulados combinados de los modelos de Triple Capa y CD-MUSIC, junto con constantes apropiadas de formación de arseniatos de metales divalentes sólidos y de todos los equilibrios químicos que ocurren en la fase acuosa. Se predice la formación de arseniatos metálicos mixtos que aumentan la región de predominio de las reacciones de precipitación, a expensas del mecanismo de adsorción en goetitas de alta reactividad superficial, pero el modelo predice que no se libera As(V) acuoso en ninguna de las condiciones investigadas.

Palabras clave: Adsorción, precipitación, arseniato, goetita, plomo, cobre, Modelo de Complejación Superficial, Modelo de Triple Capa, Modelo CD-MUSIC.

 

1. Introduction

Arsenic is a metalloid constituent of more than 245 minerals, and is associated most frequently with other metals such as copper, gold, lead, and zinc in sulfidic ores (Cullen and Reimer, 1989; Oremland and Stolz, 2003; Shen et al., 2013). Many sources of arsenic contamination result from human activities like the disposal of industrial chemical wastes, including mine wastes, the smelting of arsenic-bearing minerals, the burning of fossil fuels and the application of arsenic compounds in many products, especially in the past few hundred years (Garelick et al., 2008; Chang et al., 2009; Mirza et al., 2014). For example, arsenic concentrations measured in soils near a lead smelter were in average 2 g kg-1, near a copper smelter 0.55 g kg-1, and near a gold smelter from 0.5 to 9.3 g kg-1(Bissen and Frimmel, 2003).

The reduction of arsenic levels in contaminated drinking water and soils is one of the priority environmental challenges worldwide (Thirunavkukkarasu et al., 2002). In Mexico, arsenic contamination problems in water and soils have been reported in the following regions: Villa La Paz, San Luis Potosí (Gamiño-Gutiérrez et al., 2013); Matehuala, San Luis Potosí (Martínez-Villegas et al., 2013); Comarca Lagunera in NW Mexico (Ordáz et al., 2013); Zimapán, Hidalgo (Romero et al., 2008); Guanajuato (Arroyo et al., 2013); and Zacatecas and Guadalupe, Zacatecas (Mireles et al., 2012). To reduce arsenic contamination, it is of utmost importance to understand all aspects of arsenic environmental geochemistry, which in turn will provide useful information to optimize treatment and remediation schemes for contaminated environments.

The reactivity of Arsenate [As(V)] with individual soil minerals determines the general mobility of arsenic in soils. As(V) is the predominant inorganic species of arsenic under oxidizing soil conditions (Goldberg, 2011; Camacho et al., 2011), and is retained in soils by adsorption processes (Goldberg and Glaubig, 1988; Smith and Naidu, 2009). Important minerals that control the As(V) adsorption capacity of soils include Fe and Al oxides, such as goethite, ferrihydrite, gibbsite, etc. (Violante et al., 2010; Smedley and Kinniburgh, 2013). However, there is evidence that in situations where the metal contents that accompany As(V) are high (as in smelting, mining and metallurgical wastes), formation of (highly insoluble) heavy metal arsenates occurs, such as duftite, mimetite, hydroxymimetite and bayldonite, making precipitation the predominant immobilization mechanism over the adsorption process (Gutierrez-Ruiz et al., 2005; Villalobos et al., 2010; Drahota and Filippi, 2009; Vaca-Escobar et al., 2012). For example, Villalobos et al. (2010) reported various As-contaminated soils with pH values between 4.5 and 10.2, As/Fe molar ratios of 0.03 – 2.5, As/Pb molar ratios of 0.53 – 300, and As/Cu molar ratios of 0.44 – 32, in which the presence of mixed heavy metal arsenates was identified.

In the present research, we use thermodynamic modeling to investigate the environmental geochemical conditions of arsenate mobility in aqueous environments, focusing on the competition between formation of Pb and Cu arsenates and adsorption mechanisms to an Fe oxide. We chose goethite because it is thermodynamically one of the most stable iron oxides in the environment (Schwertmann and Cornell, 2007), and therefore it is well characterized and the subject of many studies on surface complexation modeling (Hayes et al., 1991; Mathur and Dzombak, 2006). We build from our previous research with Pb(II)-only arsenate/goethite systems (Vaca-Escobar et al., 2012), in a “bottom-up” approach to progressively describe more complex systems in a quantitative manner, particularly those with various heavy metals present simultaneously. In this previous work we found that As(V) adsorption is favored at low As/Fe molar ratios (less than 0.021) or high As/Pb molar ratios (above 0.667), but also with highly reactive goethites of large particle sizes. In opposite conditions, Pb(II) precipitation becomes the more competitive immobilizing mechanism (Vaca-Escobar et al., 2012).

The main question asked here is whether the simultaneous presence of Cu(II) with Pb(II) promotes a higher predominance of precipitated metal arsenates versusAs(V) adsorption to goethite, and to what extent this occurs. Also, in conditions that favor precipitation, how prevalent are the mixed Pb(II)-Cu(II) arsenates in comparison with the single Pb(II) or Cu(II) arsenates.

 

2. Materials and methods

2.1. Thermodynamic modeling

The arsenic species distribution was calculated by thermodynamic modeling using the Visual Minteq geochemical equilibrium and speciation interface, version 3.0 (Gustafsson, 2010). This program was updated with surface complexation constants for goethite reported by Salazar-Camacho and Villalobos (2010). These authors used combined tenets of the Triple-Layer and CD-MUSIC surface complexation models (SCMs) to describe in a unified manner the adsorption behavior of goethite, irrespective of its specific surface area (SSA), by defining the adsorption reactions per type of reactive site on the goethite surface. The two goethites for which the unified model has been calibrated have SSAs of 50 m2 g-1 (GOE50) and a 94 m2 g-1(GOE94) (Salazar-Camacho and Villalobos, 2010). The latter corresponds to small ideal goethite crystals, and the former to larger particles that show higher reactivity per unit area.

Table 1 lists all surface complexation constants used, including their expressions and corresponding formation reactions. Binary adsorption data for the unified goethite model were available for As(V) and Pb(II) (Salazar-Camacho and Villalobos, 2010), but not for Cu(II). Pb(II) shows a higher binding affinity for goethite (and other minerals) than Cu(II) (Christophi and Axe, 2000). Therefore, we hypothesized that As(V) (Kingston et al., 1972) and Pb(II) (Kooner, 1993) adsorption are sufficiently stronger than Cu(II) adsorption to goethite, and that the exclusion of the latter would not affect the modeling results. To test this hypothesis, we modeled the Pb(II)/As(V)/goethite system in the presence and absence of the binary Pb(II) adsorption reactions. We found no difference in the As(V) speciation results, but only in the case of the more surface reactive GOE50. Therefore, we decided to perform the modeling for the complete system including Cu(II) only with this GOE50, and for the moment to exclude GOE94 since we could not ensure that the absence of Cu(II) surface binding constants would affect the results for the latter.

To complete the SCM, in addition to the surface complexation constants, other input parameters are required. They include: the specific surface area (50m2 g-1); the surface site density (see below); two electrical capacitances (C1 = 1.17 F m-2 and C2 = 0.20 F m-2); a fixed GOE50 solids concentration (0.2 g L-1); ionic strength (I = 0.01 mol L-1 NaNO3); and LogPCO2= -3.5. Computations were performed by varying the concentration of total As(V), essentially increasing the total As/Fe ratio.

The surface site density is dependent on the contribution of the specific exposed crystal faces of the goethite sample used. It is calculated from chromate adsorption maxima at pH 4. For the 50m2 g-1 goethite they are: 6.86 sites nm-2 for ≡FeOH; 2.87 sites nm-2 for ≡Fe2OH; and 1.12 sites nm-2 for ≡Fe3OH groups; with a face distribution of 37 % for {101} and 63 % for {010} (Salazar-Camacho and Villalobos, 2010).

The SCM was coupled to an aqueous and solid thermodynamic speciation model, for which the corresponding available formation constants of all species are listed in Table 2. The complete thermodynamic model applied was validated previously by wet chemical experimental results, which matched closely the model results for the As(V)/Pb(II)/goethite system (Vaca-Escobar et al., 2012). Therefore, we are confident that the model employed represents well the behavior of the system when one additional component, i.e., Cu(II), is added, so no additional experimental verification of the model results was performed.

For the As(V)/Pb(II)/Cu(II) system, two different ratios of total concentrations added were chosen (1/1/1 and 2/1/3) to represent those of the two main mixed-metal arsenates that form: duftite [PbCu(AsO4)(OH)] and bayldonite [PbCu3(AsO4)2(OH)2].

Table 1. Surface complexation reactions uploaded in Visual Minteq with formation constants described per type of surface site (Vaca-Escobar et al., 2012; Villalobos et al., 2009).

a SOH can be FeOH, Fe2OH or Fe3OH groups. As(V) surface complexation constants were taken from (Salazar-Camacho and Villalobos, 2010), and those for Pb(II) from (Villalobos et al., 2009).
bnr = non-reactive group.
c The log of acidity constants used was established through a ΔpKa of 4 around each pH of PZNPC for each site type, which were 8.8 and 9.66, for FeOH and Fe3OH groups, respectively.

 

Table 2. Solid and aqueous species formation constants from their components, used in the thermodynamic model (Taken from Visual Minteq Database).

a Log Kf taken from Villalobos et al., 2010 and included in Visual Minteq Database.

 

3. Result

The first step was to determine the solid speciation expected as a function of pH in the absence of adsorption processes, in order to gain knowledge of the metal(II) solids expected to compete for As(V) binding with the goethite surface (Figure 1). Table 3 summarizes the results by reporting the expected solids and their stability pH range at the different As(V)-Cu(II)-Pb(II) molar ratios studied.

After this, the complete model that includes adsorption onto goethite (GOE50) was applied, and the sum of three main types of As(V) species predicted – adsorbed, precipitated and dissolved – were plotted as percentage of the total As(V) applied. This was done as a function of the molar As/Fe ratio, to determine the species contributions as As(V) increased relative to goethite (Figures 2 and 3).

Table 3. pH range in which there are solid formations with respect to composition.

a The corresponding chemical formulas are listed in Table 2.
b Molar ratios taken from Vaca-Escobar et al. (2012).

 


Figure 1. Saturation indices of As-Cu-Pb solids in the absence of goethite, for a system composed of a) [AsO43-] = 1×10-4 M, [Cu2+] = 1×10-4 M (As/Cu = 1/1); b) [AsO43-] = 2×10-4 M, [Cu2+] = 3×10-4 M (As/Cu = 2/3); c) [AsO43-] = 1×10-4 M, [Cu2+] = 1×10-4 M, [Pb2+] =1×10-4 M (As/Pb/Cu = 1/1/1); and d) [AsO43-] = 2×10-4 M, [Cu2+] = 3×10-4 M, [Pb2+] = 1×10-4 M (As/Pb/Cu = 2/1/3). All systems have I = 0.01 M NaNO3. Chemical formulas of solid minerals shown are listed in Table 2.

 

3.1. Simple As(V)-Pb(II) systems

The As(V)/Pb(II) system was investigated previously and the mineral hydroxymimetite [Pb5(AsO4)3OH] was identified as the main solid forming in a pH range of 5 to 9 (Vaca-Escobar et al., 2012).

When adsorption processes to GOE50 were included in the model, this retention mechanism controlled As(V) speciation, and precipitation of hydroxymimetite did not occur until all surface sites were saturated, as As/Fe was increased. This was in stark contrast to the behavior shown by GOE94, in which precipitation of hydroxymimetite occurred considerably before surface site saturation with As(V) was attained, and quickly became the predominant mechanism as As/Fe was further increased (Vaca-Escobar et al., 2012).

 

3.2. Simple As(V)-Cu(II) systems

A Cu(II) arsenate is predicted to precipitate in a very narrow pH range around 6, which is the pH of minimal As(V) solubility for As/Cu molar ratios of 1 (Figure 1a) and 2/3 (Figure 1b). Therefore, pH 6 was one of the values chosen for further investigations in the complete system.

In the presence of goethite, adsorption of As(V) was not disrupted by the presence of Cu(II) (Figure 2). Even after surface site saturation is reached as As/Fe is increased, before the onset of the Cu(II) arsenate precipitation, dissolved As(V) reached values above 40 % at the maxima for both As/Cu ratios investigated at pH 6. At an As(V)/Cu(II) molar ratio of 1 (Figure 2a) the dissolved species contribution stabilized at around 30 %. At the lower As(V)/Cu(II) molar ratio (2/3) the dissolved species decreased to less than 10 % at high As(V)/Fe(III) molar ratios (Figure 2b). Thus, precipitation of the arsenate became highly predominant in this latter system. Therefore, in comparison with the As(V)-Pb(II) systems, the As(V)-Cu(II) systems are predicted to be much less efficient in removing aqueous As(V).

 


Figure 2. As(V) species distribution in the presence of Cu(II) and goethite (GOE50) at pH 6 and I = 0.01M NaNO3 a) As/Cu molar ratio = 1, and b) As/Cu molar ratio = 2/3.

 

3.3. As(V)-Pb(II)-Cu(II) systems

In the As(V) system where both metals are present a more complex precipitation behavior was observed (Figures 1c and d), in which several solids may coexist over wide pH intervals (Table 3). For both As(V)/Pb(II)/Cu(II) molar ratios used in this research (1/1/1 and 2/1/3), pH 7 was chosen for investigating the system in the presence of goethite because at this value they showed the lowest As(V) solubility. At a 1/1/1 ratio the only solid predicted to form at pH 7 was duftite [PbCu(AsO4)(OH)] (Figure 1c), while at the 2/1/3 ratio three simultaneous solids were predicted, two of them being mixed-metal arsenates: duftite [PbCu(AsO4)(OH)], and bayldonite [PbCu3(AsO4)2(OH)2]. However, a much lower As(V) solubility was predicted in the former case (10 – 7.6 M — not shown in the scale of Figure 1c), in comparison to the latter (10 – 6 M — Figure 1d); as well as a wider pH range of insolubility.

In the systems that include adsorption to GOE50, the first important difference observed from those in the absence of Cu(II) is that the As/Fe region of predominance of the adsorption mechanism was diminished, on account of an increase in the corresponding region of arsenate precipitation. The As(V) insolubility behavior described above is well reflected here by showing a larger decrease in the adsorbed species distribution for the system with an As/Pb/Cu molar ratio of 1/1/1 (Figure 3a), and the corresponding increase in the precipitation of duftite, as compared to the system with a 2/1/3 ratio (Figure 3b). It is interesting to note that the onset of precipitation occurred at a very similar As/Fe ratio for both systems, but the former showed a considerably steeper precipitation curve, such that the crossing point where adsorption and precipitated species were equal appeared at a considerably lower As/Fe value (Figure 3a) than for the 2/1/3 system (Figure 3b) (0.019 for the 1/1/1 ratio and 0.027 for the 2/1/3 ratio).

In the 1/1/1 system at the As/Fe ratio of 0.01, at which site saturation occurs in the absence of metals, adsorption decreased to approximately 70 %; whereas in the 2/1/3 system the adsorption decrease was small (ca. to 90 %) at this As/Fe ratio, and the adsorption curve in general was close to the one in the absence of metals. Dissolved species did not appear in this system, because As(V) species were distributed exclusively between adsorbed and precipitated.


Figure 3 As(V) species distribution in the presence of Pb(II), Cu(II), and goethite (GOE50) at pH 7 and I = 0.01M NaNO3 a) As/Pb/Cu molar ratio = 1/1/1, and b) As/Pb/Cu molar ratio = 2/1/3.

 

4. Discussion and conclusions

Thermodynamic modeling is a powerful tool for predicting the behavior of complex multi-component systems in which adsorption and solid mineral precipitation occur as potential attenuation processes. This is the case for As(V) in the presence of heavy metals (II) and goethite, for which accurate geochemical modeling is possible when a robust adsorption model is available. This research can be of great interest because we have not found other investigations that combine adsorption and precipitation processes in compounded thermodynamic modeling to predict As(V) behavior in soils, and to propose remediation methods.

Previously it was found that in the presence of Pb(II), As(V) may form very insoluble minerals before it saturates the goethite surface, but only for an ideal goethite of small particle sizes. For larger more surface-reactive goethites, the adsorption mechanism prevails, and precipitation does not occur until all surface sites are occupied, except in the presence of chloride because of mimetite formation, which is considerably more insoluble than other lead arsenates (Vaca-Escobar et al., 2015).

In the present work we investigated the behavior of As(V) when a second metal component [Cu(II)] was added to the system, in an effort to approach the complexity of mine waste-contaminated environments. A considerable decrease in the adsorption of As(V) to a large goethite was found when the three components were added at a ratio of 1/1/1, in a similar fashion to the decrease observed in the presence of Cl- and in the absence of Cu(II), due to formation of the extremely insoluble mimetite mineral (Vaca-Escobar et al., 2015). The adsorption decrease in the presence of Cu(II) was caused by the precipitation of a mixed-metal arsenate called duftite: PbCu(AsO4)(OH).

At an added ratio of 2/1/3 for As/Pb/Cu, corresponding to another mixed-metal arsenate, bayldonite [PbCu3(AsO4)2(OH)2], a much lower effect on the adsorption of As(V) to goethite was observed, despite the fact that both mixed Pb(II)-Cu(II) minerals are predicted to precipitate simultaneously.

In the mixed-metal systems none of the existing single-metal arsenates were predicted to form at the two ratios investigated, and no aqueous As(V) appeared under any of the conditions investigated. In this manner, the interplay between adsorption and precipitation, whether one mechanism or the other prevails, allows for an efficient attenuation of As(V) in aqueous systems contaminated with As(V) and heavy metals Pb(II) and Cu(II).

Conversely, in the As(V)/Cu(II) system [i.e., without Pb(II) added], the Cu(II) arsenate solubility was not low enough to affect the adsorption process, and in fact a considerable fraction of aqueous As(V) appeared beginning from an As/Fe ratio of ca. 0.02. Therefore, it seems advantageous from an environmental perspective that more than one metal(II) be present simultaneously with As(V) in a contamination scenario to ensure their immobilization, in which the formation of insoluble mixed-metal arsenates seems to be a predominant attenuation mechanism. Given that mixed metal arsenates have been detected in contaminated soils, and that in previous laboratory experiments less than 14 days were required to reach equilibrium for Pb(II) arsenate solid formation, we believe no major kinetic impediments exist for the formation of mixed metal arsenates in contaminated environments.

The results of this work are highly relevant for understanding the environmental geochemistry of As(V) in aqueous environments, such as soils, with high contents of heavy metals, and for the conceptual design of efficient remediation schemes of As-contaminated environments by controlled addition of other heavy metal wastes in systems with a high As/Fe molar ratio.

 

Acknowledgements

This research was funded by the CONACyT through Project # CB-2010-01-153723. K. V.-E. is grateful to CONACyT for the Ph.D. student fellowship received.

 

References

Arroyo, Y.R.R., Muñoz, A.H.S., Barrientos, E.Y., Huerta, I.R., Wrobel, K., Wrobel, K., 2013, Natural Decrease of Dissolved Arsenic in a Small Stream Receiving Drainages of Abandoned Silver Mines in Guanajuato, Mexico: Bulletin of environmental contamination and toxicology, 91, 539–544.

Bissen, M., Frimmel, F.H., 2003, Arsenic — a Review. Part I: Occurrence, Toxicity, Speciation, Mobility: Acta Hydrochimica et Hydrobiologica, 31, 9–18.

Camacho, L.M., Gutiérrez, M., Alarcón-Herrera, M.T., Villalba, M.d.L., Deng, S., 2011, Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA: Chemosphere, 83, 211–225.

Chang, J.-S., Yoon, I.-H., Kim, K.-W., 2009, Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines: Ecological Indicators, 9, 1275–1279.

Christophi, C.A., Axe, L., 2000, Competition of Cd, Cu, and Pb adsorption on goethite: Journal of Environmental Engineering, 126, 66–74.

Cullen, W.R., Reimer, K.J., 1989, Arsenic speciation in the environment: Chemical Reviews, 89, 713–764.

Drahota, P., Filippi, M., 2009, Secondary arsenic minerals in the environment: a review: Environment international, 35, 1243–1255.

Gamiño-Gutiérrez, S., González-Pérez, C.I., Gonsebatt, M., Monroy-Fernández, M., 2013, Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studied by micronucleated exfoliated cells assay: Environmental Geochemistry and Health, 35, 37–51.

Garelick, H., Jones, H., Dybowska, A., Valsami-Jones, E., 2008, Arsenic Pollution Sources: Reviews of environmental contamination and toxicology, 197, 17–60.

Goldberg, S., 2011, Chemical Equilibrium and Reaction Modeling of Arsenic and Selenium in Soils, in Selim, M. (ed.), Dynamics and Bioavailability of Heavy Metals in the Rootzone, 65–92.

Goldberg, S., Glaubig, R., 1988, Anion sorption on a calcareous, montmorillonitic soil—arsenic: Soil Science Society of America Journal, 52, 1297–1300.

Gustafsson, J.P., 2010, Visual MINTEQ Ver. 3.0. A free equilibrium speciation model software: Stockholm, Sweden, updated on 2013-11-27, available at <http://vminteq.lwr.kth.se/>, consulted 2015-11.

Gutierrez-Ruiz, M., Villalobos, M., Romero, F., Fernandez-Lomelin, P., 2005, Natural attenuation of arsenic in semiarid soils contaminated by oxidized arsenic wastes, inOday, P.A., Vlassopoulos, D., Meng, Z., Benning, L.G. (eds.), Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation: American Chemical Society, ACS Symposium Series, Book 915, 235–252.

Hayes, K.F., Redden, G., Ela, W., Leckie, J.O., 1991, Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data: Journal of Colloid and Interface Science, 142, 448–469.

Kingston, F., Posner, A., Quirk, J.T., 1972, Anion adsorption by goethite and gibbsite: Journal of Soil Science, 23, 177–192.

Kooner, Z.S., 1993, Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in aqueous systems: Environmental Geology, 21, 242–250.

Martínez-Villegas, N., Briones-Gallardo, R., Ramos-Leal, J.A., Avalos-Borja, M., Castañón-Sandoval, A.D., Razo-Flores, E., Villalobos, M., 2013, Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem: Environmental Pollution, 176, 114–122.

Mathur, S., Dzombak, D., 2006, Surface complexation modeling: goethite: Interface Science and Technology, 11, 443–468.

Mireles, F., Davila, J.I., Pinedo, J.L., Reyes, E., Speakman, R.J., Glascock, M.D., 2012, Assessing urban soil pollution in the cities of Zacatecas and Guadalupe, Mexico by instrumental neutron activation analysis: Microchemical Journal, 103, 158–164.

Mirza, N., Mahmood, Q., Maroof Shah, M., Pervez, A., Sultan, S., 2014, Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content: The Scientific World Journal, 921581, 11 p.

Ordáz, G.H., Castruita, M.A.S., Pico, L.C.Á.G., Nuncio, R.A.A., Hernández, M.F., Cervantes, G.G., 2013, Comportamiento del arsénico en suelos de la región lagunera de Coahuila, México: Terra Latinoamericana, 31, 295–303.

Oremland, R.S., Stolz, J.F., 2003, The Ecology of Arsenic: Science, 300, 939–944.

Romero, F.M., Villalobos, M., Aguirre, R., Gutierrez, M.E., 2008, Solid-phase control on lead bioaccessibility in smelter-impacted soils: Archives of Environmental Contamination and Toxicology, 55, 566–575.

Salazar-Camacho, C., Villalobos, M., 2010, Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model: Geochimica et Cosmochimica Acta, 74, 2257–2280.

Schwertmann, U., Cornell, R.M., 2007, The Iron Oxides, inSchwertmann, U., Cornell, R.M. (eds.), Iron Oxides in the Laboratory: Weinheim, Federal Republic of Germany, Wiley-VCH, 5–18.

Shen, S., Li, X.-F., Cullen, W.R., Weinfeld, M., Le, X.C., 2013, Arsenic Binding to Proteins: Chemical Reviews, 113, 7769–7792.

Smedley, P.L., Kinniburgh, D., 2013, Arsenic in Groundwater and the Environment, in Selinus, O. (ed.), Essentials of Medical Geology: Netherlands, Springer, 279–310.

Smith, E., Naidu, R., 2009, Chemistry of inorganic arsenic in soils: kinetics of arsenic adsorption–desorption: Environmental Geochemistry and Health, 31, 49–59.

Thirunavkukkarasu, O.S., Viraraghavan, T., Subramanian, K.S., Tanjore, S., 2002, Organic arsenic removal from drinking water: Urban Water, 4, 7.

Vaca-Escobar, K., Villalobos, M., Ceniceros-Gomez, A.E., 2012, Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: III. Adsorption versus precipitation in clean As(V)/goethite/Pb(II)/carbonate systems: Applied Geochemistry, 27, 2251–2259.

Vaca-Escobar, K., Villalobos, M., Pi-Puig, T., Zanella, R., 2015, Approaching the geochemical complexity of As(V)-contaminated systems through thermodynamic modeling: Chemical Geology, 40, 162–173.

Villalobos, M., Cheney, M.A., Alcaraz-Cienfuegos, J., 2009, Goethite surface reactivity: II. A microscopic site-density model that describes its surface area-normalized variability: Journal of Colloid and Interface Science, 336, 412–422.

Villalobos, M., Garcia-Payne, D.G., Lopez-Zepeda, J.L., Ceniceros-Gomez, A.E., Gutierrez-Ruiz, M.E., 2010, Natural Arsenic Attenuation via Metal Arsenate Precipitation in Soils Contaminated with Metallurgical Wastes: I. Wet Chemical and Thermodynamic Evidences: Aquatic Geochemistry, 16, 225–250.

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A.G., Pigna, M., 2010, Mobility and bioavailability of heavy metals and metalloids in soil environments: Journal of Soil Science and Plant Nutrition, 10, 268–292.


 

Manuscript received: October 27, 2014.
Corrected manuscript received: March 24, 2015.
Manuscript accepted: April 6, 2015.

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 447-456

http://dx.doi.org/10.18268/BSGM2015v67n3a8

Understanding Copper speciation and mobilization in soils and mine tailings from “Mineral La Aurora” in central Mexico: contributions from Synchrotron techniques

René Loredo Portales1, Gustavo Cruz Jiménez1, Hiram Castillo Michel2,*, Diana Olivia Rocha Amador1, Katarina Vogel Mikuš3, Peter Kump4, Guadalupe de la Rosa5,+

1 Department of Pharmacy, University of Guanajuato, Noria alta, 36050 Guanajuato, Guanajuato, Mexico. 2 ID 21, European Synchrotron Radiation Facility, Avenue des Martyrs 71, 3800 Grenoble, France.
3 Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia. 4 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
5 Biomedical and Electrical Engineering, University of Guanajuato, Lomas del Bosque 103, 37150 Leon, Guanajuato, Mexico.

* This email address is being protected from spambots. You need JavaScript enabled to view it.
+ This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Potentially toxic elements are usually present in mine tailings in concentrations that may threat environmental and human health. In this research, mine tailings and soils from the mine "La Aurora" located in central Mexico were studied. This mine was exploited for Pb, Zn, Ag, Cu and Au and abandoned since their last cycle in 1957. For this purpose, a combination of sequential extraction procedure (SEP), Flame Atomic Absorption Spectroscopy (FAAS), and X-ray synchrotron techniques (XAS) were used. Cu is present in mine tailings and soils in a range respectively between 125 ± 21 and 1763 ± 10 mg·kg-1 and 22 ± 2 and 88 ± 5 mg·kg-1. Repartition of Cu in mine tailings determined by SEP followed this general trend: Water soluble > Residual > Organic Bound > Exchangeable > Fe-Mn oxides bound > Carbonates bound. In contrast, Cu in soils was mainly retained in the residual fraction and followed this general trend: Residual > Organic bound > Fe-Mn oxides bound > Carbonates bound > Water soluble > Exchangeable. X-ray Absorption Near Edge Spectroscopy (XANES), showed that Cu is present as Cu2+, forming highly mobile species, and in minor proportion as Cu+species, as oxides and sulphides. Cu content in mine tailings is available for plants and bioaccessible with percentages higher than 50% in almost all the points tested. The calculated dose limit, that involves gastrointestinal disorders for chronic exposure is surpassed in all mine tailings tested.

Keywords: Copper, mine tailings, X-ray absorption spectroscopy.

 

Resumen

La concentración de Elementos Potencialmente Tóxicos en desechos mineros suele ser muy alta, en concentraciones que pueden constituir un riesgo para el medio y la salud humana. En este trabajo, se estudiaron jales y suelos del sitio de la mina “La Aurora”, localizado en la región central de México. Este sitio minero fue explotado para Pb, Zn, Ag, Cu y Au y abandonado desde su último ciclo en 1957. Con este propósito se empleó una combinación de Extracciones Secuenciales, Espectroscopía de Absorción Atómica de Flama y Técnicas de Luz Sincrotrón. La concentración de Cu determinada en los jales y suelos se encontró respectivamente en un rango de 125 ± 21 and 1763 ± 10 mg·kg-1 y 22 ± 2 a 88 ± 5 mg·kg-1. La distribución de Cu en los jales determinada por las Extracciones Secuenciales presento la siguiente tendencia: Soluble en agua > Residual > Unido a materia orgánica > Intercambiable > Unido a óxidos de Fe-Mn > Unido a carbonatos. En contraste, el Cu en el suelo es retenido principalmente en la fracción residual, como sigue: Residual > Unido a materia orgánica > Unido a óxidos de Fe-Mn > Unido a Carbonatos > Soluble en agua > Intercambiable.

Los estudios de Espectroscopia de Absorción de rayos X cerca de la Estructura del Borde, mostraron que el Cu se encuentra presente formando especies altamente solubles de Cu2+ y en menor proporción como óxidos y sulfuros de Cu+. El Cu contenido en los jales se encuentra bioaccesible y disponible para las plantas, con porcentajes de mas del 50% en casi todos los puntos estudiados. Todos los jales muestreados superan el límite de la dosis calculada que involucra desordenes gastrointestinales por exposición crónica.

Palabras clave: Cobre, residuos mineros, espectroscopía de absorción de rayos X.

 

1. Introduction

Mine tailings are source of heavy metal pollution around the world and their residues constitute a risk for environmental and human health since they usually display elevated concentrations of Potentially Toxic Elements (PTE). The exposure of living organisms to these types of residues may result in physiological damage, risking their wellbeing. In the case of Cu, which is in the focus of this study, high doses (0.0731 mg∙kg∙day-1) in humans may induce gastrointestinal irritation and in some cases liver damage (ATSDR, 2004). Cu is also indirectly associated with a number of neurological disorders, including Alzheimer’s and prion disease (Stern et al., 2007). In addition, it participates in cellular damage via oxidation by cupric ion (Freedman et al., 1986). In plants, Cu may cause morphological and physiological disorders including growth decrease and effects in photosynthetic activity. According to Mohanty et al. (1989), Cu acts as a potent inhibitor of photosynthetic electron transport at concentrations ≥ 0.06 mg L-1 in soil solution. The critical range for toxicity in leaves are between 20 – 30 mg∙kg-1 for crop species and around 18 mg∙kg-1 for grass species (Plenderleith and Bell, 1990; Alaoui-Sossé et al., 2004). In addition, plants, as the basis of food chain, could contribute to mobilize Cu and other PTE present in soils and waters (Ryan et al., 2013). In this context, mobilization is dependent on elemental speciation and the nature of the media containing the pollutant.

Reports on Cu levels in mine tailings vary significantly around the world. For example, in China and Zambia, Cu concentrations between 455 to 9979 mg·kg-1 have been reported (Sracek et al., 2010; Zebo et al., 2012; Yao-Guang et al., 2013). The mobilization of PTE from mine tailing zones to surrounding soils represents a threat for the local environment. For example, Montenegro et al. (2009) found Cu levels around 375.1 mg·kg-1, in soils near the Chilean Cu mine tailings of “La Cocinera”. Cu content in soils exceeding 200 mg∙kg-1 are considered as anomalous (Bowie and Thorton, 1985). Regulations for Cu in soils are between 50 (Holland) to 1000 mg∙kg-1 (Spain) (Belmonte Serrato et al., 2010).

Mine tailings have been studied for environmental purposes with the use of physical methods such as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), and XAS. Yang et al. (2014) used XANES, Extended X-ray Absorption Fine Structure (EXAFS), micro X-ray Fluorescence (µ-XRF) spectroscopy and Scanning Transmission X-ray Microscopy (STXM) to investigate speciation and distribution of Cu in mine tailings from Zhuji Country of Zhejiang province, China. Their results suggest that Cu is associated with Fe oxides, adsorbed to Fe(III) oxides by inner-sphere complexation. Mamindy-Pajany et al. (2014) used micro X-ray Absorption Near Edge Structure (µ-XANES) and µXRF spectroscopy to investigate the spatial distribution of Ca, Fe, Ni, Cu and Zn, in a biosolid-amended soil. They concluded that there Cu have a close relation with Fe oxy (hydr) oxides. Donner et al. (2011) also used XRF and XAS techniques to investigate the speciation of Cu and Zn in bio solids from Australia; they improved a combination of XANES, EXAFS and µ-XRF imaging to understand elemental associations within bio solids. Their results suggest that Cu and Zn are closely associated with Fe and this is one of the mechanisms controlling their mobility. For a better understanding of Cu mobility and speciation it is necessary to perform experiments about bioaccessibility and phytoaccessibility in order to get information of Cu fractions susceptible of entering in to the food chain. In this work, we combined spectroscopic techniques and extractions procedures to elucidate the speciation of Cu in mine tailings and its mobilization to the near environment of the abandoned mine "La Aurora".

 

2. Work area description

The site of study is called “La Aurora” and is located 4 km NW of Xichú town, in Guanajuato, Mexico, 393071 m N and 2359296 m W (UTM). This zone belongs to a natural protected area called “Sierra Gorda” with high biodiversity of species and biological resources. Located at the central zone of the folded belt of Jurassic and Cretaceous carbonate rocks, elevations are between 900 to 2400 masl. The weather is semi arid with summer rains, and temperatures range between 18 to 22°C. The Mine “La Aurora” was exploited for Pb, Zn, Ag, Cu and Au, and is abandoned since 1957 (SEMARNAT, 2005; Carrillo-Chávez et al., 2014).

 

3. Methods

3.1. Mine tailing and soil sampling

Samples of mine tailings were collected from 13 sampling points, distributed over the mine tailing area and five points in soils located near the end of the mine tailings. Three more points were sampled in soils located at a distance of 1.5 km from the wastes as controls. Composites samples were taken at 1 and 30 cm depth per sampling point, except in soils where all samples are composites of 30 cm depth. Samples were dried at 50°C for 24 h and sieved in two particle sizes: < 0.25, < 0.85 mm (mesh 60 and 20), according to the Mexican regulations for metal content determination in soils for remediation (NOM147-SEMARNAT/SSA1, 2007), and EPA method 3050b (US-EPA, 1996) for acid digestion of sediments, sludge and soils. All samples were transferred to the Toxicology Laboratory at the University of Guanajuato for analysis of metal contents and for different extraction procedures to get information, for example about bio and phytoaccessibility. In soil samples, pH values ranged 7.3 – 8.2 and, in mine tailings, 2.8 – 6.6. Additionally, µ-XRF and µ-XANES spectra have been measured using synchrotron radiation, due to limited amount of beamtime, this manuscript presents results from two mine tailing samples and one soil only.

 

3.2. Total Cu content analysis

Mine tailings and soil samples were analyzed using FAAS and XRF (only in selected samples for validation purposes) for total Cu content. For FAAS analysis, tailings and soil samples were digested under reflux according 3050b EPA method (US-EPA, 1996). 1 g of sample was weighed in a 50 mL polypropylene centrifuge tube and then 5 mL of HNO3 (Reagent grade, Fermont) were added. Mixtures were boiled for about 1 h with a reflux condenser. Later, 3 mL of H2O2 (30%; Fermont) were added before boiling continued for about 1 h more. The residue was centrifuged at 3000 x g and filtered with a 2.5 µm membrane (Whatman ©), gauged to 10 mL of deionized water in a volumetric flask and stored at 4°C in centrifuge tubes until analysis. FAAS analysis was carried out by flame technique at 324.8 nm with a lamp current of 4.0 mA and slit of 0.5 nm in a PerkinElmer HGA 800 and SpectrAA 220FS.

For XRF analysis 100 to 300 mg of the powdered samples were pressed into pellets using a pellet die and hydraulic press. 109Cd (25 mCi) (Isotope Products Laboratories, Valencia, USA) was used as the primary excitation sources for the analysis. The fluorescence radiation emitted was collected using an energy dispersive X-ray spectrometer, equipped with a Si (Li) detector (Canberra, 157 Meriden, USA), with a 25-μm-thick Be window. The XRF analysis was performed in air, and the samples were irradiated for 1000 to 5000 s to obtain spectra with sufficient statistics (Necemer et al., 2008). X-ray fluorescence spectra were analyzed with the iterative least squares programme (AXIL) (Van-Grieken, 1993), as included in the quantitative X-ray analysis system software package (Vekemans et al., 1994). Element quantification from the measured spectra was performed using the quantitative analysis of environmental samples based on fundamental parameters (IAEA, 2011). Quality assurance for the element analyses was performed using as standard reference material 2730a Montana Soil.

 

3.3. Extraction procedures

For chemical extraction procedures 4 mine tailing (T1, T2, T10, T12), 2 soil (S1, S2) and one reference (S1R) site samples were selected. Extractions were performed in composite and surface samples from both particle size fractions < 0.25, < 0.85 mm (mesh 60 and 20). Bioaccessibility was determined only in the particle size <0.25 mm fraction (mesh 60), since this is the representative fraction of solids that may adhere to the hands of children and prone to be swallowed.

 

3.3.1. Bioaccessibility

Bioaccessibility was determined by quantifying the fraction of Cu that is soluble in a gastric media. This provides a measure of the oral exposure of Cu. Gastric media extraction was performed according to the Mexican Regulation (NOM-147-SEMARNAT-SSA1, 2007). Gastric media was simulated by a solution of 0.4 M Glycine (Reagent plus; Ultra Sigma), acidified with HCl at pH 1.5 ±0.05 (reagent grade; Fermont). 1g of sample was weighed in a 1 L glass recipient in triplicate and then 100 mL of gastric media were added. Solutions were shaken at 30 ± 2 rpm at 37°C for 1 h. After this, 20 mL of extract were centrifuged at 3000 x g and filtered with a 2.5 µm membrane (Wathman ©)

and stored at 4°C until analysis with FAAS. We calculated the estimated dose for oral exposition in children, in order to establish the potential toxicity via soil ingestion. Data used for this purpose were taken of similar studies in the same region (central Mexico area); using a soil ingest of 200 mg∙day-1, 52 h of exposition and 52 kg weight for a child between 6 and 9 years (CEPIS, 1998).

 

3.3.2. Phytoaccessibility

Phytoaccessibility was determined by extraction with a solution of Low Weight Molecular Organic Acids (LWMOA), simulating a chemical rhizosphere environment. Organic acids control the solubility of some elements and therefore the possibility to get into the plant tissue. Composition of solution was described by Cieśliński et al. (1998): acetic acid (C2H4O2; 2898 mM), succinic (C4H6O4; 194 mM), oxalic (H2C2O4; 43 mM), malic (C4H6O5; 39.8 mM), tartaric (C4H6O6; 26.3 mM), fumaric (C4H4O4; 12 mM) and citric acid (C6H8O7; 6 mM). Extraction was performed using 1 g of sample and the LWMOA solution in a 1:15 proportion (pH 4.5 ± 0.1). Solutions were shaken for 5 h, centrifuged at 3000 x g, filtered with a 2.5 µ membrane (Whatman©), and stored at 4°C until analysis by FAAS.

 

3.3.3. Sequential Extraction Procedure

Sequential extraction used for this purpose was a modified version of Tessier et al. (1979) for the speciation of particulate trace metals. 1 g of each sample was weighed and stored in a 50 mL centrifuge tube by triplicate. Extraction was performed as follows: 1) Water soluble, 15 mL of deionized water was added and stirred for 2 h at room temperature; 2) Exchangeable, 8 mL of 1M MgCl2 (pH 7.0) were added to the solid residue from the previous step, and stirred for 1h at room temperature; 3) Carbonates bound, 8 mL of 1M NaOAc (pH 5.0 with HOAc) were added to the solid residue from the previous step, and stirred for 5 h at room temperature; 4) Fe-Mn oxides bound, 15 mL of 0.04 M NH2OH·HCL in 25% (v/v) HOAc were added to the solid residue from the previous step, during 6 h at 96°C with occasional stirring; 5) Organic bound, 3 mL of 0.02 M HNO3 and 5 mL of 30% H2O2 (pH 2 with HNO3), heated during 2 h at 85°C with occasional stirring, after that another 3 mL of H2O2 (pH 2 with HNO3) was added, heated during 3 h at 85°C with occasional stirring; 6) Residual was extracted with and acid extraction with HNO3 and H2O2. After each step solid residue was washed with 15 mL of deionized water, centrifuged at 3000 x g, filtered with a 2.5 µ membrane (Wathman ©), and stored at 4°C until analysis by FAAS.

 

3.4. Synchrotron analysis

Synchrotron analyses were performed for two mine tailing (T1, T2) and one soil (S1) sample (surface and composite). Due to limited availability of beamtime preference was given to the particle size < 0.25 mm (mesh 60) fraction, which is the most prone to weathering processes.

3.4.1. Bulk XAS

XAS measurements were performed at the XAFS beamline of the Elettra Sincrotrone Trieste. All samples were pulverized and homogenized using an agate mortar, mixed with Boron nitride or Polivinil Pirrolidone and prepared as pellets. References were mounted on adhesive tape. The following reference compounds and minerals were used to compare against unknown samples: clinoclase (Cu3AsO4(OH)3), copper(II) sulfate/chalcanthite (CuSO4·5H2O), copper(II) oxide (CuO), copper (I) oxide (CuO2), olivenite (Cu2AsO4OH), and copper acetate Cu(CH3COO)2. Due to the high content of As we selected two of the most common copper arsenates found in oxidized zones of base metal deposits clinoclase and olivenite (Anthony et al., 2003). The latter were obtained from Excalibur minerals, the other reference substances were purchased as reagent grade chemicals from sigma Aldrich. XANES data acquisition was performed with the use of a Silicon Drift Detector (SDD; KETEK GmbH AXAS-M with an assembled 80 mm2 SDD) in fluorescence mode for diluted samples (soil), and in transmission mode for model compounds and samples with high Cu content. Cu K edge (8979 eV) was calibrated using a Cu0-foil and scanned 120 eV below the edge (5eV energy steps) and 220 eV above the edge (0.2 eV energy steps), energy was selected by a Si (111) double crystal monochromator. Multiple scans (2 – 10) were collected and averaged for each sample in order to obtain adequate signal to noise. XANES data analysis was performed using Athena (Ravel and Newville, 2005) programs. Normalized data was used for XANES and Linear Combination Fits (LCF). LCF were performed in the range -55 to 100eV, using all possible combinations of references (3 – 4 variables), all weights between 0 – 1 and forced to sum 1.

3.4.2. µ-XRF and µ-XANES spectroscopy

µ-XRF mapping of Cu was performed at European Synchrotron Radiation Facility (ESRF) beamline ID21. Samples T1c60, T2c60, and S1c60 were scattered on the surface of sulphur free tape for analysis. The beam was focused with the use of a Fresnel zone plate to a size of 0.500 x 0.900 µm2 (VxH). Incident energy was 9.1 keV and the fluorescence signal was detected by single element SDD 80 mm2 active area, Bruker detector. Well time and distance of the detector were optimized for each XRF map keeping the dead time below 15%. The XRF data was processed using PyMCA software (Solé et al., 2007). The elemental distribution images were obtained by fitting the fluorescence emission peaks in the spectrum of each pixel and display the net intensity normalized by incoming beam for each element of interest. For µ-XANES data acquisition the energy was selected using a Si (111) double crystal monochromator and scanned from 8950 to 9150 eV. The zone plate was translated in the beam axis in order to maintain the beam focus.

µ-XRF mapping at 12.1 keV was performed at the Advanced Light Source (ALS) beamline 10.3. (Marcus et al., 2004) in order to obtain co-localization with Cu and As. Sample T1c20 (< 0.85 mm particle size) was embedded in epoxy resin, polished to 20 µm thickness and detached from the glass substrate for analysis. Maps were recorded using a 4 × 4 µm (V × H) beam at 12.1 keV with a 4 × 4 µm pixel size and a 30 ms dwell time. The fluorescence yield was measured with a seven-element germanium (Ge) solid-state fluorescence detector (Canberra 50 mm2 per element) and normalized by I0and the dwell time.

 

4. Results and discussion

Total Cu content as determined by FAAS is shown in Table 1. For validation purposes selected samples were analyzed by XRF for total Cu content (XRF results in Table 3). Both methods agree in the values of Cu (p < 0.01) concentration and this supports the use of XRF as method for total quantification of Cu in mine tailings (for concentrations above tens of ppm). XRF is a non-destructive and least expensive technique compared to FAAS. Cu concentrations in mine tailings are in the range of 125 ± 21 and 1763 ± 10 mg∙kg-1 and in soils between 22 ± 5 and 88 ± 5 mg∙kg-1(See Table 1). Soil reference samples collected from locations at 1.5 km distance from the mine tailings have Cu contents between 11 ± 5 and 36 ± 5 mg∙kg-1. The total Cu content in mine tailings is higher in the surface (top 1 cm) than in the composite 30 cm depth. In evaporation-controlled climate, it is possible that highly soluble Cu species could be mobilized by capillary force to the top mine tailings and once there, their mobility controlled by pH and sorption processes (Dold, 1999).

Table 1. Total Cu content in mg·kg-1in mine tailings ± S.D. in (T) soils (S) and reference (R) samples, collected at 1cm (s) and 30 cm (c) depth, grain sizes < 0.25 mm (60), < 0.85 mm (20).

 

In order to determine Cu speciation and understand itsinfluence to mobility in the environment, a combinationof chemical extractions (SEP, phytoaccessibility and bioaccessibility), and XAS was used. Results from SEP showed that up to 80% of the total Cu content in mine tailings is in the water soluble fraction (See Table 2). Cu repartition in tailings followed this trend: Water soluble > Residual > Organic bound > Exchangeable > Fe-Mn oxides bound > Carbonates bound. These results indicate the high mobility of Cu in the mine tailings. In soils, water soluble Cu represents the minor fraction. Cu repartition in soils was Residual > Organic bound > Fe-Mn oxides bound > Carbonates bound > Water soluble > Exchangeable. The results from SEP suggest Cu in the tailings is present as a highly mobile species and adsorption mechanisms to mineral and amorphous Fe oxides, Mn oxides, and clays do not primarily regulate its mobility. On the other hand, Soil Organic Matter is also a primary factor controlling Cu mobility (Yang et al., 2014). However, Cu organic bound fraction in tailings is between 1 – 17% and organic matter content is low, on average 1% (data not shown). Cu association to Fe-oxide minerals can successfully control the mobility of Cu, because Cu binding at these minerals is resistant to sequential extractions up to residual fraction (Sracek et al., 2010; Donner et al., 2011). However, in this case, Cu bound to Fe-Mn-Oxides only represents between 1 to 7% in mine tailings, despite of the high Fe content in the samples (between 108000 to 195000 mg∙kg-1).
 
In order to understand how Cu in tailings and soils may have an impact on the surrounding environment, the bioaccessible and phytoaccessible fractions were determined. According to the Mexican regulations, bioaccessibility is used to quantify the fraction of elements in soils that are soluble in a gastric media. For phytoaccessibility analysis we used an extraction with a solution of LWMOA, in order to simulate a chemical rhizosphere environment. Results showed that in most of the mine tailing samples between 50 and 99% of total Cu content is available for plants and bioaccessible (see Table 3). In comparison, Cu in soils has limited availability for plants and no bioccessible Cuwas detected. These results agree with the SEP findingCu mostly in the residual and organic bound fractions. The children’s oral dose exposition was calculated using values from similar studies: 200 mg∙day-1 soil ingest, 52 h of exposition and 52 kg weight for a child between 6 and 9 years (CEPIS, 1998). Doses involved in gastrointestinal disorders surpass an intake of 0.0731 mg∙kg∙day-1 of Cu (ATSDR, 2004). All tested tailings surpassed this limit (with a range between 0.123 and 0.549 mg Cu∙kg∙day-1). Results suggest that there is high risk for environmental impact on plant community (phytoaccessible Cu) and to a lower level for human exposition (bioaccessible Cu).
 
 
Table 2. Cu Sequential extraction fractions in mg·kg-1in mine tailings ± S.D. and% from total content of mine tailings (T), soils (S) and reference (R) samples, collected at 1 cm (s) and 30 cm (c) depth, grain sizes < 0.25 mm (60) and < 0.85 mm (20). nd; no detected.
 
 
Table 3. Summary table of chemical extraction Cu content in mg·kg-1± S.D. and synchrotron analysis from selected mine tailings (T), soils (S) and reference (R) samples, collected at 1cm (s) and 30 cm (c) depth, grain sizes < 0.25 mm (60) and < 0.85 mm (20). nd; no detected, empty cells; no data available/no analysed.
 

Bulk and spatially resolved synchrotron techniques were used in order to investigate Cu speciation and associations with other elements in the mine tailings and soil. This approach is very powerful in samples where several chemical species are present (such as tailing and soil samples), the spatially resolved techniques provide confirmation on minor species that are not easy to identify in the bulk measurements. The references used for XANES LCF were Cu+2SO4 as model for Cu+2 highly soluble species and associated to inorganic and organic matter, Cu+1O2 to account for Cu+1 species with oxygen ligands, Cu+1FeS2 to account for Cu+1 species with S ligands (and also since this is main mineral phase in ore), and finally Cu+23AsO4(OH)3 (clinoclase) as suggested by the correlation of As and Cu in µXRF map from sample T1c20 (see Figure 2(A) R1, R2). The As-Cu correlation can be observed in the tricolor image Figure 2A in pixels with a yellow to orange color obtained by the overlay of Cu (green) and As (red). The total content of As in the mine tailings reaches up to 12000 mg·kg-1 in the tailings and 300 mg·kg-1 in soils, geochemical studies of As are also being conducted to investigate its mobility. Figure 1 shows the XANES LCF results obtained with the use of the selected references for one mine tailing and one soil, samples T1c60 and S1c60. Results from all samples analyzed by bulk-XANES are shown in Table 4. Results showed that Cu in mine tailing samples is mainly present as Cu2+ species (which as suggested by SEP is a highly mobile species) and clinoclase (Cu3(AsO4)(OH)3). XRF maps suggest Cu in the tailing soluble fraction could not only be present as CuSO4, since S is mainly co-localized with Ca (Pearson correlation 0.867). This Cu+2 highly soluble species in tailings is potentially a mixture of CuSO4 of varied crystallinities and hydration levels and forming soluble Cu complexes with organic acids derived from microorganism exudates (Ebena et al., 2007; Xie et al.,2010). The percentages of clinoclase obtained in the fitmight not be accurate since clinoclase presents a XANES spectrum similar to other Cu+2 species (bound to organic matter and adsorbed to oxides), hence it is difficult to accurately distinguish Cu+2species based on their XANES signal. Another Cu arsenate reference (olivenite) wastested but fittings were of better quality with clinoclase. The presence of clinoclase requires confirmation and forthat spatially resolved synchrotron micro X-ray Diffraction experiments will be performed on these samples in a future experiment. Cu+1 species bound to oxygen ligands (as in CuO2) were rarely detected in the mine tailing samples (5% in T1s60), which confirms Cu+1 is not an abundant species. The presence of another low abundance species (Cu+1FeS2,chalcopyrite) in the tailing samples was confirmed withthe use of µ-XRF mapping and µ-XANES (see Figure 2 (B, D)). Chalcopyrite is commonly distributed in the earth crust, but due to its low solubility it does not represents a risk for Cu mobility in natural conditions (Dold, 1999). The soil XANES LCF results showed a decreased contribution of Cu+2 mobile species and higher contribution from the reference Cu+2 arsenate (clinoclase). This Cu+2 species has a low solubility constant (7.6×10-36) (Magalhaes and Pedrosa de Jesus, 1988) and it could explain the low water soluble and exchangeable values of Cu obtained by SEP. Clinoclase occurs in arsenate and sulphate rich environments at oxidized conditions, the most common secondary mineral in this environment is olivenite at slightly acidic pH (4 – 6) but around neutral pH, clinoclase is predominant (Williams, 1990). In soil samples pH range is 7.3 – 8.2. In soils the mobility of Cu is possibly controlled by the formation of secondary minerals (Clinoclase) or adsorption to organic matter. In addition to this, µ-XANES spectra from the soil composite sample (S1c60) presents a near-edge feature characteristic of Cu+1 (as in CuO2) which confirms the presence of Cu+1 species bound to oxygen ligands and colocalized with Fe (see Figure 2 (C, D)). This result suggests the formation of Cu+1FeO2 in the soil sample (Sukeshini et al., 2000). The bulk XANES analysis of the soil sample also suggests Cu+1FeS2 (chalcopyrite) is present in the soil and the origin of this species might be linked to mechanical transport of particles (water and wind erosion).

Figure 1. Linear combination analysis of representative tailing (A) and soil (B) samples, using clinoclase (Cu3AsO4(OH)3), chalcanthite (CuSO4∙5H2O) and chalcopyrite (CuFeS2) as reference spectra.

Table 4. Weight of components from Bulk XANES Linear combination analysis in some tested mine tailings (T) and soils (S) samples, collected at 1 cm(s) and 30 cm (c) depth, grain size < 0.25 mm (60).

 

5. Conclusions

In summary, Cu is present as a highly Cu+2 mobile species in the mine tailings that could be moving towards surrounding soil in water solution and via wind and water erosion. In soils Cu is predominantly Cu+2 but as confirmed by SEP in the form of a less mobile Cu species. The formation of a Cu-arsenate species is likely due to the high content of As and co-localization observed from µXRF maps. However, adsorption to amorphous and crystalline Fe and Mn oxides and associations to organic matter are likely to occur in the soil. The presence of Cu+1 species as oxides and sulphides was also confirmed by µXRF/XANES results but represent only a minor fraction in both tailing and soil. Since, water soluble and exchangeable Cu in soil is low; the highly mobile Cu from the tailings could be reaching further from our tested sampling site and even filtrating further than the 30 cm sampled depth in the soil. The results of this research report also on the high potential impact to plants in this site since phytoaccessible Cu is higher than 50%.

Figure 2. µ-XRF maps and µ-XANES spectra. A) µ-XRF map at 12.1 keV incident energy from sample T1c20 (embedded thin section). B) µ-XRF map at 9.2 keV incident energy from sample T1c60. C) µ-XRF map at 9.2 keV incident energy from sample S1c60. D) µ-XANES spectra from label spots indicated in B and C and reference compounds CuFeS2 and CuO2.

 

Further experiments should be performed in order to quantify Cu concentration in plants from the region and determine the impact to plant community. For human health, this site is also potential threat due to the elevated Cu content which surpasses in some cases the dose involved in gastrointestinal diseases and liver damage. More sampling points should be analysed using the present approach (SEP-XAS-µ-XRF/ XANES) in order to better understand the mobility of Cu in the site and the impact on environmental and human health. However, one disadvantage of synchrotron based techniques is the lack of availability of the instruments and the short time of experimentation which is allocated for each user group. The present work has illustrated the importance of a multianalytical, multiscale approach for the understanding of geochemical processes that are involved in the mobilization and speciation of potentially toxic elements (such as Cu).

 

Acknowledgements

The authors wish to acknowledge to Consejo Nacional de Ciencia y Tecnología (CONACyT; Doctoral scolarship 328291), International Atomic Energy Agency (IAEA; 17114) and the International Centre for Theoretical Physics (ICTP; 20120039, 20125109, 20130336). Elettra Synchrotron Light Source, XAFS beamline, ESRF, beamline ID-21, and ALS beamline 10.3.2. and Red Temática de Usuarios de Luz Sincrotrón (Red TULS). The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also wish to thank Universidad Autónoma de San Luis Potosí and Monica Morales director of the Mineralogy Museum Eduardo Villaseñor Söhle.

 

References

Agency for Toxic Substances & Disease Registry (ATSDR), 2004, Dorsey, A., Ingerman, L., Swarts, S., Toxicological profile for copper, U.S. Department of Health and Human Services, ATSDR toxicological profiles, 202 p.

Alaoui-Sossé, B., Genet, P., Vinit-Dunand, D.F., Marie-Laure, T., Epron, D., Pierre-Marie, B., 2004, Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationship with carbohydrate accumulation and changes in ion contents: Plant Science, 166, 1213–1218.

Anthony, W.J., Bideaux, A.R., Bladh K. W., Nichols, M.C., 2003, Handbook of Mineralogy, Borates, carbonates, sulfates, USA, Mineralogical Society of America, 791 p.

Belmonte Serrato, F., Romero Diáz,A.,Alonso Sarría, F., Moreno Brotóns, J., Rojo López, S., 2010, Afección de suelos agrícolas por metales pesados en áreas limítrofes a explotaciones mineras del sureste de España: Papeles de Geografía, 51–52, 45–54.

Bowie, S.H.U., Thornton, F.R.S., 1985, Environmental Geochemistry and Health: Dordrecht, Holland, D. Riedel Publishing Company, 59–95.

Carrillo-Chávez, A., Salas-Megchún, E., Levresse, G., Muñoz-Torres C., Pérez-Arvizu O., Gerke T., 2014, Geochemestry and mineralogy of mine-wastematerial from a “skarn-type” deposit in central Mexico: Modeling geochemical controls of metals in the surface environment: Journal of Geochemical Exploration, 144 part A, 28–36.

Centro Panamericano de Ingeniería Sanitaria (CEPIS), 1998, Mejía, J., Carrizales., L., Díaz-Barriga, Evaluación de la exposición en sitios peligrosos. Zona minera de Villa de la Paz – Matehuala, Lima, Perú, Centro Panamericano de Ingeniería Sanitaria, Reporte técnico, 4, 1 p.

Cieśliński, G., Van Ress, K.C.J., Szmigielska, A.M., Krishnamurti, G.S.R., Huang, P.M., 1998, Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation: Plant and soil, 203 (1), 109–117.

Dold, B., 1999, Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic setting - implications for acid mine drainage and element mobility: Genève, Terre & Environment, PhD thesis, 18, 3125, 230 p.

Donner, E., Howard, L.D., de Jonge, D.M,, Paterson, D., Cheah, H.M., Naidu, R., Lombi, E., 2011, X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids: Environmental Science & Technology, 45 (17), 7249–7257.

Ebena, G., Hagberg, J., Carlsson, E., 2007, Origin and distribution of low molecular weight organic acids and bacteria in a depth profile of a soil covered tailings impoundment in northern Sweden: Journal of Geochemical Exploration, 92 (2–3), 186–195.

Freedman, H.J., Weiner, R.J., Peisach, J., 1986, Resistance to copper toxicity of cultured hepatoma cells: The Journal of Biological Chemistry, 261 (25), 11840–11848.

International Atomic Energy Agency (IAEA), 2011, Kump, P., Necemer, M., Rupnik, Z., Pelicon, P., Ponikvar, D., Vogel-Mikus, K., Regvar, M., Pongrac, P., Improvement of the XRF quantification and enhancement of the combined applications by EDXRF and micro-PIXE, Integration of nuclear spectrometry methods as a new approach to material research: Vienna, Austria, International Atomic Energy Agency, Technical report, 1669, 157 p.

Magalhaes, M.C.F., Pedrosa de Jesus, J.D., 1998, The chemistry of some secondary arsenate minerals of Cu(II), Zn(II) and Pb (II): Mineralogical Magazine, 52, 679–690.

Mamindy-Pajany, Y., Sayen, S., Mosseelmans, J.F.W., Guillon, E., 2014, Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, µ-XRF and µ-XANES investigations: Environmental Science & Technology, 48 (13), 7237–7244.

Marcus, M.A., MacDowell, A.A., Celestre, R., Manceau A., Miller, T., Padmore, H.A., Sublett, R.E., 2004, beamline 10.3.2 at ALS: a hard X- ray microprobe for environmental and material sciences: Journal of Synchrotron Radiation, 11, 239–247.

Mohanty, N., Vass, I., Demeter, S., 1989, Copper toxicity affects photosystem II electron transport at the secondary quinone acceptor QB: Plant Physiology, 90 (1), 175–179.

Montenegro, G., Fredes, C., Mejía, E., Bonomelli, C., Olivares, L., 2009, Contents of heavy metals in soils near Chilean copper mining tailing: Agrociencia, 43 (4), 427–435.

Necemer, M., Kump, P., Scancar, J., Jacimovic, R., Simcic, J., Pelicon P., Budnar, M., Jeran Z., Pongrac, P., Regvar, M., Vogel-Mikus, K., 2008, Application of X-ray fluorescence analytical techniques in phytorremediation and plant biology studies: Spectrochimica Acta Part B, 63, 1240–1247.

Plenderleith, R.W., Bell, L.C., 1990, Tolerance of twelve tropical grasses to high soil concentrations of copper: Tropical Grasslands, 24, 103–110.

Ravel, B., Newville, M., 2005, Athena, Arthemis, Hephaestus; data analysis for X-ray absorption spectroscopy using IFEFFIT: Journal of Synchrotron Radiation, 12, 537–541.

Ryan, B.M., Kirby, J.K., Degryse, F., Harris, H., McLaughlin, M.J., Scheiderich, K., 2013, Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms: New Phytologist, 199 (2), 367–378.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), 2005, Estudio previo justificativo para el establecimiento del área natural protegida, Reserva de la Biosfera “Sierra Gorda de Guanajuato”,México, Comisión Nacional de Áreas Naturales Protegidas, 281 p.

Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT), 2007, Criterios para determinar las concentraciónes de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio y/o vanadio, (NOM-147-SEMARNAT/SSA1): México, D.F., Diario Oficial de la Federación, 2 de Marzo de 2007, 86 p.

Solé, V.A., Papillon, E., Cotte, M., Walter, Ph., Susini, J., 2007, A multiplataform code for the analysis of energy-dispersive X-ray fluorescence spectra: Spectrochimica Acta Part B, 62 (1), 63–68.

Sracek, O., Milhaljevic, M., Kríbek, B., Majer, V., Veselovský, F., 2010, Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt Zambia: Journal of African Earth Sciences, 57 (1–2), 14–30.

Stern, B.R., Solioz, M., Krewski, D., Aggett, P., Aw, T.C., Baker, S., Crump, K., Dourson, M., Haber, L., Hertzberg, R., Keen, C., Meek, B., Rudenko, L., Schoeny, R., Slob, W., Starr, T., 2007, Copper and human health: Biochemistry, genetics, and strategies for modeling dose-response relationships: Journal of Toxicology and Environmental Health, 10 (3), 157–222.

Sukeshini, A.M., Koboyashi, H., Tabuchi, M., Kageyama, H., 2000, Physicochemical characterization of CuFeO2and lithium intercalation: Solid State Ionics, 128 (1–4), 33–41.

Tessier, A., Campbell, P.G.C., Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals: Analytical Chemistry, 51 (7), 844–851.

United States Environmental Protection Agency (US-EPA), 1996, acid digestion of sediments, sludges, and soils (METHOD 3050B): USA., Environmental Protection Agency. Method study 3050b, 12 p.

Van-Grieken, R.E., 1993, Handbook of X-ray Spectrometry: Methods and Techniques, in Van-Grieken, R.E., Markowicz, A.A. (eds.), Drugs and the pharmaceutical sciences practical spectroscopy series: USA, Michigan, Marcel Dekker, 181–239.

Vekemans, B., Janssens, K., Vincze, L., Adams, F., Van-Espen, P., 1994, Analysis of X-ray spectra by iterative least squares (AXIL): new developments: X-ray spectrometry, 23 (6), 278–285.

Williams, P.A., 1990, Oxide Zone Geochemistry, Series in inorganic chemistry Prentice-Hall, USA, California, Ellis Horwood, 286 p.

Xie, X., Fu, J., Wang, H., Liu, J., 2010, Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China: African Journal of Biotechnology, 9 (26), 4056–4066.

Yang, J., Liu, J., Dynes, J.J., Peak, D., Regier, T., Wang, J., Zhu, S., Shi, J., Tse, J.S., 2014, Speciation and distribution of copper in mine soils using multiple synchrotron-based bulk and microscopic techniques: Environmental Science and Pollution Research, 21 (4), 2943–2954.

Yao-Guang, G., Peng, H., Wu-Gang, Z., Xue-Wu, Y., Feng-Xia, F., Huan-Li, W., Jian-She, L., Zhao-Hui, W., 2013, Leaching of heavy metals from Dexing copper mine tailings pond: Transactions of Nonferrous Metals Society of China, 23 (10), 3068–3075.

Zebo, L., Qihua, S., Jianfeng, Z., Guancai, C., Ying, W., Xianhu, L.,, 2012, Soil copper distribution in Tongling mine tailing dam, China, (Summary), in International Conference on Biomedical Engineering and Biotechnology: Macau, China, Institute of Electrical and Electronics Engineers, 1672–1675.


 

Manuscript received: October 27, 2014.
Corrected manuscript received: March 18, 2015.
Manuscript accepted: March 28, 2015.

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 421-432

http://dx.doi.org/10.18268/BSGM2015v67n3a6

An interpretation of the oligomerization of amino acids under prebiotic conditions

Fernando G. Mosqueira P. S.1,*, Alicia Negrón-Mendoza2, Sergio Ramos-Bernal2

1 Dirección General de Divulgación de la Ciencia, Universidad Nacional Autónoma de México. Cd. Universitaria, A.p. 70-487, 04510 México, D.F., México.
2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México. Cd. Universitaria, A.p. 70 -543, 04510 México, D.F., México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

In the present work we address to the oligomerization of amino acids under plausible prebiotic conditions and within the framework of a simple stochastic mathematical model. A main premise of our approach is that the reactivity of such monomers is different, as experimental results suggest. Such condition would lead to the synthesis of random but biased polymers and not to purely random polymers. Another manner to phrase such result is to say that synthesized prebiotic oligopeptides have a limited randomness. To consider oligomerization of amino acids, we follow a classification of amino acids into 4 groups: Polar positive (p+), polar negative (p), neutral (n), and non-polar (np). Besides, we choose to use Markov chains to evaluate the reactivity among them, as it is a process or succession of events developing in time in which the result in any stage depends on chance, according to pre-established probabilities of reaction. So, we arrange all possible pair-wise electromagnetic interactions into a 4 x 4 reactivity matrix. Then we apply this mathematical model to every stage of the diketopiperazine reaction: Its initiation and elongation stages. The chemical nature of the amino acid monomers provides only a limited number of initiators to the oligomerization process. Besides, on close examination of the elongation stage it is revealed that oligopeptides are produced only the odd-mer species, but none pair-mer peptides. Furthermore, the mathematical model predicts the existence of a Markov chain steady state which limits still more the variability in the population of synthesized oligomers. We emphasize then that the polypeptides that were produced in a prebiotic environment were random, of course, but were biased and had a restricted randomness, due to differences in the polarity of the participating amino acids. Another important observation from this study is that it can be envisaged that contiguous alike charges or monomers will not be favored in the oligomerization process under consideration, based on simple physical criteria. On the contrary, it would be easier to unite contiguous charges of different polarity. With this background, we predict that for the oligopeptides so produced, the heteropeptides would be more prevalent than the homoligopeptides. Such conditions will be useful in the prebiotic environment because presumably heteroligopeptides would have more pre-catalytic activities than homoligopeptides. We see, then, a natural emergence and predominance of complex polypeptides (co-polypeptides and hetero-polypeptides) over simpler homo-polypeptides. This is undoubtedly an interesting result.

Finally, in respect to the biased principle, it is obviously insufficient drawing conclusions from scarce experimental results and from very short oligomers (i.e. tripeptides). A quantitative evaluation of the extent of bias has to be done. The extent and effectiveness of such principle will remain an open question.

Keywords: prebiotic oligopeptides, Markov chains, biased polypeptides, the diketopiperazine reaction, heteropolymerization and homopolymerization, limited randomness.

 

Resumen

En este trabajo analizamos la oligomerización de aminoácidos en condiciones prebióticas y con la ayuda de un modelo matemático estocástico simple. Nuestra suposición principal es que la reactividad entre estos monómeros es distinta, tal como los resultados experimentales lo sugieren. Estas condiciones conducen a la síntesis de polímeros aleatorios y sesgados, y no solamente a polímeros aleatorios. Otra forma de expresar este resultado sería decir que obtenemos oligopéptidos prebióticos con aleatoriedad limitada. Para tomar en cuenta la oligomerización de los aminoácidos seguimos una clasificación en 4 grupos: polar positivo (p+), polar negativo (p), neutro (n), y no-polar (np). Además, hacemos uso de las cadenas de Markov para cuantificar la reactividad entre los aminoácidos, puesto que este proceso (o sucesión de eventos) acontece en el tiempo y en cada etapa el resultado dependerá del azar, de acuerdo a probabilidades de reacción preestablecidas. Así, ordenamos todas las posibles interacciones electromagnéticas por parejas en una matriz de reactividad de 4 x 4. Luego aplicamos este modelo matemático a cada etapa de la reacción de la dicetopiperazina; tanto en sus etapas de iniciación como de elongación. La naturaleza de los aminoácidos provee únicamente un número restringido de iniciadores de la oligomerización. Además, un cuidadoso análisis de la etapa de elongación revela que solamente se producen especies con número impar de monómeros, excluyéndose aquellos con número par de monómeros. Por otra parte, el modelo matemático predice la existencia de estados estacionarios de la cadena de Markov, la cual limita aún más la variabilidad de la población de los oligómeros sintetizados. Subrayamos entonces que los polipéptidos que se producen en un medio prebiótico son aleatorios, claro está, pero están sesgados y tienen una aleatoriedad restringida, debido a las diferencias en polaridad de los aminoácidos participantes. Otra observación importante de este estudio es que en esta oligomerización no se facilitará la colocación de cargas parecidas contiguas, por razones físicas. Al contrario, será más fácil unir cargas con diferente polaridad. Con estos antecedentes, hacemos la predicción para los oligopéptidos así producidos, que los heteropéptidos serán más abundantes que los homopéptidos. Esta situación será de gran utilidad en un ambiente prebiótico, porque posiblemente los heteropéptidos tendrán más funciones pre-catalíticas que los homopéptidos. Vemos entonces el surgimiento natural y el dominio de polipéptidos complejos (tanto co-polipéptidos como hetero-polipéptidos) sobre los homo-polipéptidos, que son más simples. Indudablemente, este es un resultado interesante.

Finalmente y con respecto al principio del sesgo, es insuficiente obtener conclusiones con datos escasos y de oligopéptidos muy cortos (i.e. tripéptidos). Una evaluación cuantitativa del grado de sesgo todavía está por hacerse. El alcance y la efectividad de este principio sigue siendo una pregunta abierta.

Palabras clave: oligopéptidos prebióticos, cadenas de Markov, polipéptidos sesgados, la reacción de la dicetopiperazina, heteropolimerización y homopolimerización, aleatoriedad limitada.

 

1. Introduction

One view of the universe, and its origins, is that the present is a product of evolution: A continuous process of self-transformation. According to this view, the universe has evolved from previous states of matter. In this context we could ask: What was the nature of the activity that led to life?

Chemical evolution is a term we use to describe the stages that molecules have gone through to become more complex. The interaction of these molecules with themselves has resulted in some chemical reactions. This series of stages is called chemical evolution, which incorporates the belief that those processes preceded the origin of life on Earth. The term implies that information-containing molecules were subject to the process of natural selection.

This evolutionary continuous requires that life arose on this planet (or on some planet) from inanimate matter via chemical and physical processes that are still operating today. It is generally believed that these processes acted for at least billions of years before true cellular life was brought into being. This process of chemical evolution is divided into four steps, which are described below.

 

1.1. The first stage of chemical evolution

Molecules in the primitive environment formed simple organic substances, such as amino acids. This concept was first proposed in a book entitled "The Origin of Life on Earth", written by the Russian scientist Aleksandre Ivanovich Oparin in 1938. He considered hydrogen, ammonia, water vapor, and methane to be components in the early atmosphere. In this reducing environment oxygen was not present. Oparin stated that ultraviolet radiation from the sun provided the energy for the transformation of these substances into organic molecules. Scientists today state that such spontaneous synthesis occurred only in the primitive environment. It is believed that the primitive atmosphere also contained carbon monoxide, carbon dioxide, nitrogen, hydrogen sulfide, and hydrogen, mainly because volcanoes emit these substances.

 

1.2. The second stage of chemical evolution

Simple organic molecules (such as amino acids) that formed and accumulated in certain prebiotic environments, joined to form peptides and subsequently larger structures (such as proteins). The units linked to each other by the process of dehydration synthesis to form polymers. One problem was that the abiotic synthesis of polymers had to occur without the assistance of enzymes.

In addition, these reactions gave off water and would, therefore, not occur spontaneously in a watery environment. Sydney Fox of the University of Miami suggested that waves or rain in the primitive environment splashed organic monomers on fresh lava or hot rocks, which would have allowed polymers to form abiotically. When he tried to do this in his laboratory, Fox produced proteinoids: Polypeptides abiotically synthesized (Fox and Dose, 1977).

 

1.3. The third stage of chemical evolution

Polymers interacted with each other and organized into aggregates, known as protobionts. However, protobionts were not capable of reproducing, but had other properties of living things. In the simulated experiments in the laboratory it is possible to successfully produce protobionts from organic molecules. For example, proteinoids mixed with cool water assembled into droplets or microspheres that developed membranes on their surfaces (Fox and Dose, 1977). These are protobionts, with semi-permeable and excitable membranes, similar to those found in cells.

 

1.4. The fourth stage of chemical evolution

Protobionts developed the ability to reproduce and pass genetic information from one generation to the next. Some people believe that RNA is the original hereditary molecule. A very important step in these studies is that short polymers of RNA were synthesized abiotically in the laboratory. This implies that RNA molecules could have replicated in prebiotic cells without the use of protein enzymes. Variations of RNA molecules could have been produced by mutations and by errors during replication. Natural selection, operating on the different RNAs, would have brought about subsequent evolutionary development. As the protobionts grew and split, their RNA was passed on to offspring. In time, a diversity of prokaryote cells came into existence. Under the influence of natural selection, the prokaryotes could have given rise to the vast variety of life on Earth.

Alpha-Amino acids were easily accessible through abiotic processes and were likely present before the emergence of life. However, the role that they could have played in the process remains uncertain. Chemical pathways that could have brought about features of self-organization in a peptide world are considered in this work and discussed in relation with their possible contribution to the origin of life.

 

2. Chemical models in the prebiotic synthesis of polypeptides

Studies in chemical evolution are intended to demonstrate the generation of compounds of biological importance from substances that could have been found in abiotic conditions on primitive Earth; step-by-step the molecules grow larger and more complex. The spontaneous formation of polymers, in this case of polypeptides, in the abiotic conditions on Earth more than four billion years ago represents the most advanced level of development in the synthesis of organic matter from abiotic origin.

In general, the conditions that might prevail on the planet during the process of chemical evolution included a slightly neutral atmosphere made up of carbon dioxide, nitrogen and water vapor, and a very small amount of free oxygen, as well as an ocean with neutral pH and enough energy present in different forms—solar radiation, electric discharges, heat and radiation from cosmic rays and radioactive material (Negrón and Ramos, 2000).

The synthesis of large molecules was a complicated process and even though there seems to have been many restrictions on models of synthesis on primitive Earth, the existence of micro-environments increased significantly the spectrum of imaginable variations for models. These micro-environments could manifest as small bodies of water in evaporation, volcanic regions with high temperatures with anhydrous conditions, and others.

The formation of the peptide bond occurred when the amino group of one amino acid reacted with the carboxylic group of another amino acid, with the production of one molecule of water. Thus, the peptide and proteins are the products of the so-called condensation reactions. For example, the formation of the simplest dipetide, diglycine, requires sufficient energy for condensation to occur in a watery environment. Therefore, the particularity of each model of prebiotic synthesis of peptides is in the way to solve both issues.

The first classification of the models of prebiotic synthesis of peptides is to distinguish those models that depart from a chemical reaction system containing free amino acids from those models that do not include them.

 

2.1. Models with free amino acids

These types of syntheses included the presence of free amino acids, and depending on the number of phases that the system presents can be distinguished between homogeneous and heterogeneous reaction systems.

Models in homogeneous chemical systems include the aqueous solution and pyro-condensation. The most critical problem of aqueous systems is the fact that the formation of the peptide bonds by dehydration-condensation reactions is not a spontaneous process.

Aqueous solution systems can be classified according to the free-energy source used for the reaction. Different models proposed in the aqueous system include (Figure 1):

  • Coupling the peptide bond formation to the exothermal hydrolysis of a compound, which are commonly known as condensed or dehydrated agents.
  • The energy in the reaction is derived from reactivate high energy molecules, e.g., activated amino acids with higher energy content.

The application of heterogeneous systems in the prebiotic synthesis of peptides has led to the generation of models that include: 1) clay or other mineral surfaces; 2) those systems under fluctuating conditions (dry and wet conditions); and 3) systems that include molecules of RNA as templates.


Figure 1. Models for prebiotic synthesis of polypeptides.

 

2.2. Models in the absence of free amino acids

Due to the limitations of the synthesis of polypeptides using free amino acids, another approach to these syntheses was studied, starting with polymeric material that forms easily in prebiotic experiments. One example of this approach was made starting with the thermal polymers of HCN (Matthews et al., 1984).

Another approach is from the polymerization of alfa-aminonitriles (Fox and Dose, 1977).

 

3. Mathematical models in the prebiotic synthesis of polypeptides

Our subject study has been the oligomerization of amino acids under prebiotic conditions (i.e. under plausible conditions thought to have existed in the primitive Earth, before the emergence of life) using theoretical means.

In particular, we have been studying short sequences of oligopeptides yielded in the thermal polycondensation of a mixture of L- and D-α-amino acids, reported by experimental workers. A main premise of our approach is that the reactivity among monomers is different, as experimental results suggest. Namely, it has been reported that the thermal anhydrous synthesis of tri-peptides involving glutamic acid, glycine, and tyrosine produced only two tri-peptides. The formation of 36 tri-peptides is expected under an a priori assumption of an even probability of reaction between different amino acids (Fox et al., 1977; Nakashima et al., 1977). (We remark that these authors studied only tyrosine containing tri-peptides). Furthermore, a mechanistic study of this reaction has been performed (Hartmann et al., 1981).

We have looked into experimental systems claimed to produce biased polymers in composition, produced under plausible prebiotic conditions. We have examined thermal oligopeptides that have been studied extensively by Fox and collaborators (for an overview, see Fox and Dose, 1977). Fox proposed several decades ago that the reactivity between different amino acids is not even. He called this characteristic the principle of self ordering of amino acids.

We have other reasons to believe in a random but biased synthesis. In organic chemistry, in the presence of two monomers M1 and M2, and their respective free radicals, M1• and M2•, the propagation reaction is described as making use of four kinetic constants: k11 and k12 for reactions M1•+Mi, with i = 1, 2 and k21 and k22 for reactions M2• + Mi, with i = 1, 2. Of course, k11 ≠ k12 ≠ k21 ≠ k22(Katime, 1994). Such conditions would lead to the synthesis of biased and random polymers and not to purely random polymers. (Another manner to refer to biased and random oligopeptides is to call them oligopeptides with limited randomness).

In this work, we consider the polymerization of amino acids via a dehydration-condensation reaction. From the electric standpoint, all amino acids have identical amino and acid groups. They only differ in the electrical properties of the residue group. It is this group which determines the electrical properties of an amino acid. We adopted the Dickerson and Geis (1969) classification of amino acids — into polar positive (p+), polar negative (p), neutral (n), and non-polar (np) — which is an electrostatic or electromagnetic classification (the latter, when the charges are moving, which is usually the case). Such electromagnetic classification is important because we are focusing on possible chemical reactions between amino acids. In chemical kinetics, it is important to consider the electromagnetic nature of the reacting species. For example, we may have a reaction between an ion and a molecule (ion-molecule reactions which are very effective and fast), or a quite different reaction between two nonpolar molecules. It is with such ideas in mind that we adhere to this classification of amino acids.

 

4. Biased phenomena is a necessary condition for life’s origin

The relevance of biased oligomers to the emergence of life cannot be overemphasized. Consider a set of oligomers {n} and assume it embodies a pristine and close to minimum living chemical system (Mosqueira, 1988). Now take account of the following premises applying on {n}. (1) Plurality. Each single oligomer is assigned a single function to the global task; thus we need a set {n} of oligomers. (2) Simultaneity. It is assumed that the set {n} is located together at some physical space in order to be kinetically connected. In fact, the reconsideration of previous definitions of life underline spatially defined systems as an important feature for the emergence of life (Luisi, 1998; Ruiz-Mirazo et al., 2002). (3) Number of participating oligomers. It falls into the range 8n14. (4) Degree of polymerization x. It is assumed x around 40 (monomers). (5) Alphabet a. A two letter alphabet has been adopted, i.e., a = 2. It has been estimated (Mosqueira, 1988), using simple probability theory, that the supposition of an even probability of reaction among monomers would render {n} without any chance of reproduction. In other words, under the condition of equal probability of reaction among monomers, the number of possible sets {n} is so big that there is no chance to reproduce a given set {n} again. For this reason it is concluded that an unequal (or biased) probability of reaction among monomers is an indispensable condition for the reproduction of {n}.

 

5. A preview of Markov Chains

Before going into the formal presentation of our model in the next section, we give a simpler overview of it. We choose to use Markov Chains because we are facing a process immersed in chance events — i.e., the reactivity of amino acids among themselves — and because it fits well with this type of problem. A process or succession of events developing in time in which the result in any stage depends on chance is called a random or stochastic process. A classic and simple example of stochastic process is a succession of Bernoulli trials, in which there are exactly two chance events (results) that exclude mutually. For example, the two possible outcomes of flipping a coin, the amount of people in excess of a certain age and those that do not meet this condition, and so on. There are only two possible results that exclude each other. We notice that in Bernoulli trials, the result of the last event does not affect the result of the next chance event, that is, the result of flipping a coin does not affect the result of the next throw. In other words, we may say that this kind of stochastic process do not have any memory of previous events. However, for most stochastic process each result depends on what happened in the previous stages of the process. That is, such processes have some memory of previous events. For example, the weather of a certain day is not completely random, but it depends to a certain extent on the weather of previous days.

In the case of a stochastic process that depends on several previous results, the simplest case is the one that only depends on the result of the previous stage and not on anything else that had happened previously. To such stochastic process we call a Markov process or a Markov Chain and it is stated with matrix equations. It is a chain of random events happening in time, and each event is bound to only the previous one.

At each stage in the process, there is a finite number of events that can occur. These are the possible states of the system. Now, let us relate this with the classification of amino acids we will use. Our system has only four possible events: polar positive (p+), polar negative (p-), neutral (n), and non-polar (np). We will consider transitions probability from and to any of these four states. So, in total we have 16 possible transitions expressed in a matrix, which is called the transition matrix (see Equation 5). Remember that in a Markov Chain there is no concern of states of the system that had happened previously.

Another important remark: We are considering the transition probability as equivalent to the reactivity probability among such electric groups, taken pairwise (as in a typical bimolecular reaction). That is, an orthodox interpretation of a transition matrix in a Markov Chain is that a matrix element pij signifies the probability that an entity i becomes an entity j. In our approach, we interpret pij as the probability of chemical reaction between entities i and j.

Notice that every row in that matrix is depicting all possible transitions given a starting state of the system. For example, the first row of Equation 5 represents all possible transitions starting with a p+ species (given four possible events of the system): p+p+, p+p- , p+n, p+np. As there are no more possible transitions, the sum of the transition probabilities should sum unity (this condition is expressed in Equation 1). The same can be said with respect to the other rows of Equation 5.

Once a Markov process begins, there is a huge ramification of possible results. As an example, consider again the first row of the transition matrix 5 and represents two transitions:

In Figure 2 we start in the left with one possible event, that is p+, (we could have started with any of the other three events: p-, n, or np). If the variable k denotes the stage of the system (with k = 0, 1, ..., n), then this is the k = 0 stage. Later, it is considered the transition to any other of the four possible events in this system. This would be the k = 1 stage. To each transition it is associated with a transition probability (see Equation 1). As we said above, there is a total of 16 possible transition probabilities (see Equation 5). The higher values of the matrix elements correspond to interactions that are known to be more intense from physical chemistry (for example p+p- or p-p+), and lower values correspond to weaker interactions (for example nnp or p+p+). In a later section we will propose the numerical values for such transition probabilities.

We come back to Figure 2. Up to this moment we have passed through two stages. Let us interpret them from the chemical point of view. The first stage (k = 0) was the (arbitrary) initial event (the monomer p+). To arrive at a second stage (k = 1), it is necessary to use all four transition probabilities that are facing p+ towards the four possible events (p+, p-, n, np; these are the first row of matrix 5). From the chemical point of view, this is equivalent to considering the probability of the synthesis of a dimer (in fact, there should be four possible dimers synthesized at this stage, in different amounts). Afterwards, we arrive to the third stage (k = 2) (this is represented in the extreme right of Figure 2). It requires a second transition and it will use any of the 16 possible values of the transition probabilities from Equation 5. For stages k≥ 2, these 16 transition probabilities will be used again and again to calculate subsequent states of the system (see Equation 3).

We may say something in respect to the number of different oligomers produced and the number of monomers composing such oligomers. By inductive reasoning, we realize that the number of possible oligomers synthesized is given by 4k. That is, at stage k = 0, we have one initiator (= 40). At stage k = 1, we have presumably 4 (= 41) dimers synthesized. At stage k = 2, we have presumably 16 (= 42) trimers synthesized (Figure 2 illustrates up to this point). At stage k = 3, we have presumably 64 (= 43) tetramers synthesized, and so on. The number of monomers in the oligomer is given simply by k + 1 (except when k= 0).

As time elapses, the system arrives to a steady state, that is, a state in which the system does not change any more in time (see Equation 7). This is analogous to the steady state attained in a differential equation, it is the condition dy/dt= 0, when the variable y does not change in time anymore.

A friendly introduction to Markov Chains may be found in Arya and Lardner (1985).

We now proceed to make the formal presentation of our model.


Figure 2. An example of a given branching of a stochastic process in a Markov Chain.

 

6. The model

A finite Markov Chain is defined as follows (see for example Moran, 1984). Consider events that can occur at successive discrete stages and denote them by a variable, k, which can take the values 0, 1, ..., n. At each stage, a finite number of events E1, E2, ..., En can occur. These are the possible states of the system. At each stage k + 1, we suppose that the events E1, ..., En occur with certain probabilities, which depend only on the events that occurred at stage k and not on anything that had happened previously. We express pij for the probability of Ej to occur at stage k + 1 conditional on Ei having occurred at stage k.

The set of quantities, pij, i = 1, ..., n, j = 1, ..., nknown as the transition probabilities, are non-negative, and satisfy the conditions.

(1)

 

The main assumption is that the transition probability of incorporating the n + 1 free amino acid into the oligomer is influenced only by the interaction between the incoming monomer and the reactive end of the oligomer, and is not influenced by any other previous monomers n - 1, n - 2, ... already bonded in the n-oligomer.

If the probabilities of the events E1, ..., En at any stage k are denoted by p1(k), ..., pn(k), for this state matrix after kstages, we have

(2)

 

and these equations can be written in the matrix form

p(k +1) = p(k)P (3)

 

 

where p(k) is a row vector (or 1 x n matrix) whose elements are p1(k), ..., pn(k) and P = (pij) is an n x nmatrix and is known as the transition probability (or reactivity, or stochastic) matrix of the system.

Let us define a 1 x n initial state matrix (or an initial state row vector) p(0).

By applying Equation 3 repeatedly we see that

 p(k) = p(0)Pk (4)

 

where kis an integer.

Now, we assume different electromagnetic interactions between the reacting monomers (amino acids). To that end, in accordance with Dickerson and Geis (1969), there are four groups of amino acids: polar positive (p+), polar negative (p-), neutral (n), and non-polar (np). So, we arrange all possible electromagnetic interactions into a 4 x 4 Pmatrix.

  (5)

 

Thus, for example, the element p13 is equal to p+n and it describes the interaction of a residue p+given that the last monomer in the oligopeptide is a residue of the class n. The rest the matrix elements in 5 are interpreted in a similar fashion.

Equation 5 may reduce its rank in case there are less than four groups of amino acids. That is, if there are only three groups of amino acids, then matrix 5 becomes a 3 x 3 matrix. Likewise, if there are only two groups of amino acids, it becomes a 2 x 2 matrix, and with only 1 group of amino acids, it becomes reduced to a 1 x 1 matrix. This is necessary in order to maintain in every instance a stochastic transition matrix (Equation 1).

The state of the system is represented at any stage kby a matrix of the state of the system that is a row matrix with four elements:

 (p+ pn np) (6)

 

As time elapses, such initial state attains a steady state. Such state may be calculated by the following equation:

 p(k) = p(k)P (7)

 

 

This equation states that the row vector of a given stage is the same as the row vector of the following stage. This of course is the steady state condition in which the state of the system does not change anymore as time elapses. In our experience, this state seems to appear once k has attained a sufficiently large value (i.e., k is not greater than 6–11). This state persists to all subsequent stages, as long as the process is sustained, i.e., in our case, as long as the chemical process of polymerization is sustained. To calculate the steady state row vector, we should use Equation 7 plus the probabilistic condition expressed by Equation 1.

Finally, we should make a succinct comment on the interpretation that we give to pij in Equation 5, which slightly differs from an orthodox interpretation of a transition matrix in a Markov Chain. In a Markov Chain, a matrix element pijsignifies the probability that an entity i becomes an entity j. In our approach, we interpret it as the probability of chemical reaction between entities i and j, to become a dipeptide ij, and so on to form oligopeptides. Furthermore, the entries at each row of the transition matrix 5 represent unknown relative reactivities of one of the four types of amino acids considered with all the other types, including itself. This is the summary of the model up to this point.

 

6.1. Symmetry of the transition matrix 5

In respect to the symmetrical elements in Equation 5, (i.e., pij = pji), apparently, we should assign the same numerical value, as it might be thought that it is the same phenomenon if object P interacts with object Q, or if object Q interacts with object P. However, a careful examination of this situation leads us to the conclusion that in chemistry, the symmetrical case is the exception, and the asymmetrical situation is the rule. To illustrate this aspect, we will use specific members of amino acids to form a dimer. Then, let us use lysine (p+) and glycine (n). Then, we construct Gly-Lys and Lys-Gly dimers.

It can be seen from Figure 3 that neither object is symmetrical. These dimers possess a different charge distribution and therefore are not equivalent. Using basic chemistry and enzyme biochemistry, it can be shown that both dimers react differently in chemical and enzymatic reactions. Such condition suggests that the symmetrical elements in matrix 5 do not have an equal value. That is, we will assume they don't.


Figure 3. Gly-Lys and Lys-Gly dimers.

 

6.2. Mathematical results with only two kinds of amino acids

We have applied the reactivity matrix 5 to particular reacting systems in which only two different species participate. Three distinct situations may arise depending on the specificity of the reactants (Mosqueira et al., 2002).

 

6.2.1. Diagonal interactions of the reactivity matrix are neglected

Matrix 5 becomes

In this case, if we assign a state matrix of the system at stage k = 0 or any other subsequent k as: (x y), where x and y are non-negative and satisfy the condition x + y = 1. We may verify then that at the k + 1 stage the state matrix is (y x); at k + 2 stage it is again (x y), and it continues in such alternate manner as long as the chemical process may proceed. So, in this case we encounter a sustained oscillatory steady state.

 

6.2.2. Equal symmetrical interactions. Diagonal interactions are non-null and small

In this situation we allow a pairwise interaction with similar, non-null elements. Supposedly, such elements are much smaller than the symmetrical interactions. As an example, we propose the following transition probability matrix:

And use some initial matrix in accordance, as for example (x y), where x and yare nonnegative and satisfy. Under such conditions we find a series of transient state matrices characterized by a damped oscillatory behavior that approaches the steady state matrix (0.5 0.5).

6.2.3. Symmetrical and diagonal interactions equal to 0.5

The steady state properties of a transition probability matrix symmetrical and diagonal interactions equal to 0.5, applied to an initial matrix, for example (x y), where x and y are non-negative and satisfy , are such that in a single stage (i.e., in k= 1) arrives to the steady state matrix (0.5 0.5).

In summary, with the exception of case 6.2.1, all steady states arrive to the steady state matrix with two matrix elements equal to 0.5. Such a peculiar situation arises from the symmetrical form of P that we have used as examples. Thus, in the framework of only two types of amino acid interactions, the constraint implies that we are giving the same probability to both types of amino acids to appear in the sequence. For this reason, either after a short transient (i.e., k = 1) or a longer one (k= 12), we arrive to a steady state matrix with two elements equal to 0.5.

 

7. Chemical aspects of the thermal prebiotic oligomerization of amino acids

To apply the present mathematical model, we have to know the reaction mechanism of the chemical transformation. In this manner, the electrical character of the reacting species at every stage can be assigned correctly. We will show in what follows the diketopiperazine reaction (Mosqueira et al., 2008), which is the mainstream reaction mechanism under thermally dehydrating conditions. In turn, we will recount the initiator and elongation stages of the diketopiperazine reaction.

 

7.1. The initiator stage

Several decades ago, it was experimentally established that to polymerize amino acids under anhydrous thermal conditions, there must be a sufficient proportion of at least one tri-functional amino acid, such as aspartic acid, glutamic acid, or lysine (Harada and Fox, 1965). Otherwise the mixture of amino acids does not polymerize and are spoiled by charring. When glutamic acid is used as the tri-functional amino acid, then the initiator is pyro-glutamic acid (pyrGlu), as it has been determined on the basis of chemical analysis (Fox et al., 1977; Melius and Hubbard, 1987).

 

7.1.1. Glutamic acid as initiator

Under the perspective of our stochastic and electric charge model, it is easy to explain the synthesis of pyrGlu from Glu. A glutamic acid molecule has three centers of charge (two negatives and one positive) with no predominance of either of them. We conceive the formation of pyrGlu as an internal cyclization process that proceeds readily, because in the same molecule we have the amino and carboxylic groups nearby (p+ and p-species, respectively) that by internal rotation react rapidly to get pyrGlu. The product of this intra-reaction has a concentrated negative charge on it (see Figure 4), giving rise to a powerful initiator for the oligomerization reaction.


Figure 4. Internal cyclization of glutamic acid (Glu) to produce pyroglutamic acid (pyrGlu).

 

7.1.2. Lysine as initiator

Harada (1959) studied the homo-polymerization of lysine, and some other co-polymerizations. He reported that the free DL-lysine converted to its liquid lactam at 150 – 170 ºC with vigorous evolution of water vapor (see Figure 5), and homo-polymerized at 180 – 230 ºC. There seems to be a two-stage reaction mechanism. In the first step there is an internal cyclo-dehydration of lysine (A), giving rise to a lactam with a net positive charge (B). That is, a tri-functional amino acid (A) is converted to a mono-functional amino acid (B). This is another instance of internal cyclization, analogous to the formation of pyrGlu from Glu. Of course, in this case the cyclic molecule produced has a concentrated positive charge on it, giving rise again to a powerful initiator for the oligomerization reaction, which in fact is able to polymerize itself (Harada, 1959).


Figure 5. Internal cyclization of lysine.

 

7.2. The elongation stage

Let us look in more detail at the synthesis of pen tamers by means of the diketopiperazine reaction. The reaction mechanism for the synthesis of trimers containing tyrosine is known (Hartmann et al., 1981). From such work, it is clear that a main route to oligomerization is through the chemical reaction of diketopiperazine molecules with other species. Molecules of diketopiperazine arise from the cyclodehydration of two amino acids to form a cyclic diamide (Figure 6), where R1 and R2 are the residue groups of the reacting amino acids. We call such reaction an external cyclization reaction (Mosqueira et al., 2008).


Figure 6. Synthesis of a diketopiperazine molecule from the cyclodehydration of two amino acids with residue groups R1 and R2.

We now allow an initiator molecule, let's say pyrGlu (Figure 4), to react with a given diketopiperazine molecule with residue groups R1 and R2 (Figure 6) to yield two tripeptides (both tripeptides are p) (Figure 7)

We envisage that a diketopiperazine molecule with residue groups R1 and R2 is cleaved by pyroGlu and yields the two possible linear trimers pyroGlu–R1–R2 and pyroGlu–R2–R1 (Hartmann et al., 1981), as in Figure 7. Notice that both trimers reconstitute a free carboxylic group at their growing end (p-), equivalent to that of pyroGlu (p-). Then, both trimers may act as initiators (as pyroGlu) and react with another cyclic diketopiperazine to produce four pentamers, i.e., four pyroGlu–tetrapeptides. These pentamers may also react with another diketopiperazine, to continue as long as the reactants are present to produce only odd-mer oligopeptides (p). Besides, at the temperature of this reaction (180°C), we may expect that there is little stereoselective effect between R1 and R2 to obtain near equimolar amounts of both trimers. This conjecture has been proven to be correct with exact equimolar amounts when R1 and R2 are Gly and Tyr (Hartmann et al., 1981).


Figure 7. Reaction of a diketopiperazine with pyroglutamic acid to synthesis two tripeptides with different sequence.

 

To analyze such a reaction mechanism from the perspective of our model, we should consider the electromagnetic nature of the reactive participating species at each stage. As we have said, the initiator (pyroglutamic acid) and the subsequent oligopeptides produced have a definite negative charge (p). However, the diketopiperazine molecules have two electromagnetic contributions: one arising from R1, the other from R2.

When residue 1 and residue 2 are, for example, non-polar, there is no doubt in considering this diketopiperazine molecule as a non-polar molecule as a whole. However, when residue 1 is polar positive (p+) and residue 2 is neutral (n), we reason that the more dominant electromagnetic interaction would be that arising from the polar positive group, and neglect the small contribution from the neutral residue. We consider then that this diketopiperazine molecule as a whole behaves as a polar positive species, as a first approximation. Another instance arises with not-so-obvious resolution. When residue 1 is neutral (n) and residue 2 is non-polar (np), we choose the neutral residue as the more prevalent electromagnetic influence, as it is more susceptible to being polarized than a non-polar residue (Feynman, 1964). Polarizability is an important characteristic to our objectives, as it may signify that a residue or a chemical species is more prone to participate in a chemical reaction. With such criteria in mind, in Table 1 we summarize the simplifications we performed from a combination of R1 and R2 attached to the diketopiperazine kernel (depicted as R1-diket-R2) to become a single electromagnetic residue group R0.

Table 1. A proposed electromagnetic simplification of a diketopiperazine molecule with two residue groups (R1 and R2) into a single dominant residue R0.

 

This assumption will allow us to consider all possible pairwise interactions arising from the four-class classification of amino acids we have adopted (Dickerson and Geis, 1969), reacting via the diketopiperazine reaction. Clearly, our approach may be extended to include more (or less) than four classes of amino acids m by just expanding (or decreasing) the stochastic matrix 5 to an m x mmatrix.

A new situation arises when considering a diketopiperazine molecule formed with R1 = p+ and R2 = p(see Table 1). In this case, it is not possible to neglect one residue in favor of the other and a permanent dipole appears, which is different from any of the previous classes of amino acids. Nevertheless, from the perspective of the electromagnetic theory, such dipole may be dealt with as a single electromagnetic object (Feynman, 1964) and it is still possible to deal with such a case within the framework of our simple model. To that end, we should now deal with a 5 x 5 matrix as the new stochastic matrix 5 to include the dipole (d) interaction:

   (8)

 

Actually, all the elements of matrix 5 representing the interaction of a neutral (n) or non-polar (np) residue with a charged species, either p+ or p residues (p13, p14, p23, p24, and their corresponding symmetric elements), will give rise to a momentary interaction of an induced dipole. In the extended matrix 8, we might encounter interactions such as (permanent dipole)–(induced dipole), e.g., the element p53. A study in detail of such interactions – which we are not intending to perform – should take into account such phenomena.

 

8. Mathematical predictions of the model

There are several factors that contribute to reducing the variety of oligopeptides in the sequence space. They are the following: (1) the unequal probability of reaction among amino acids, (2) the existence of a Markov Chain steady state, (3) an observed independence of the initial conditions of the system, (4) the existence of a limited number of initiators for the oligomerization, and (5) production of only odd-mer peptides. Let us review these factors.

 

8.1. Unequal probability of reaction among amino acids

This condition appears to be self-evident. The probability cannot be the same to cause a reaction among pair p+ and p-than another pair of species like neutral (n) and non-polar (np). This factor decisively contributes to the synthesis of biased oligopeptides. The consequences of considering equal probabilities of reaction among amino acids highly contribute to make the emergence of life much less probable (Mosqueira, 1988).

 

8.2. The existence of a Markov Chain steady state

Equation 3 describes how the state of the system changes from the state k to the state k + 1. Similarly, as a differential equation attains its steady state when dy/dt = 0, a Markov Chain also attains a steady state (see Equation 7). This equation states that the row vector of a given stage is the same as the row vector of the following stage. So, the state of the system does not change any more as time elapses and this of course is the steady state condition. In our experience, this state seems to appear once k has attained a sufficiently large value (i.e., k around 5 < k < 12). This state persists to all subsequent stages, as long as the process is sustained, i.e., in our case, as long as the chemical process of polymerization is sustained.

The attainment of a steady state is an important mechanism that limits variability in oligomer sequencing. The state matrix is fixed in its steady state matrix and prevents it from roaming about over a huge sequence space that has been shown to exist (Mosqueira, 1988). In turn, the steady state itself appears to depend on two factors: The initial state matrix p(0) and the transition matrix P (see Equations 4 and 7). However, from our analysis, it appears that steady-state dependence is mostly on P. We have verified the independence of the initial conditions on the steady state from our previous work. Regardless of the initial conditions (concentration of participating amino acids), we arrive at the same steady state. In fact, this situation also occurs in differential equations. In summary, the independence of initial conditions in conjunction with the attainment of the steady state contributes to synthesizing biased oligopeptides.

 

8.3. The existence of a limited number of initiators for the oligomerization

The most common temperatures used to oligomerize α-amino acids under anhydrous conditions are 160 – 200 ºC, for approximately 9 – 12 h. It has been established that tri-functional amino acids (such as glutamic acid, aspartic acid or lysine) must be present in order to oligomerize ordinary amino acids with two functional groups (bi-functional amino acids); otherwise, the heating of purely bi-functional amino acids is recognized as a destructive treatment in which no oligomerization occurs (for a review see Fox and Dose, 1977).

Let us go again to the experimental result related to the synthesis of tyrosine containing trimers (Fox et al., 1977; Nakashima et al., 1977). This example will help to get an insight into the importance of an initiator to restrict variability of oligomers. The initiator is a derivative of glutamic acid: Pyroglutamic acid (pyrGlu). There is a kinetic basis to support that Glu is consumed rapidly to become pyroGlu, compared with other reactive species in the reaction (Hartmann et al., 1981). Then, trimer variability is reduced from 36 to only 6 trimers because pyroGlu should be the initiator of all possible trimers synthesized. There is a further reduction of three possible trimers because Glu cannot be in an internal position because it becomes pyroGlu quite rapidly (Mosqueira et al., 2000). This experiment illustrates the role of an initiator to get preferably biased oligomers.

 

8.4. The production of only odd-mer peptides

In Section 5 we outlined the reaction mechanism via the diketopiperazine molecule, which is a cyclic dehydrate condensation of two bi-functional amino acids. This mechanism allows only the production of odd-mer oligopeptides, with the exclusion of all even-mer oligopeptides. This fact surely reinforces the production of biased oligopeptides.

 

9. The mathematical predictions of the model with respect to heteropolymerization and homopolymerization

It is instructive to give a quantitative figure (thought approximate) for the interactions between different pairs of amino acids, for example

  (9)

 

Notice that the sum of values of the elements in each row is unity, according to Equation 1. Besides, the higher values of matrix elements correspond to interactions that we know to be more intense from physical chemistry, including p+p- or p-p+. On the other hand, lower values are given for interactions that are known to be much weaker, including nnp and p-p-.

From this perspective, it can be envisaged that contiguous alike charges or monomers will not be favored in a polymerization process under the conditions assumed in this work. On the contrary, it would be easier to unite contiguous charges of different polarity. With this background, we predict that for oligopeptides so produced, the heteropeptides would be more prevalent than the homoligopeptides (Mosqueira et al., 2012). Such conditions would be useful in the prebiotic environment because heteroligopeptides likely would have more pre-catalytic activities than homoligopeptides. We see, then, a natural emergence and predominance of complex polypeptides (co-polypeptides and hetero-polypeptides) over simpler homo-polypeptides. This is undoubtedly a valuable result.

 

10. Conclusions

In this work we have built a simple probabilistic model that limits the variability in sequences in a population of polymers (or n-mers) of amino acids. We propose that the polypeptides that were produced in a prebiotic environment were random, of course, but were biased and had a limited randomness, due to differences in the polarity of the participating amino acids, described in matrix 5. Our model has been able to justify some experimental results in respect to the synthesis of particular tripeptides. Thus, it may be applied further to test some stages of chemical evolution, as it was presented in the introduction of this work.

A population of biased oligopeptides makes the replication of a minimal chemical machinery compatible with life more accessible. However, a quantitative evaluation of the extent of bias induced has not been done so far. The extent and effectiveness of these constraints to reduce variability in sequences of oligomers remains an open question, because drawing conclusions from scarce experimental results and from very short oligomers (i.e. the tripeptides reported in Fox et al., 1977) is obviously insufficient.

Finally, of particular relevance to us is the prediction related to the nature of primordial oligopeptides. In the prebiotic world, in anhydrous environments with a steady source of heat, it would be more likely to have heteroligopeptides than homoligopeptides. This idea is unexpected as it might be thought that primitive oligopeptides were highly monotonous, with monomers being repeated throughout the sequence with little variation. This model instead suggests a primitive world with not so much monotonous sequences of oligopeptides, and with an implied catalytic potential.

 

Acknowledgements

This work was supported by PAPIIT grant IN 10513-RR10513 and CONACYT grant No. 168579/11.

 

References

Arya, J.C., Lardner, R.W., 1985, Mathematical Analysis for Business and Economics, 2ndRevised edition, Prentice-Hall Inc, 764 p.

Dickerson, R.E., Geis, I., 1969, The Structure and Action of Proteins: New York, Harper & Row Publishers, 120 p.

Feynman, R., 1964, Lectures on Physics: Massachusetts, Palo Alto, London, Addison-Wesley, 824 p.

Fox, S.W., Dose, K., 1977, Molecular Evolution and the Origin of Life: New York, Marcel Dekker, 370 p.

Fox, S.W., Melius, P., Nakashima, T., 1977, N-Terminal Pyroglutamyl Residues in Proteins and Thermal Peptides, in Matsubara, H., Yamanaka, T., (eds.), Proceedings of the Symposium on Evolution of Protein Molecules: Japan Scientific Societies Press, 111–120.

Harada, K., 1959, Thermal Homopolymerization of Lysine and Copolymerization with Neutral and Acidic Amino Acids: Bulletin of the Chemical Society of Japan, 32, 1007–1008.

Harada, K., Fox, S.W., 1965, Characterization of thermal polymers of neutral α-amino acids with dicarboxylic amino acids or lysine: Archives of Biochemistry and Biophysics, 109, 49–56.

Hartmann, J., Brand, M.C., Dose, K., 1981, Formation of Specific Amino Acid Sequences during Thermal Polymerization of Amino Acids: BioSystems, 13, 141–147.

Katime, I.A., 1994, Química Física Macromolecular: Bilbao, Spain, Servicio Editorial, Universidad del País Vasco, 407 p.

Luisi, P.L., 1998, About Various Definitions of Life: Origins of Life and Evolution of the Biosphere, 28, 613‒622.

Matthews, C.N., Lidicky, R., Schaefer, J., Stejskal, E.O., McKay, R.A., 1984, Heteropolypeptides from Hydrogen Cyanide and Water? Solid state 15N NMR Investigations: Origins of Life and Evolution of the Biosphere, 14, 243‒250.

Melius, P., Hubbard, W., 1987, Pyroglutamyl N-termini of Thermal Polyamino Acids: BioSystems, 20, 213–217.

Moran, P.A.P., 1984, An Introduction to Probability Theory: Oxford, Clarendon Press, 542 p.

Mosqueira, F.G., 1988, On the Origin of Life Event: Origins of Life and Evolution of the Biosphere, 18, 143–156.

Mosqueira, F.G., Negron-Mendoza, A., Ramos-Bernal, S., Polanco, C., 2012, Biased versus unbiased randomness in homo-polymers and copolymers of amino acids in the prebiotic World: Acta Biochimica Polonica, 59, 543–547.

Mosqueira, F.G., Ramos-Bernal, S., Negrón-Mendoza, A., 2000, A simple model of the thermal prebiotic oligomerization of amino acids: Biosystems, 57, 67–73.

Mosqueira, F.G., Ramos-Bernal, S., Negron-Mendoza, A., 2002, Biased polymers in the origin of life: Biosystems, 65, 99–103.

Mosqueira, F.G., Ramos-Bernal, S., Negron-Mendoza, A., 2008, Prebiotic thermal polymerization of crystals of amino acids via the diketopiperazine reaction: BioSystems, 91, 195–200.

Nakashima, T., Jungck, J.R., Fox, S.W., Lederer, E., Das, B.C., 1977, A Test for Randomness in Peptides Isolated from a Thermal Polyamino Acid: International Journal of Quantum Chemistry: Quantum Biolgy Symposium, 4, 65–72.

Negrón, A., Ramos, S., 2000, Chemical Evolution on the Early Earth, in Chela-Flores, J., Lemarchand, G., Oró, J. (eds.), Astrobiology: Origins from the Big Bang to Civilization: Kluwer Academic Publisher, 71‒84.

Oparin, A.I., 1938, The Origin of Life: New York, Macmillan, 270 p.

Ruiz-Mirazo, P., Peretó, J.G., Moreno, A., 2002, Proposal for a Universal Definition of Life (abstract). The 10thInternational Society for the Study of Origin of Life and 13th International Conference on the Origin of Life, 67.


 

Manuscript received: October 3, 2014.
Corrected manuscript received: February 9, 2015.
Manuscript accepted: March 2, 2015.


 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 413-420

http://dx.doi.org/10.18268/BSGM2015v67n3a5

The origin of life from a paleontological perspective, a review

Catalina Gómez-Espinosa1,*, María Colín-García2, Alicia Negrón-Mendoza3

1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510 México, D.F., México.
2 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., México.
3 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510 México, D.F., México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Although the origin of life cannot be dated with precision, life must have appeared soon after the cooling of the Earth, when the existence of liquid water on the planet enabled primitive oceans to exist. In fact, fossil records support the evidence of life on Earth earlier than 3400 Ma ago. In order to understand the origin of life, it is useful to track geochemical factors such as the presence of carbon and isotopic evidence, which also suggests the presence of microbials. Eoarchean crustal rocks are located on Akilia Island and on the Isua Greenstone belt southwest of Greenland. The oldest recognized microfossil record is 3430 Ma old from Strelley Pool Formation cherts, Pilbara, Australia. In Paleontology, it is necessary to reevaluate the outcrops of the oldest rock in light of new technologies, new techniques, and a multidisciplinary approach. This will help support data about when life emerged.

Keywords: Earliest microfossils, Eoarchean, Paleoarchean, ancient life, biosignatures.

 

Resumen

Aunque no puede decirse con precisión cuando se originó la vida en el planeta hay evidencia de que ocurrió poco después de que la Tierra se enfrió, cuando las temperaturas permitieron la existencia de agua líquida y el desarrollo de la hidrosfera primitiva. El registro fósil aporta datos de que la vida existió mucho antes de los 3400 Ma. Para entender el origen de la vida se ha recurrido al estudio de trazas geoquímicas analizando la presencia de carbono orgánico y a la evidencia isotópica que sugieren actividad microbiana. La corteza litosférica más antigua, que data del Eoarqueano, se encuentra en la isla de Akilia y en el cinturón Isua Greenstone al suroeste de Groenlandia, pero el microfósil más antiguo proviene de pedernal de la Formación Strelley Pool en Pilbara, Australia, con una edad de 3430 Ma. En el campo de la Paleontología es necesario reevaluar los afloramientos del Eoarqueano y Paleoarqueano utilizando las nuevas tecnologías desde una perspectiva multidisciplinaria para aportar datos respecto a cuando ocurrió el origen de la vida.

Palabras clave: Microfósiles más antiguos, Eoarqueano, Paleoarqueano, vida antigua, biofirmas.

 

1. Introduction

The formation of the Earth has been calculated to have occurred 4600 Ma ago (Schopf, 1992) while the oldest known zircon, from the Earth's original solid rock crust has been dated at 4.374 Ma (Valley et al., 2014). The analysis of molecular clocks indicates that Archaea and Eubacteria were probably present on Earth at least 4000 Ma ago (Battistuzzi and Hedges, 2009). On the other hand, the oldest true fossil is 3400 Ma old and was discovered in sandstone at Strelley Pool in Western Australia (Wacey et al., 2011). Lazcano and Miller (1994) calculated more than 10 Ma between the evolution of the first DNA/protein systems and the presence of cyanobacteria.

Elucidating when life originated on Earth is not an easy task and Altermann and Kasmierczak (2003) consider there to be three ways to search for evidence of ancient life on Earth during the Archean period: biomarker detection, microfossils, and biosedimentary structures. However, even if all these approaches are considered, it is still very difficult to obtain reliable data about the precise time when life arose. This is because fossil records are scarce. In this article, the oldest fossil records reported are reexamined and compared in order to trace the existence of the first living beings from a paleontological point of view. The debate is still going on, but new evidence and information from the field is presented for a better understanding of the origin of life.

 

2. The fossil record and the oldest life forms

The paleontological record has provided the timescale for tracking evolutionary history. It supports the idea that the origin of life occurred earlier than 3400 Ma ago, corresponding possibly to sulphur-metabolizing microbe cells (Philipot et al., 2007). Those cells were complex enough to suggest that more primitive cells must have existed before. Based on highly debatable radioisotopic data, it has been suggested that life started at 4200 Ma (Nemchin et al., 2008).

The establishment of the earliest record of life (in the form of microfossil, chemical fossils and/or organo-sedimentary structures) needs to take into account the nature of the hydrosphere and the atmosphere during the Archean when life emerged, and during the evolution of primitive life (Awramik and Grey, 2005).

It is generally assumed that the emergence of life required the presence of liquid water (Westall, 2005). This condition was fully satisfied because water was available since the accretion of the Earth, and the most accepted model suggests that water was delivered by carbonaceous chondrites and comets (Dauphas et al., 2000). In addition, geological evidence in the form of zircon crystals from the Hadean age (4300 – 4400 Ma) at Jack Hills, Yilgarn Craton, Western Australia (Wilde et al., 2001), suggests the activity of low temperature hydrothermal fluids. Russell and Hall (1997) estimate that between 4200 – 4100 Ma ago, the surface temperature of the Earth was approximately 90 °C; this temperature was low enough to allow the existence of liquid water on the surface.

Very little is known about the environments in which life may have arisen. A variety of habitats were available from the deep ocean floor to subaerial environments (Westall, 2005). Traditionally, it has been assumed that life emerged in shallow marine-marginal environments (Javaux et al., 2010). However, a deep-sea origin of life has also been suggested, taking black smokers as a model (Philippot et al., 2007). This last proposal adds the possibility that the earliest microbial life could have been sulphur-based biota (Wächtershäuser, 1992). Recently, one of the most accepted of theses proposals suggests that life arose in an environment similar to the actual alkaline hydrothermal vents found in the Lost City hydrothermal field (Boetius, 2005; Lane et al., 2010).

Nevertheless, another question arises if one postulates that life emerged out of the oceans: how was the first ocean formed, evolved and composed? Lacking solid evidence, there has not been an available and accepted model of how the terrestrial oceans were formed (Pinti, 2005).

Most controversies about the hydrosphere are focused on its chemical parameters, including the pH and salinity of marine water. There is currently no consensus regarding the pH of primitive oceans. Kempe and Degens (1985) proposed an alkaline pH; Grotzinger and Kasting (1993) and Pinti (2005) considered an acid pH; and Holland (1984) suggested a neutral environment. Two propositions can be identified in the discussion of the primitive ocean’s marine salinity: that it was higher than today (de Ronde and Ebbessen, 1996) and that it was similar to today or had a normal salinity (35 ppt) (Touret, 2003). In conclusion, little can be said about the composition, pH and salinity of primitive oceans.

In regard to the Earth’s primitive atmosphere, it is suggested that it must have been dusty and thick due to high volcanic activity and constant meteorite bombardment (Westall, 2005). Atmospheric composition is still a matter of discussion, but it was most definitely oxygen depleted (Farquhar, 2003).

One paleontological principle, called “uniformitarianism,” assumes that “the present is the key to the past,” a phrase attributed to James Hutton in the 1790s. However, during the Archean, most planetary processes were considerably different from the ones today, including the composition of the atmosphere (lower O2, higher CO2) and hydrosphere (higher Fe2+) (Holland, 1984); the tectonic rates (higher flow thought the crust) (Mojzsis and Harrison, 2000); a high meteorite bombardment; the solar cycles (Antcliffe and McLoughlin, 2008); and the fact that there were shorter days and higher tides (Westall, 2005). In light of these facts, Archean paleobiology must be interpreted in a different way for decoding the signals of earliest life.

 

3. Eoarchean and Paleoarchean signatures of life: sedimentary microbial structures and chemical evidence.

In order to understand the origin of life, it is useful to track the geochemical and isotopic evidence of biological past processes that could possibly have been preserved in minerals resistant to metamorphism. This geochemical evidence is considered a signature of life, or biosignature (Steele et al., 2006).

The major differences between chemical and biochemical systems, according to Sharma (2005), include: the ability of replication from one generation to another; the presence of complex molecules and enzymes, the essentials of living systems; and the existence of a membrane that delimits and separates the cell from the external environment.

Recent efforts in the study of ancient life signatures are focused on the distinctions among true fossil remains and abiotic structures that can potentially be formed during hydrothermal processes. This is one of the most interesting topics in the study and characterization of life (Oehler et al., 2008). The application of techniques such as Raman spectroscopy has made possible the identification of biosignatures in extreme environments. This procedure has the advantage of recording data from both geological and biological components (Edwards et al., 2011).

Eoarchean crustal rocks are located in Akilia Island and the Isua Greenstone belts southwest of Greenland (Westall, 2005; Schopf, 2006) (Figure 1). Based on an analysis of carbon isotopes taken from graphite inclusions in apatite grains, researchers have claimed the existence of early evidence of life in rocks within a banded iron formation (BIF) on Akilia Island (~ 3850 Ma); graphite inclusions contain 13C, which can be correlated with biological activity (Mojzsis et al., 1996). Further geochemical studies demonstrate that the outcrops considered to be BIFs correspond to a metasomatized ultramafic igneous protolith. In one of these studies, two possible abiotic mechanisms for the generation of graphite are proposed (Fedo and Whitehouse, 2002). The debate over the interpretation of the Akilia rocks continues into the present day, although the sedimentary chemical origin of the BIFs was claimed again and supported by studies of iron isotopes (Dauphas et al., 2004). Another possibility is that the BIF could have originated from a seawater derivation; this was suggested and interpreted as a parallel to the existence of modern mid-ocean ridge hydrothermal vents (Dauphas et al., 2007). This finding was rebutted, however, after the reexamination of new apatite samples, as well as the study of original crystals. Petrographic studies by means of optical microscopy and scanning electron microscopy (SEM), combined with energy-dispersive spectrometry from apatite samples, could not definitively find evidence of any graphite inclusion in these samples (Lepland et al., 2005). This lack of graphite was supported by a petrographic study of 92 apatite samples (Nutman and Friend, 2006). Nevertheless, the controversy around this record continues: McKeegan et al. (2007) claimed they had unearthed ancient evidence of life, as well as the presence of graphite, in the Akilia samples using Raman confocal spectroscopy. However, new studies again refuted the presence of the world’s oldest biosignatures on Akilia. Applying U-Pb analytical methods and isotopic data, it was demonstrated that the crystallization or recrystallization age of the apatite from Akilia was 1750 Ma, and this does not correspond with the age of mafic ultramafic gneiss from the region (Whitehouse et al., 2009). The problem is that the rocks on Akilia present a high grade of metamorphism, which masks and hinders the identification of putative microfossils; even more, this metamorphism could have destroyed any possible fossil remains (Wacey et al., 2008a).

Ambient Inclusion Trails (AIT) have been suggested as potential biosignatures of putative microbials in Archean rocks. The use of AIT as biosignatures was studied in NE grains from Pilbara Craton (3460 Ma), Western Australia (Figure 1) (Wacey et al., 2008b). The results were not conclusive since the authors admitted that although their data were consistent with a biogenic origin, an inorganic origin could not be excluded. AITs are also problematic because their formation has not been rigorously studied and they are susceptible to contamination by modern fluid migration (Wacey et al., 2008b). Sandstone rocks have received less attention in the search for ancient life due to their low fossil preservation potential (Wacey et al., 2008b).

Microbially induced sedimentary structures (MISS) are another kind of biosignature feature. MISS are the result of interaction between biotic and physical processes: the sedimentary dynamic (Noffke, 2007). Noffke et al. (2003, 2006) and Noffke (2007) have recorded the presence of MISS in Archean sandstone from South Africa. Their results indicate the presence of photoautotrophic microbial mats in tidal environments in Moodies Group (3200 Ma) (Noffke et al., 2006; Noffke, 2007) and Pongola and Witwatersrand Supergroups (2900 Ma) (Noffke et al., 2003; Noffke, 2007).

Given the fact that most of the studies have been done on sedimentary rocks, an innovation in the search for the planet’s earliest life was performed by Banerjee and coworkers (2006) when they decided to study subaqueous volcanic rocks. Banerjee et al.(2006) identified the geochemical and isotopic signature of microbial ichnofossil structures in pillow lavas between 3400 to 3500 Ma old. They identified microbial activity associated with seafloor hydrothermal alteration at Barberton Greenstone Belt, South Africa (Figure 1). This finding represented the oldest evidence of microbial activity. Recently the age of this biosignature was rejected after the filamentous microstructure was dated with U-Pb, assigning an age of 2800 Ma and considering it as an intrusion (this implies that the biosignature evidence is younger than the rock that contains it); the biogenicity of trace fossils was also questioned (Grosch and McLoughlin, 2014).

There is a marked lack of reports about chemical fossils from the Paleoarchean age. The oldest chemical fossils discovered, corresponding to the Neoarchean (2800 – 2500 Ma), are hopanes and 2-methylhopanes, recovered in bitumens extracted from shales of the Fortescue and Hamersley Groups (2700 to 2500 Ma), Pilbara, Western Australia. This finding confirms the presence of bacteria and indicates the importance of cyanobacteria as primary producers during the Neoarchean age (Brocks et al., 2003). Meanwhile, in South Africa, in the Transvaal Supergroup sediments (2670 to 2460 Ma), hopanes of a bacterial origin were recovered, along with steranes of a eukaryotic origin. These chemical fossils support the presence of bacterial and eukaryotic life, as well as photosynthetic processes, during the Archean (Waldbauer et al., 2009).

Of course, considering the fact that the oldest rocks on Earth correspond to crustal rocks with intense metamorphism, it is necessary to determine the degree of metamorphism that can obliterate or erase the signs of biosignatures (Brasier et al., 2005).


Figure 1. Location of the three sites with Eoarchean (Isua and Akilia Island, Greenland) and Paleoarchean (Pilbara, Australia and Barberton, Africa) crust rocks.

 

4. Paleoarchean (36003200 Ma) microfossil record

The absence of rock records of the Earth’s first 500 Ma prevents anything more than speculations about this time period, especially since the Hadean Eon (4500 – 4000 Ma) is only known by detrital zircons (O’Neil et al., 2008; Harrison, 2009; Iizuka et al., 2009). The Archean Eon comprises the period between 4000 to 2500 Ma and is divided into four eras: Eoarchean (4000 – 3600 Ma), Paleoarchean (3600 – 3200 Ma), Mesoarchean (3200 – 2800 Ma) and Neoarchean (2800 – 2500 Ma) (ICS, 2013).

The identification of the earliest life signatures is made difficult by the fact that the oldest crustal rocks from the Paleoarchean Era have been destroyed. In addition, only a few localities with rocks of such antiquity are known. Paleoarchean rocks are located in the Pilbara greenstone belts in northwestern Australia and the Barberton greenstone belts in eastern South Africa (Westall, 2005; Schopf, 2006) (Figure 1).

Although many criteria have been proposed, in regard to the Archean record, to recognize true microfossils from dubious ones (in the sense of Schopf, 2006) or pseudofossils (Schopf, 1992; Altermann and Kazmierczak, 2003; Schopf et al., 2010), it can still be very difficult to distinguish one from the other. In fact, many ancient records of life are subject to continuous controversies. Some “microfossils” recorded from the Paleoarchean before 1983 are now considered controversial and categorized as dubious or non-fossils (Schopf and Walter, 1983).

The Archean (3800 – 2500 Ma) fossil record is very poorly preserved in comparison with the Proterozoic (2500 – 540 Ma) (Brasier et al., 2005), and it is very difficult to separate the biotical simple forms and the abiotical complex structures of this eon (Oehler et al., 2008).

Poor preservation of Archean microfossils has been attributed, on the one hand, to a low potential for chert conservation and to the presence of volcanogenic or hydrothermal activity (Brasier et al., 2005). Stromatolitic structures are more common in the Archean. Nonetheless, preserved fossils are rarely present; consequently, it can be very difficult to prove that all the stromatolites reported have an undoubtedly biogenic origin (Schopf et al., 2007). A recent review of the nature and study of the stromatolitic record was performed by Riding (2011).

A very complete review about Archean life has also been done by Schopf (2006) and Schopf et al. (2007); since then, new reports have been added (e.g. Allwood et al., 2007; Wacey et al., 2011), and some of the microfossils reported before 2006 actually are considered to be controversial or non-biological in origin (e.g. the filamentous fossil bacteria discovered in Mount Ada Basalt, Warrawoona Group (3500 Ma) (Awramik et al., 1983) and the microbial carbonates of biological origin discovered in the Dresser Formation, Warrawoona Group 3490 Ma (Van Kranendonk et al., 2003).

Microfossils like those discovered in the Apex Chert (3465 Ma), Warrawoona Group in Australia, and in the Fig Tree Group of the Barberton Greenstone Belts (BGB) in South Africa (3500 to 3300 Ma) were long considered to be classic examples of ancient life. Both records, however, have been heavily questioned and reevaluated and, finally, the biological origins of the microstructures were discarded at the beginning of the 21th century (Schopf and Walter, 1983; Altermann, 2001; Brasier et al., 2002, 2005).

Australia’s Apex Chert was considered to be the oldest bacteria fossil record (Schopf and Packer, 1987), but this interpretation did not fit the standard evolutionary history (Brasier et al., 2002, 2005). Nowadays, this record has been reinterpreted as belonging to a non-biogenic structure. Although the presence of microfossils has been rejected, it is accepted that the presence of carbonaceous material in the matrix around the fossil-like structures is consistent with microbial life and is considered, at present, to be evidence of early life (Marshall et al., 2011).

The first recognized true record of biosedimentation and the oldest Archean life was reported at the Strelley Pool Chert, Pilbara Craton (3430 Ma) in northwestern Australia. This formation resulted from the remains of an ancient microbial mat of a stromatolitic platform (Allwood et al., 2006, 2007). The biogeochemistry of this organosedimentary structure was studied by measuring sulfur isotopes as evidence of microbial metabolism (Brontognali et al., 2012). In addition, microstructures of biological affinity associated with pyrite and related to a sulphur-based metabolism under anaerobic conditions were reported at the Strelley Pool Formation (3400 Ma) (Wacey et al., 2011). At Dixon Island Formation (3200 Ma), Cleaverville Group, Pilbara, the presence of filamentous bacteria-like microfossil preserved in black chert has also been reported, this community probably developed in a low temperature hydrothermal vent system (Kiyokawa et al., 2006).

The oldest microfossils from South Africa were reported from the Onverwacht Group and the Fig Tree Group of BGB (e.g. Barghoorn and Schopf, 1966; Engel et al., 1968; Muir and Hall, 1974). These reports correspond to the Theespruit Formation (3544 – 3547 Ma), the Hooggenoeg Formation (3472 – 3445 Ma) and the Kromberg Formation (3416 – 3334 Ma) in the Onverwacht Group, and the Swartkoppie Formation (3260 – 3230 Ma) in the Fig Tree Group (Altermann, 2001). Some previous reports from these Groups were criticized before and their biological origins were rejected, meaning they were classified as non-fossils or with dubious fossil content (Schopf and Walter, 1983; Altermann, 2001). Nevertheless, Altermann (2001) considers nine of the reports in South Africa as authentic microfossil occurrences dated from the Archean.

In the Onverwacht Group (3300 – 3500 Ma), probable biogenic structures were identified, resembling coccoid and bacillary bacteria in sediments with a probable hydrothermal nature (Westall et al., 2001). Although Altermann (2001) considered some interpretations found in Westall et al.(2001) as equivocal, the author recognized coccoid bacteria as true microfossils. The records considered to be true microfossils include: those found at the BGB in the Onverwacht Formation (3260 – 3230 Ma), which correspond to filamentous microfossils interpreted as bacterial structures (Walsh and Lowe, 1985), and those found in the Kromberg Formation (3259 Ma), which are spheroidal and ellipsoidal structures resembling coccoidal bacteria microbial activity and which were discovered in chert with rare filamentous microfossils (Walsh, 1992).

Also in South Africa but in the Moodies Group, BGB (3200 Ma), in a shallow marine oldest siliciclastic (siltstones and shales) deposits on Earth, the presence of biologic carbonaceous microstructures has been reported. The biologic origins of the microstructures have been supported by petrographic, morphologic, geochemical, taphonomic and geologic data (Javaux et al., 2010).

A brief summary of the principal events related to the first evidence of life in the Hadean and the Lower Archean is shown in Figure 2.

Figure 2. Brief summary of principal events in the Early Earth highlighting the evidence of life inferred by rocks and fossil record.

 

5. Conclusions remarks

The study of the origin of life is complex, involving multiple disciplines including biology, astrochemistry, geochemistry, biochemistry, geomicrobiology, paleontology, and molecular biology, among others. A common problem is that specialists in these fields still consider only the isolated data of their own fields and fail to consider other disciplines as ripe for addressing the problem of the origin of life. Due to the lack of an ancient fossil record, paleontology is an important discipline that happens to be commonly obviated.

In paleontology, the extreme complexity of the oldest known fossils makes it difficult to consider them as the earliest existing. However, a chance still remains to sample the oldest actual fossil. In order to do this, outcrops of the oldest rock in non-sedimentary shallow environments must be reevaluated in light of new technologies and available techniques.

The use of technology such as SEM, transmission electron microscopy, high-resolution laser Raman spectroscopy, energy-dispersive x-ray spectroscopy, geochemical techniques, isotopic dating, secondary ion mass spectrometry (SIMS) and high-resolution secondary ion mass spectrometry (NanoSIMS), combined with detailed field and petrographic mapping, will together result in a better, newer interpretation and characterization of Archean microfossils and microstructures in the fossil record. This will help provide new clues for dating the existence of living beings more accurately and will give a better idea about when the origin of life was accomplished.

 

Acknowledgements

We thank CONACYT for the 168579 grant.

 

References

Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W., 2006, Stromatolite reef from the Early Archean era of Australia: Nature, 441, 714-718.

Allwood, A.C., Walter, M.R., Burch, I.W., Kamber, B.S., 2007, 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth: Precambrian Research, 158, 198-227.

Altermann, W., 2001, The oldest fossils of Africa–a brief reappraisal of reports from the Archean: Journal of African Earth Sciences, 33, 427-436.

Altermann, W., Kazmierczak, J., 2003, Archean microfossils: a reappraisal of early life on Earth: Research in Microbiology, 154, 611-617.

Antcliffe, J., McLoughlin, N., 2008, Deciphering fossil evidence for the origin of life and the origin of animals: Common challenges in different worlds, in Seckbach, J., Walsh, M. (eds.), Deciphering Fossil Evidence for the Origin of Life and the Origin of Animals: Neetherland, Springer, 211-229.

Awramik, S.M., Grey, K., 2005, Stromatolites: Biogenicity, Biosignatures, and Bioconfusion. Astrobiology and Planetary Missions: Proceedings of SPIE, 5906, 1-9.

Awramik, S.M., Schopf, J.W., Walter, M.R., 1983, Filamentous fossil bacteria from the Archean of Western Australia: Precambrian Research, 20, 357-374.

Banerjee, N.R., Furnes, H., Muehlenbachs, K.M., Staudigel, H., de Wit, M., 2006, Preservation of ~ 3.4 – 3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa: Earth and Planetary Science Letters, 241, 707-722.

Barghoorn, E.S., Schopf, J.W., 1966, Microorganisms three billion years old from the Precambrian of South Africa: Science, 152, 758-760.

Battistuzzi, F.U., Hedges, S.B., 2009, A major clade of prokaryotes with ancient adaptations to life on land: Molecular Biology Evolution, 26, 335-343.

Boetius, A., 2005, Lost City Life: Science, 307, 1420-1422.

Brasier, M.D., Green, O.R., Jephcoat, P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A., Grassineau, N.V., 2002, Questioning the evidence for Earth’s oldest fossils: Nature, 416, 76-81.

Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele A., Stoakes, C., 2005, Critical testing of Earth’s oldest putative fossil assemblage from the ~ 3.5 Ga Apex chert, Chinaman Creek, Western Australia: Precambrian Research, 140, 55-102.

Brocks, J.J., Buick, R., Summons, R.E., Logan, G.A., 2003, A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia: Geochimica et Cosmochimica Acta, 67, 4321-4335.

Brontognali, T.R.R., Allwood, A.C., Fischer, W.W., Gritzinger, J.P., Summons, R.E., Eiler, J.M., 2012, Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism: Proceedings of the National Academy of Science, 109, 15146-15151.

Dauphas, N., Robert, F., Marty, B., 2000, The late asteroidal and cometary bombardment of Earth as recorded in water deuterium to protium ratio: Icarus, 148, 508-512.

Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A.M., Marty, B., Janney, P.E., 2004, Clues from Fe isotope variations on the origins of early Archean BIFs from Greenland: Science, 306, 2077-2080.

Dauphas, N., van Zuilen, M., Busigny, V., Lepland, A., Wadhwa, M., Janney, P.E., 2007, Iron isotope, major and trace element characterization of early Archean supracrustal rocks from SW Greenland: protolith identification and metamorphic overprint: Geochimica et Cosmochimica Acta, 71, 4745-4770.

de Ronde, C.E.J., Ebbesen, T., 1996, 3.2 billion years of organic compound formation near seafloor hot springs: Geology, 24, 791-794.

Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Waltham, N.R., Beardsley, S., Dowson, S., Woodward, S., 2011, The search for signatures of early life on Mars: Raman spectroscopy and the Exomars mission: Spectroscopy Europe, 23, 6-15.

Engel, A.E.J., Nagy, B., Nagy, L.A., Engel, C.G., Kremp, G.O.W., Drew, C.M., 1968, Algal-like forms in Onverwacht Series, South Africa: oldest recognized life-like forms on Earth: Science, 161, 1005-1008.

Farquhar, J., Wing, B.A., 2003, Multiple sulfur isotopes and the evolution of the atmosphere: Earth and Planetary Science Letters, 213, 1-13.

Fedo, C.M., Whitehouse, M.J., 2002, Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and Implications for Earth’s earliest life: Science, 296, 1448-1452.

Grassineau, N.V., Abell, P., Appel, P.W.U., Lowry, D., Nisbet, E.G., 2006, Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga): Geological Society of America Memoirs, 198, 33-52.

Grosch, E.G., McLoughlin, N., 2014, Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life: Proceedings of the National Academy of Sciences of the United States of America, 111, 8380-8385.

Grotzinger, J.P., Kasting, J.F., 1993, New constraints on Precambrian ocean composition: Journal of Geology, 101, 235-243.

Harrison, T.M., 2009, The Hadean Crust: Evidence from > 4 Ga Zircons: Annual Review of Earth and Planetary Sciences, 37, 479-505.

Holland, H.D., 1984, The chemical evolution of the atmosphere and oceans: Princeton New Jersey, Princeton University Press, 582 p.

Iizuka, T., Komiya, T., Johnson, S.P., Kon, Y., Maruyama, S., Hirata, T., 2009, Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu-Hf isotope analysis of zircon: Chemical Geology, 259, 230-239.

International Commission on Stratigraphy (ICS), 2013, International chronostratigraphic chart: available at: <http://www.stratigraphy.org/ICSchart/ChronostratChart2013-01.jpg>, accessed March 31 2014.

Javaux, E.J., Marshall, C.P., Bekker, A., 2010, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits: Nature, 463, 934-938.

Kempe, S., Degens, E.T., 1985, An early soda ocean?: Chemical Geology, 5, 95-108.

Kiyokawa, S., Ito, T., Ikehara, M., Kitajima, F., 2006, Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2-Ga Dixon Island Formation, coastal Pilbara terrane, Australia: Geological Society of America Bulletin, 118, 3-22.

Lane, N., Allen, J.F., Martin, W., 2010, How did LUCA make a living? Chemiosmosis in the origin of life: Bioessays, 32, 271-280.

Lazcano, A., Miller, S.L., 1994, How long did it take for life to begin and evolve to cyanobacteria?: Journal of Molecular Evolution, 39, 546-54.

Lepland, A., van Zuilen, M.A., Arrhenius, G., Whitehouse, M.J., Fedo, C.M., 2005, Questioning the evidence for Earth's earliest life-Akilia revisited: Geology, 33, 77-79.

Marshall, C.P., Emry, J.R., Marshall, A.O, 2011, Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert: Nature, 4, 240-243.

McKeegan, K.D., Kudryavtsev, A.V., Schopf, J.W., 2007, Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland: Geology, 35, 591-594.

Mojzsis, S.J., Harrison, T.M., 2000, Vestiges of a beginning: clues to the emergent biosphere recorded in the oldest know sedimentary rocks: Geological Society of America Today, 10, 1-7.

Mojzsis, S.J., Arrhenius, G., Mckeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L., 1996, Evidence for life on Earth before 3,800 million years ago: Nature, 384, 55-59.

Muir, M.D., Hall, D.O., 1974, Diverse microfossils in Precambrian Onverwacht Group rocks of South Africa: Nature, 252, 476-478.

Nemchin, A.A., Whitehouse, M.J., Menneken, M., Geisler, T., Pidgeon, R.T., Wilde, S.A., 2008, A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills: Nature, 454, 92-95.

Noffke, N., 2007, Microbially induced sedimentary structures in Archean sandstones: A new window into early life: Gondwana Research, 11, 336-342.

Noffke, N., Hazen, R., Nhleko, N., 2003, Earth's earliest microbial mats in a siliciclastic marine environment (Mozaan Group, 2.9 Ga, South Africa): Geology, 31, 673-676.

Noffke, N., Hazen, R., Eriksson, K., Simpson, E., 2006, A new window into early life: microbial mats in a siliciclastic early Archean tidal flat (3.2 Ga Moodies Group, South Africa): Geology, 34, 253-256.

Nutman A.P., Friend C.R.L., 2006, Petrography and geochemistry of apatites in banded iron formation, Akilia, W. Greenland: Consequences for oldest life evidence: Precambrian Research, 147, 100-106.

Oehler, D.Z., Robert, F., Mostefaoui, S., Meibom, A., Selo, M., McKay, D.S., Gibson, E.K., 2008, NanoSIMS opens a new window for deciphering organic matter in terrestrial and extraterrestrial samples, in Seckbach, J., Walsh, M. (eds.), Deciphering Fossil Evidence for the Origin of Life and the Origin of Animals: Neetherland, Springer, 3-24.

O’Neil, J., Carlson, R.W., Francis, D., Stevenson, R.K., 2008, Neodymiun-142 Evidence for Hadean Mafic Crust: Science, 321, 1828-1831.

Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J., Van Kranendon, M.J., 2007, Early Archaean microorganisms preferred elemental sulfur, not sulfate: Science, 317, 1534-1537.

Pinti, D.L., 2005, The Origin and Evolution of the Oceans: Lectures in Astrobiology, 1, 83-112.

Riding, R., 2011, The Nature of Stromatolites: 3500 Million Years of History and a Century of Research. Advances in Stromatolite Geobiology: Lecture Notes in Earth Sciences, 131, 29-74

Russell, M.J., Hall, A., 1997, The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front: Journal of Geological Society of London, 154, 377-402.

Schopf, W.J., 1992, The oldest fossils and what they mean, in Schopf, J.W. (ed.), Major Events in the History of Life: Boston, Jones and Bartlett Publishers, 29-63,

Schopf, J.W., 2006, Fossil evidence of Archaean life: Philosophical Transactions of the Royal Society B, 361, 869-885.

Schopf, J.W., Packer, B.M., 1987, Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia: Science, 237, 70-73.

Schopf, J.W., Walter, M.R., 1983, Archean microfossils: new evidence of ancient microbes, in Schopf, J.W. (ed.), Earth’s earliest biosphere, Princeton, Princeton Univ. Press, 214-239.

Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D., Tripathi, A.B., 2007, Evidence of Archean life: Stromatolites and microfossils: Precambrian Research, 158, 141-155.

Schopf, J.W., Kudryavtsev, A.B., Sugitani, K., Waltere, M.R., 2010, Precambrian microbe-like pseudofossils: A promising solution to the problem: Precambrian Research, 179, 191-205.

Sharma, N.S., 2005, Molecular cellular biology: New Delhi, Mittal Publications, 288 p.

Steele, A., Beaty, D.W., Amend, J., Anderson, R., Beegle, L., Benning, L., Bhattacharya, J., Blake, D., Brinckerhoff, W., Biddle, J., Cady, S., Conrad, P., Lindsay, J., Mancinelli, R., Mungas, G., Mustard, J., Oxnevad, K., Toporski, J., Waite, H., 2006, The Astrobiology Field Laboratory: JPL Document Review Services (Reference #CL#06-3307), Mars Exploration Program Analysis Group (MEPAG): September 2006, online: <mepag.jpl.nasa.gov/reports/AFL_SSG_WHITE_PAPER_v3.doc> last accessed March 31 2014.

Touret, J.L.R., 2003, Remnants of early Archaean hydrothermal methane and brines in pillow-breccia from the Isua Greenstone Belt, West Greenland: Precambrian Research, 126, 219-233.

Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., Spicuzza, M.J., 2014, Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography: Nature, 7, 219-22.

Van Kranendonk, M.J., Webb, G.E., Kamber, B.S., 2003, Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean: Geobiology, 1, 91-108.

Wacey, D., McLoughlin, N., Brasier, M.D., 2008a, Looking through windows onto the earliest history of life on Earth and Mars, in Seckbach, J., Walsh, M. (eds.), From fossils to Astrobiology, Cellular Origin, Life in Extreme Habitats and Astrobiology, 12, Springer, 41-68.

Wacey, D., Kilburn, M.R., McLoughlin, N., Parnell, J., Stoakes, C.A., Grovenor, C.R.M., Brasier, M.D., 2008b, Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a 3400 Ma sandstone: Journal of the Geological Society, 165, 43-53.

Wacey, D., Saunders, M., Cliff, J., Brasier, M.D., 2011, Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia: Nature, 4, 698-702.

Waldbauer, J.R., Sherman, L.S., Sumner, D.Y., Summons, R.E., 2009, Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis: Precambrian Research, 169, 28-47.

Wächtershäuser, G., 1992, Groundworks for an evolutionary biochemistry: the iron-sulfur world: Progress in Biophysics & Molecular Biology, 58, 85-201.

Walsh, M.M., 1992, Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton mountain land, South Africa: Precambrian Research, 54, 271-293.

Walsh, M.M., Lowe, D.R., 1985, Filamentous microfossils from the 3500 Myr-old Onverwacht Group, Barberton Mountain Land, South Africa: Nature, 314, 530-532.

Westall, F., 2005, Early Life on Earth: The Ancient Fossil Record, in Burton, W.B. (ed.), Astrobiology: Future Perspectives, Astrophysics and Space Science Library: Netherlands, Springer, 287-316.

Westall, F., de Wit, M.J., Dann, J., van der Gaast, S., de Ronde, C.E.J., Gerneke, D., 2001, Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton Greenstone Belt, South Africa: Precambrian Research, 106, 93-116.

Whitehouse, M.J., Myers, J.S, Fedo, C.M., 2009, The Akilia Controversy: field, structural and geochronological evidence questions interpretations of > 3.8 Ga life in SW Greenland: Journal of the Geological Society, 166, 335-348.

Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago: Nature, 409, 175-178.


 

Manuscript received: April 29, 2014
Corrected manuscript received: November 25, 2014
Manuscript accepted: January 5, 2015


 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 401-412

http://dx.doi.org/10.18268/BSGM2015v67n3a4

Experimental chondrules by melting samples of olivine, clays and carbon with a CO2laser

 Karina E. Cervantes-de la Cruz1,2,*, Fernando Ortega Gutiérrez3, Jesús Solé Viñas3, Antígona Segura Peralta1, Margarita Adela Reyes Salas3, Blanca Sonia Ángeles García3, María del Consuelo Macías Romo3, Carlos Linares-López4

1 Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México D.F.
2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México D.F.
3 Instituto de Geología, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México D.F.
4 Instituto de Geofísica, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México D.F.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

 Chondrules are the major constituents of chondritic meteorites; however, their origin is still an enigma for meteoritic science. In this work we report the results of melting minerals to experimentally generate objects similar to chondrules. The degree of fusion of olivine appears to be an important factor in determining the width of the bars in samples with barred-type olivine (BO) chondrules. On the other hand, the contribution of clays and carbon (possible precursor grains) is an important factor in those experiments where the melted samples showed porphyritic texture.

Keywords: experimental chondrules, chondrites, CO2laser.

 

Resumen

 Los condros son los constituyentes principales de las meteoritas condríticas. Sin embargo, su formación sigue siendo un enigma para la ciencia de la meteorítica. En este trabajo se reportan los resultados de la fusión de minerales para obtener fundidos tipo condro. El grado de fusión del olivino es un factor importante para determinar el ancho de las barras de las muestras tipo condros barrados de olivino (BO). Por otra parte, la contribución de arcillas y carbón (posibles componentes de los granos precursores) es un factor importante en los experimentos en los que los fundidos generados tienen textura porfídica.

Palabras clave: condros experimentales, condritas, láser de CO2.

 

1. Introduction

 In meteoritic science one of the biggest enigmas is the formation of chondrules, the nature of the precursor materials, the physical conditions (pressure, temperature and time) and the generating mechanisms (e.g. King, 1983; Boss, 1996; Rubin, 2000; Scott, 2007; Alexander et al., 2008; Morris and Desch, 2010). In order to obtain more information about the origin of chondrules, it is necessary to describe the petrology of natural chondrules to guide experiments that are expected to reproduce the textures of natural chondrules. Through experimental research it is possible to simulate the conditions of melting of the chondrules and the type of cooling they have experienced. Connolly et al.(1991) suggested that the size of the precursor grains influences the texture of the chondrules. Connolly and Love (1998) proposed that “A definitive petrologic correlation between chondrule size and degree of heating would be a key discriminator for the soundness of many chondrule formation mechanisms.”

 

2. Purpose

 The objective of this paper is to report the results of the experimental use of radiation from an infrared laser to melt silicates, simulating the formation of chondrules (barred and porphyritic types) by rapid heating and cooling. We do not intend to make an exhaustive analysis of the formation mechanism or properties of precursors from the results presented here. Our experiments are the starting point to guide more detailed ones, where we will be able to control and measure the chemical properties and physical conditions (pressure and temperature) of the samples. These guidelines are very important to constrain those variables that should be taken into account in our next set of experiments.

We assume that the chondrules are formed by multiple heating steps (Wasson, 1996; Rubin, 2000), and that the presence of carbon-related material as a precursor is relevant (Connolly and Hewins, 1996; Hewins, 1997; Connolly and Love, 1998). Chondrules in nature were formed in conditions of vacuum (10-5 atm) and in relatively reducing conditions (e.g. Boss, 1996; Wasson, 1996; Alexander et al., 2008).

 

3. Previous work

Wasson (1996) and Desch et al. (2010) questioned the experiments that reproduced the formation of chondrules using furnaces, whose pulse heating and/or cooling rates were slow, because they do not take into account the actual conditions of chondrule formation. The main aspects of chondrules to be considered are (e.g. Boss, 1996; Wasson, 1996; Alexander et al., 2008; Morris and Desch, 2010):

  1. The experiments must favor the retention of volatile materials such as FeS, Na and K, which do not survive in conditions of heating and/or cooling that require several minutes, hours and even days to form chondrules (Lofgren and Lanier, 1988; Lofgren, 1989).

  2. The relict grains and their igneous textures were formed through different heating pulses and not by monotonous cooling subsequent to a single event of heating (Hewins and Fox, 2004).

Wasson (1996) suggested that some chondrules recorded at least two heating events; however, the conditions of temperature-time of these events should allow the preservation of the volatile components. These heating events occurred before chondrules were incorporated into the chondritic parental body, in the early stage of the formation of the solar system (Hernández-Bernal and Solé, 2010; Connelly et al., 2012). An experimental insight into these radiation-structure interactions is of interest to tailor formation of these structures and to translate this knowledge in order to understand the evolution of the solar system. The first experiments that used the infrared radiation from a laser to form molten chondrule-like objects were carried out by Nelson et al. (1972), in which radial textures of pyroxene were reproduced. Droplets of alumina, enstatite, forsterite, enstatite-albite, forsterite-albite and mixtures were melted by using a CO2 laser and the initial temperatures of the melts were measured using an optical pyrometer. Blander et al. (1976) irradiated enstatite beads located at the center of a furnace with a CO2laser. The furnace was used to control the background temperature during the experiment. The cooling time before nucleation was visually determined. The nucleation temperature of the resulting melts was calculated assuming that energy loss at the surface of the spherule occurred by radiative heat loss only and that the temperature within the spherule was approximately uniform at any given time. Contrasting these experimental results, they conclude that supercooling is an important factor contributing to the large variety of textures and crystal sizes observed in chondrules.

Eisenhour et al. (1994) used a 10 W argon-ion laser to irradiate olivine and pyroxene-rich assemblages. Their results determined that radiative heating may have been significant for chondrule formation as a result of the similarity of the fluffy opaque inclusions in naturally occurring and experimental solids. Thermal history of the grains during the experiment was inferred using the absorption properties of olivine. The latest experiment reported was performed by Beitz et al. (2013) using a 50 W CO2laser to irradiate spinel and olivine chondrule analogs. This experiment was focused on studying the porosity in the dust rims of chondrules; therefore, petrological and chemical properties of the samples were not reported. Moreover, the pressure used to perform all these four experiments was not reported, making it difficult to assess the effect of this factor in the observed properties.

We present here the melting of minerals by means of a CO2laser in the geochronology laboratory at Instituto de Geología, UNAM (Solé-Viñas, 2004).

 

4. Experimental procedure

To reproduce chondrules, we used natural crystals of olivine as precursor material. The crystals were obtained from spinel peridotite xenoliths from “La Olivina”, Chihuahua. La Olivina peridotite mineral modes vary between olivine 50 – 70 vol.%, orthopyroxene 15 – 25 vol.%, clinopyroxene, 15 – 25 vol.% and spinel as accessory mineral (Nimz et al., 1993). Conditions controlled in the experiments were: chemical composition of the grains precursors, mass, size of the sample and heating time. The chemical composition of the mineral was obtained using X-ray fluorescence (XRF), according to the methodology of Bernal and Lozano-Santacruz (2005).

The experiments were carried out at the Laboratory of Noble Gas Geochronology (Solé-Viñas, 2004). Samples were melted with a Merchantek® laser MIR10 CO2with 50 W of power that emits in the infrared (10.6 µm). The samples were weighted and mounted on a steel sample holder.

The melts were observed and photographed with an Olympus digital camera adapted to a LEICA binocular microscope. After that, to appreciate the external morphology and chemical composition of the melts, the samples were analyzed with a JEOL35C scanning electron microscope (SEM), which has an EDS analyzer (Instituto de Geología, Universidad Nacional Autónoma de México).

The samples EX1#6, EX1#7, EX1#8, EX1#62, EX1#66, EX1#94 and EX1#95 were selected and embedded in epoxy resin and cut into thin sections with a Buehler low speed cutter at the Instituto de Astronomía, UNAM.

The chemical composition of the minerals in the melted samples was obtained with a JEOL JXA 8900R electron probe microanalyzer (EPMA) (Laboratorio Universitario de Petrología, UNAM). Analyses were conducted at 20 keV accelerating voltage with a beam current of 20 nA, a beam size of 1 µm and 10 – 40 s counting times. Atomic number (Z), absorption and fluorescence correction (ZAF correction) was made to all analytical data obtained, for Ca-poor, Ca-rich pyroxenes, and olivines. In order to avoid the Na and K loss, we used a probe current of 10 nA for glass. Natural and synthetic phases of well-known compositions were used as standards. We critically evaluated the 306 WDS analyses based on their total stoichiometry. SEM backscattered electron (BSE) imagery was used to investigate the microtextures, porosity and mineralogy of the chondrules.

 

4.1. Properties of the precursor

Physical properties: The crystals of olivine used as precursor material were crushed and separated into fractions of size less than 212 µm, between 300 and 500 µm, and larger than 500 µm (Figure 1, Table 1). Activated carbon was mixed with clays and milled to obtain powders of 300 µm in grain diameter.

Chemical properties: The olivine concentrate was analyzed by means of X-ray fluorescence. The average content of forsterite (Fo = Mg/(Mg + Fe)) is 91.6 mol% (Table 2). On the other hand, the coal we used is a bituminous activated carbon in the form of pellets and combined with clay. Clay minerals are present in meteorites, for example smectite, serpentine and clinochlore found in Tagish Lake (Zolensky et al., 2002).


Figure 1. General aspect of olivine grains used as precursors in the experiments. The original crystals of xenoliths are 2.4 to 3 mm in length. The material comes from peridotites of the locality "La Olivina".

Table 1. The table shows physical characteristics of precursor material and experimental conditions of fusion. Some of the samples that were melted more than once have two values in the power of the beam, the second being the last power supplied.

 

4.2. Experimental Conditions

In total, 11 samples of olivine were melted at ambient temperature and pressure. Room temperatures have been used in other experiments performed with lasers to simulate chondrule formation (Nelson et al., 1972; Beitz et al., 2013). In particular, Nelson et al. (1972) used a cool (300 K) and a high (2000 K) background temperature for their experiments finding no significant effect in the resulting textures. Following other authors, we performed our experiments at 1 atm (e.g. Hewins et al., 1982; Yu et al., 2003; Hewins et al., 2005).

The conditions of power and size of the laser beam were different for each sample (Tables 1 and 2). The diameter of the laser beam varied between 1000 and 2540 µm, and the power was between 8 and 25.8 W. The energy of the system was calculated on the basis of the irradiation time. Two of the samples (EX1#6 and EX1#7) were dusts of olivine under 212 µm, seven of the samples were single crystals of olivine with sizes between 776 and 2093 μm (EX1#8, EX1#60, EX1#61, EX1#62, EX1#65, EX1#66, EX1#67, Figure 1). Finally, two of the samples (EX1#94 and EX1#95) were mixed (1:1) and activated carbon contaminated with clays (300 – 500 μm) in order to maintain as low as possible the fugacity of oxygen during the melting process. Selected sample weights were chosen to obtain melted spheres with diameters ca. one millimeter (taking into account that the density of the olivine is 3.22 g cm-3 for forsterite and 4.39 g cm-3for fayalite).

The melting time of the experiments was measured starting when the laser was turned on and reached the sample, and until the laser was turned off. Some samples were irradiated twice; during the second time, the interval was usually shorter than the first irradiation time (Table 2). The power of the beam was increased gradually from 2 – 3 W to maximum values (Table 2). Only some samples were re-melted using a higher power compared to the first irradiation (Table 2).

Table 2. Chemical analysis of the olivine used as precursor material in this work by means of X-ray fluorescence.

 

5. Results

5.1 Textures of the melted samples

5.1.1. Barred Olivine-like samples

In this work we use the texture description of olivine dendrites by Faure et al. (2003a; 2003b) who developed a model to correlate olivine morphology as a function of cooling rate and degree of undercooling. Morphology of dendrites as a function of increased undercooling parameter follows the sequence: tablet → hopper crystal (hourglass shape) → incipient dendrite (baby swallowtail crystal) → dendrite (swallowtail morphology). Lattice olivine, chain olivine and branching olivine represent different cross-sections of the same kind of dendrite fiber (Faure et al., 2003a). The growth of dendrites is the result of the propagation of small aligned hopper crystals to form the dendritic fibers; we use “bar” as a synonym for those dendritic fibers.

Crystals grew radially and bars intersected in one or more points (EX1#6, EX1#60, EX1#8, EX1#61, EX1#62, EX1#66, EX1#65, EX1#67, EX1#94; Figures 2a, 10). The parameters measured were the thickness and the separation of the olivine bars. Variations in these parameters were related to the power of the laser beam applied in their last warming-up event (Table 3, Figure 11). Samples EX1#62, EX1#6, EX1#65 and EX1#61 presented huge olivine bars with several microns of empty space in between each bar (Figures 2, 3, 4, and 5, respectively). Sample EX1 #62 presents coarse bars (250 µm) with two sets of orientation; the first set is composed of four bars almost parallel to each other; the second is composed of three bars perpendicular to the previous set. Samples EX1#6, EX1#65 and EX1#61 exhibit bars and empty spaces thinner than in EX1#62. All samples show olivine bars intercepted by each other.

We observed prismatic crystallites of olivine with well-developed faces at their endings between the bars of samples EX1#65 and EX1#61. Those bars are connected by lateral branches and chain olivine according to the dendrite morphology used by Faure et al.(2003a, b) (Figure 4 and 5, respectively). The final power of the beam supplied to melt these samples ranged between 25.8 and 15.8 W (see Table 3).

The bars of samples EX1#67, EX1#60, and EX1#8 did not have empty spaces in between (Figure 6 and 7). These bars showed different orientations. A study by SEM revealed that chain olivine morphology is common (Figure 6). The experiment EX1#8 presents thin chains of olivine. Cross sections of these samples showed dove-shape crystals and the rim of the sphere clearly differentiated from the interior of the melt (Figure 7). The final power of the beam used to irradiate samples was between 10 and 7.5 W (see Table 3).


Figure 2. View of sample EX1#62. Laser power, in the last melt was 25.8 W. a) View of the sample. b) Photomicrograph of a thin section under crossed Nicols. The width of the bars is up to 250 μm. Note the presence of empty space between each bar.

Figure 3. Photomicrographs of the sample EX1#6. Maximum laser power was 23 W. a) View of the heated sample. b) Photomicrograph of a thin section under crossed Nicols. The width of the bars is up to 115 μm, and there is an empty space between each bar.


Figure 4. Images of sample EX1#65. Maximum power was 17.82 W. a) View of the sample. b) Backscattered electron image (SEM) of the surface of the sample. Note the dendritic fibers between bars (width of the bars is up to 100 μm).


Figure 5. Images of the sample EX1#61. Maximum power was 15.8 W. a) The sample shows the presence of very thin bars. b) Backscattered electron (BSE) image showing a detail of this sample. The width of the bars is up to 50 μm, with a dendritic fibers.

 

Table 3. Textural features of the melts in accordance to the laser power arranged by bar size. The textural terms are those described in Donaldson, 1976.

 

5.1.2. Porphyritic-like samples

The samples with carbon presented a porphyritic texture (EX1#94, EX1#95; Figures 8a, b). Sample EX1#94 was irradiated twice while EX1#95 was melted only once. Crystals of olivine and pyroxene were formed when sample EX1#94 was melted down for the second time. To melt these samples the final power of the beam was 20 and 14 W, respectively (see Table 3). Remarkably, in samples EX1#94 and EX1#95 the melting occurred more rapidly in contrast with the samples without carbon, showing a barred olivine morphology. Sample EX1#95 presented a degassing of the material. A more detailed inspection through the SEM of sample EX1#94 showed a vitreous and phenocrystalline portion of the porphyritic surface. The hemisphere that was exposed during a second irradiation of the laser beam showed skeletal crystals (Figure 9). Crystals of olivine show chain-like morphology (Figure 9).

Figure 6. Images of the sample EX1#67. Maximum laser power was 8 W. a) An overview of the sample after heating. b) BSE image showing in detail the dendritic texture of the sample: bars and chains on the bars. Note the absence of empty space in between bars (up to 30 μm thick). 


Figure 7. Picture of the experiment EX1#8. Maximum laser power was 7.5 W. a) An overview of the sample after heating. b) Note the dove-shaped crystals of the sample (with olivine bars reaching up to 23 μm wide) and a well-defined edge ring. Photomicrograph taken with polarized light. c) The compositional image (EPMA) of the sample EX1#8 shows the distribution of iron. Note that the cyan edges of the dove-shape crystals of olivine are enriched in this element. The numbers in the figure refer to the name of sample in Table 4.

5.2. Chemical analyses of samples

Samples EX1#8 and EX1#94 were analyzed by means of EPMA (Table 4 and 5). The microanalyses of EX1#8 are representative of the samples with barred textures. Bars have a chemical zoning; dove-shape crystal cores are enriched in magnesium (Fo 94 mol %) whereas the edges of the dove-shape crystals are enriched in iron (Fo 82 mol %), especially near the surface of the sphere (Fo 65 mol % ). The image taken with EPMA exhibits the iron-rich zones in cyan tones, corresponding to the edges of the dove shape olivine crystals (Figure 7c).

The melt EX1#94 is representative of the porphyritic textures. Olivine and pigeonite phenocrysts were found near the surface of the sample (Figure 8a and b). Figure 9 showed phenocrysts of olivine embedded in glass for sample EX1#94. Olivine presents homogeneous composition (Fo 91 mol %) (Table 5; Figure 10). Crystals of olivine had straight edges with respect to the glass of the sample. Near the surface, olivine phenocrysts exhibited reaction bays and elongated crystals of olivine (Fo 96 mol %) interspersed with internal lamellae of pigeonite (~ En 79 mol %, Wo 6 mol %, see Table 6; Figure 10). Figure 10 shows that the edges of the crystals of olivine react with the glass. This reaction results in pigeonite lamellae and MgO %-enriched olivine. The composition of the glass is homogeneous and is enriched in iron and magnesium oxides (~ 7 and ~ 30 wt %, respectively, Table 7). The compositional image taken by EPMA shows the distribution of magnesium, with the olivine core enriched in this element (Figure 9).

Table 4 shows that the sample EX1#8 retained volatile elements (Na and K) although they are not homogeneously distributed in the sample. The dove-shape textures show a depletion of these compounds in their cores and enrichment at the edges.

 

6. Discussion

6.1. Barred olivine-like samples

There is a clear relationship between the morphology of the samples and the beam power applied. The samples melted with a beam power greater than 15 W, and developed pronounced variable (from 20 to 200 µm) empty spaces between olivine bars. There is a negative correlation between the amount of olivine bars and the decreasing power of the beam. Furthermore, there is a positive correlation between the width of the bars and the increasing laser power (see Figures 2 – 7 and 11). The samples showing narrow gaps between bars correspond to beam powers lower than 11 W. We found that the bar size is a function of the applied power of the laser beam (y = 10.337 e0.1182x, Figure 11). This corresponds to the number of crystallization nuclei that survives due to the high energy applied. Other experiments, using laser, confirmed that the cooling rates are related to the size of the crystals (Nelson et al., 1972; Blander et al., 1976), however, these results cannot be directly compared with ours because their system contains enstatite.

According to the experiments by Faure and collaborators (2003b), to form dendritic crystals similar to those obtained in this work, it is necessary that the material exceeds the liquidus temperature of the CMAS system (Calcium-Magnesium-Aluminum-Silica; Tliq = 1342 ºC) to 1400 °C with cooling rates of ~ 1890 ºC/h, these experiments lasted 24 hours. According to the olivine morphology model, Faure et al.(2003a; b) found that olivine dendrites (swallowtail morphology) are formed by a rapid growth regime. This fast crystallization is mainly influenced by the degree of undercooling with minor influence of cooling rate.

On the other hand, the model by Lofgren (1996), based on several experiments reported in the literature, suggests that the chondrules were melted at temperatures ranging from 1200 ºC to 1750 °C during a time that goes from seconds up to a few minutes. On rare occasions, when the temperature reached 1900 °C, the sample was melted after few seconds. In this study, the time required to melt the crystals of olivine was from a few seconds up to a 1 minute. Using the phase diagram by Nagahara et al. (1994) we inferred a temperature range of our experiments between 1400 ºC to less than 1900 ºC. Temperature during experiments has been measured by thermocouples (e.g. Hewins et al., 1982) and derived from theoretical arguments considering energy balance (Blander et al., 1976; Eisenhour et al., 1994). When the precursor material is coarse-grained, BO textures are formed at higher temperatures of 2100 ºC (Connolly et al., 1998). As was pointed out by Varela et al.(2006), the formation of classic type BO chondrules by melting of solid precursors requires the consideration of several aspects: (1) complete melting plus overheating that will eliminate all nuclei, (2) cooling of the system: homogeneous nucleation will take place only after some undercooling, (3) the first nucleus has to crystallize instantaneously to form one crystal for the whole droplet, giving rise to the BO chondrule.

Figure 8. Pictures taken under binocular microscope. a) Sample EX1#94 with porphyritic texture: crystals of olivine and pyroxene are surrounded by a vitreous matrix. (b) Sample EX1#95 shows a vitreous surface with small crystals in its interior. The clear zone observed in the lower part of the sphere, corresponds to a vacuole with CO2resulting from the mixture of the olivine with activated carbon.

 

Table 4. Representative olivine compositions of experimental melts.

 

Table 5. Representative chemical compositions of olivine melts obtained in the present study.

 

Figure 9. Experiment EX1#94 showing porphyritic texture; the crystalline part shows skeletal olivine embedded in glass. EPMA compositional map showing the distribution of magnesium. The crystals of olivine and pigeonite (in shades of green and yellow) have high magnesium content as compared to the vitreous matrix (in cyan tones). 

 

6.2. Porphyritic-like samples

Carbon is present in all types of chondrites. Carbonaceous chondrites have 3 to 5 wt % of carbon, the ordinary chondrites may contain 1.5 wt % or less (e.g.Kerridge, 1985), while the enstatite chondrites may comprise 0.056 to 0.5 wt % (Moore and Lewis, 1966). Carbon content is organic matter, carbonates, and minor amounts of presolar grain materials such as diamond, graphite, and silicon carbide (Gilmour, 2003). A straightforward association was observed between the distribution of organic matter and hydrous clay minerals, suggesting that the production of clays by aqueous processes influenced the distribution of organic matter in meteorites (Gilmour, 2003).

The contribution of activated charcoal with a certain content of clay in samples EX1#94 and EX1#95 was a factor that contributed to the formation of the porphyritic texture. Clay minerals contain a greater amount of SiO2, which contributed to the formation of pigeonite. However, pigeonite occurred near the surface, where the oxygen in the atmosphere was higher compared to the reducing atmosphere (Figure 9). Is the presence of clays with carbon compounds important for the formation of porphyritic chondrules? If so, the contribution of carbon and clay are important phases to be considered in the formation of porphyritic chondrules, mainly because these type of chondrules are very abundant in chondrites (ranging from 50 to 80 vol % of the total of chondrules). Thus, in future work it will be crucial to control the composition and proportion of clay as well as the carbon-based compounds. The processes of formation of chondrules were high temperature events and surely the compounds of carbon were volatilized in the spot areas where they were formed.

 

Figure 10. Backscattered electron image in a close-up of Figure 9. The points in the image are the places where chemical analyses were made with EPMA. The graphs show related variations in the content of SiO2and MgO against distance.

 

Table 6. Representative pyroxene compositions.

 

Table 7. Representative glass composition of sample EX1#94
.

 

Figure 11. X-Y diagram comparing the final power of the laser beam used to melt olivine crystals (x-axis) versus the width of the olivine bars of the experiments (y-axis). The selected photos of the samples give details of the size of the bars (e.g., sample EX1#67 is located at 8W, sample EX1# 61 at 15.8 W and sample EX1# 62 at 25.8 W).

 

7. Conclusions

From this preliminary set of experiments, we have derived the following constraints that will be further explored in our future experiments:

  • The width and amount of olivine bars are related to the energy of irradiation, i.e., the more energy used (higher temperature), the bars of olivine are fewer and wider in the sample. However, these bars are also larger and thicker. This is due to the fact that there are fewer crystallization nuclei that compete for the available matter.
  • In spite of the fact that the exact temperatures reached during the experiments could not be determined, the textures compared with those reported in the literature and suggest that the range of temperature reached during the experiments was between 1400 up to 1900 °C.
  • The textures obtained in these experiments are similar to the barred olivine, olivine and pyroxene porphyritic chondrules of ordinary chondrites.

  • The formation of porphyritic-like chondrules occurred in two samples with activated carbon contaminated with clays. These conditions promoted a reducing environment with increasing content of SiO2that favors pyroxene formation.

 

Acknowledgments

This project is possible thanks to the support of the projects of CONACYT No. 43227 and No. 128228, PhD. fellowship No. 177354 and the projects PAPIIT No. IA101312 and IA105515. The authors gratefully acknowledge the technical support provided by the group of the Laboratorio de Fotónica de Microondas headed by Dr. Oleg V. Kolokoltsev at Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAM and by the group of the Laboratory of Óptica Cuántica led by Dr. Alfred U'ren and Héctor Cruz Ramírez at Instituto de Ciencias Nucleares, UNAM. Also, we thank the Technical Academic Jose Rangel Gutiérrez at Taller Mecánico y Eléctrico at Instituto de Ciencias Nucleares, UNAM. We thank María Eugenia Varela and María del Sol Hernández-Bernal for their comments that allowed us to greatly improve the content and the presentation of the paper. We are thankful with the doctors Alejandro Heredia Barbero and Maria Colín García for the effort made to publish this special issue and for their comments to improve our paper.

 

References

Alexander, C.M.O., Grossman, J.N., Ebel, D.S., Ciesla, F.J., 2008, The Formation Conditions of Chondrules and Chondrites: Science, 320, 1617-1619, doi: 10.1126/science.1156561.

Beitz, E., Blum, J., Mathieu, R., Pack, A., Hezel, D.C., 2013, Experimental investigation of the nebular formation of chondrule rims and the formation of chondrite parent bodies: Geochimica et Cosmochimica Acta, 116, 41-51.

Bernal, J.P., Lozano-Santacruz, R., 2005, Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis: Revista Mexicana de Ciencias Geológicas, 22, 329-344.

Blander, M., Planner, H.N., Keil, K., Nelson, L.S., Richardson, N.L., 1976, The origin of chondrules: experimental investigation of metastable liquids in the system Mg 2 SiO 4-SiO 2: Geochimica et Cosmochimica Acta, 40, 889-896.

Boss, A., 1996, A concise guide to chondrule formation models, in Hewins, R., Jones, R., Scott, E. (eds.), Chondrules and the protoplanetary disk: Cambridge, UK, Cambridge University Press, 257-263.

Connolly, H.C., Hewins, R.H., 1996, Constraints on chondrule precursors from experimental data, in Hewins, R., Jones, R., Scott, E. (eds.), Chondrules and the Protoplanetary Disk: Cambridge, UK, Cambridge University Press, 129-135.

Connolly, H.C., Love, S.G., 1998, The Formation of Chondrules: Petrologic Tests of the Shock Wave Model: Science, 280, 62-67, doi: 10.1126/science.280.5360.62.

Connolly, H.C., Jr., Jones, B.D., Hewins, R.H., 1991, The Effect of Precursor Grain Size on Chondrule Textures: LPI Contributions, 766, 49.

Connolly, H.C., Jr., Jones, B.D., Hewins, R.H., 1998, The flash melting of chondrules: an experimental investigation into the melting history and physical nature of chondrule precursors: Geochimica et Cosmochimica Acta, 62, 2725-2735, doi: 10.1016/S0016-7037(98)00176-8.

Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, Å., Wielandt, D., Ivanova, M.A., 2012, The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk: Science, 338, 651-655, doi: 10.1126/science.1226919.

Desch, S., Morris, M., Connolly, H., Boss, A., 2010, The Importance of Experiments: Constraints on Chondrule Formation Models (resume), in Chondrules: Their Role in Early Solar System: New York, New York, Lunar and Planetary Science Institute 8008.

Eisenhour, D.D., Daulton, T.L., Buseck, P.R., 1994, Electromagnetic heating in the early solar nebula and the formation of chondrules: Science, 265, 1067-1070.

Faure, F., Trolliard, G., Nicollet, C., Montel, J.M., 2003a, A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling: Contributions to Mineralogy and Petrology, 145, 251-263.

Faure, F., Trolliard, G., Soulestin, B., 2003b, TEM investigation of forsterite dendrites: American Mineralogist, 88, 1241-1250.

Gilmour, I., 2003, Structural and isotopic analysis of organic matter in carbonaceous chondrites: Treatise on Geochemistry, 1, 269-290.

Hernández-Bernal, M. del S., Solé, J., 2010, Edades K-Ar y Pb-Pb de condros individuales de condritas ordinarias mexicanas como trazadores de eventos de impacto prolongadas: Revista mexicana de Ciencias Geológicas, 27, 123-133.

Hewins, R.H., 1997, Chondrules: Annual Review of Earth and Planetary Sciences, 25, 61-83.

Hewins, R.H., Fox, G.E., 2004, Chondrule textures and precursor grain size: an experimental study: Geochimica et Cosmochimica Acta, 68, 917-926.

Hewins, R.H., Connolly, H.C., Lofgren Jr, G.E., Libourel, G., 2005, Experimental Constraints on Chondrule Formation, in Chondrites and the Protoplanetary Disk, 286.

Hewins, R.H., Klein, L.C., Fasano, B.V., 1982, Conditions of formation of pyroxene excentroradial chondrules (abstract), in Lunar and Planetary Science Conference, 12th, Houston, Texas: New York and Oxford, Pergamon Press, Proceedings, Section 2. (A82-31677 15-91), 1123-1133.

Kerridge, J.F., 1985, Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples: Geochimica et Cosmochimica Acta, 49, 1707-1714.

King, E.A., 1983, Chondrules and Their Origins: Houston, Texas, Lunar and Planetary Institute, 1983, 387 p.

Lofgren, G., 1989, Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural: Geochimica et Cosmochimica Acta, 53, 461-470.

Lofgren, G., 1996, A Dynamic Crystallization Model for Chondrule Melts, in Hewins, R.H., Jones, R.H., Scott, E.R.D. (eds), Chondrules and the protoplanetary disk: Cambridge, Cambridge University Press, 187-196.

Lofgren, G., Lanier, A.B., 1988, Dynamic crystallization experiments on melts of barred olivine chondrule composition: Origin of their textural diversity: Meteoritics, 23, 285.

Moore, C.B., Lewis, C.F., 1966, The distribution of total carbon content in enstatite chondrites: Earth and Planetary Science Letters, 1, 376-378.

Morris, M.A., Desch, S.J., 2010, Thermal Histories of Chondrules in Solar Nebula Shocks: The Astrophysical Journal, 722, 1474, doi: 10.1088/0004-637X/722/2/1474.

Nagahara, H., Kushiro, I., Mysen, B.O., 1994, Evaporation of olivine: Low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula: Geochimica et Cosmochimica Acta, 58, 1951-1963.

Nelson, L.S., Blander, M., Skaggs, S.R., Keil, K., 1972, Use of a CO2laser to prepare chondrule-like spherules from supercooled molten oxide and silicate droplets: Earth and Planetary Science Letters, 14, 338-344, doi: 10.1016/0012-821X(72)90133-1.

Nimz, G.J., Cameron, K.L., Niemeyer, S., 1993, The La Olivina pyroxenite suite and the isotopic compositions of mantle basalts parental to the Mid-Cenozoic arc volcanism of northern Mexico: Journal of Geophysical Research: Solid Earth (1978–2012), 98, 6489-6509.

Rubin, A.E., 2000, Petrologic, geochemical and experimental constraints on models of chondrule formation: Earth-Science Reviews, 50, 3-27, doi: 10.1016/S0012-8252(99)00067-7.

Scott, E.R.D., 2007, Chondrites and the Protoplanetary Disk: Annual Review of Earth and Planetary Sciences, 35, 577-620, doi: 10.1146/annurev.earth.35.031306.140100.

Solé Viñas, J., 2004, Método K-Ar y U-Th-He del Instituto de Geología UNAM: Disponible en: http://www.geologia.unam.mx:8080/igl/index.php/parks/laboratorios/laboratorios-de-geoquimica/geocronologia-k-ar/639-breves-ideas-sobre-la-teoria-del-geocronometro-k-ar (consulted on November 24, 2015).

Varela, M.E., Kurat, G., Zinner, E., 2006, The primary liquid condensation model and the origin of barred olivine chondrules: Icarus, 184, 344–364, doi: 10.1016/j.icarus.2006.05.009.

Wasson, J.T., 1996, Chondrule formation: Energetics and length scales, in Hewins, R.H., Jones, R.H., Scott, E.R.D. (eds), Chondrules and the protoplanetary disk: Cambridge, Cambridge University Press, 45-54.

Yu, Y., Hewins, R.H., Wang, J., 2003, Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts: Geochimica et Cosmochimica Acta, 67, 773-786.

Zolensky, M.E., Nakamura, K., Gounelle, M., Mikouchi, T., Kasama, T., Tachikawa, O., Tonui, E., 2002, Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite: Meteoritics & Planetary Science, 37, 737-761.


 

Manuscript received: January 4, 2014
Corrected manuscript received: February 25, 2014
Manuscript accepted: March 17, 2015

 

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 377-385

http://dx.doi.org/10.18268/BSGM2015v67n3a2

Methane in the Solar System

Andrés Guzmán-Marmolejo1, Antígona Segura2,*

1 Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán. C.P. 04510, D.F., México.
2 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior C.U. Apartado Postal 70-543. Coyoacán, C. P. 04510, D.F., México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

This paper reviews the distribution of methane (CH4) in our Solar System, as well as its sources and sinks in the atmospheres of the main Solar System bodies. Methane is widely distributed in the Solar System. In general, the inner planets are methane-poor, being Earth a unique exception, whereas the outer planets have CH4-rich atmospheres. In general, the atmospheric chemistry of this compound is dominated by the solar radiation although in O2-rich atmospheres this compound participates in a reaction system that removes atmospheric CH4. In our planet most of the atmospheric CH4 is produced by lifeforms, reason why scientists have proposed that the simultaneous detection of methane signal along with oxygen (O2) or ozone (O3) signals in the atmospheric spectra of planets may be good evidence of life. Therefore, the study of this gas at planetary level is important for understanding the chemical reactions that control its abundance on the exoplanetary atmospheres and to classify possible inhabited planets.

Keywords: methane, biosignatures, Solar System.

 

Resumen

El objetivo del este trabajo es hacer una revisión sobre la distribución del metano (CH4) dentro del Sistema Solar, así como sus fuentes y sumideros en las atmósferas de sus principales cuerpos. El CH4 está ampliamente distribuido en el Sistema Solar; en general los planetas internos son pobres en este gas, con excepción de la Tierra, mientras que los planetas externos son ricos en él. La química atmosférica de este compuesto generalmente está dominada por la radiación solar, aunque en atmósferas ricas en O2, este compuesto forma parte de un sistema de reacciones que eliminan al metano atmosférico. Dado que la mayor parte de CH4 atmosférico es debido a la vida, los científicos han propuesto que su detección simultánea con oxígeno (O2) u ozono (O3) en el espectro de la atmósfera de los planetas podría ser una buena evidencia de vida. El estudio del CH4 a nivel planetario es importante para entender las reacciones que controlan su abundancia en las atmósferas de los exoplanetas y clasificar los posibles planetas habitados.

Palabras clave: metano, bioseñales, sistema solar.

 

1. Distribution of methane in the Solar System

The Solar System was formed by the gravitational collapse of a primordial gas nebula. The center of this nebula collapsed faster than its outer edge, forming the Sun at the center and a protoplanetary disc around, latter processes formed planets from the dust (Cloutier, 2007). The temperature in the inner protoplanetary disc near the Sun was high enough to evaporate volatiles like methane, which is decomposed by photolysis and it is dragged later by the solar wind. In the outer regions of the protoplanetary disc, the low temperatures allowed that ices and volatiles could be preserved. The result is CH4-poor terrestrial planets in the inner Solar System and CH4-rich big planets in the outer (Cloutier, 2007).

Methane is preserved in ices called clathrates, these solids present structures that can capture methane in their interior. They play an important role in the stabilization and dispersion of molecules in the Solar System because they are present in many kinds of environments with a wide range of pressures and temperatures (Miller, 1961; Thompson et al., 1987). Here, we review the CH4abundances in planets and small bodies of the Solar System.

 

2. Inner planets

Inner planets are the four closest planets to the Sun: Mercury, Venus, Earth, and Mars. They are small planets composed of silicates and iron. Volatiles in inner planet atmospheres as Mercury, Venus, Earth and Mars, are mainly the result of degassing from their interiors (Cloutier, 2007).

 

2.1. Mercury and Venus

Mercury has a tiny atmosphere mainly formed by He, H2, O2, Na, Ca, K and water vapor (Broadfoot et al., 1974; Potter and Morgan, 1985, 1986). Measurements with the Mercury Laser Altimeter ─MErcury Surface, Space ENvironment, GEoche-mistry, and Ranging (MESSENGER), confirmed the long held idea that Mercury contains impact-derived deposits of volatiles than may include organics (Neumann et al., 2013; Paige et al., 2013). These deposits are located in permanently shadowed zones of the north polar region where the regolith has temperatures similar to those of the icy Galilean satellites, allowing the cold-trapping of materials from comets and rich-volatile meteorites (Neumann et al., 2013). Methane is present in comets but thermal stability models do not predict its presence in cold-traps due to its higher volatility compared to water (Zhang and Paige, 2009). Gibson (1977) proposed a volatile cycle for Mercury, starting with the production of simple molecules (H2, H2O, CH4, NH3, etc.) by solar-wind ions implanted into the planet’s silicate surface. These chemical species would be outgassed and then cold-trapped in colder regions of the planet. Until now, no detection of methane has been reported for this planet.

Venus has a thick atmosphere mainly formed by CO2 (96 %) and N2 (3 %) (Niemman et al., 1980). The Pioneer spacecraft instruments detected CH4 in Venus atmosphere (1000 – 6000 ppm) and many other gases (Oyama et al., 1980). Nevertheless, measurements of CH3D/CH4 ratio of 5×10-3 caused controversy because atmospheric evolution models predicted a CH3D/CH4 ratio of 9×10-2. A plausible explanation is that the CH4 was the result of the reaction between some highly deuterated molecules in Venus atmosphere and terrestrial CH4that contaminated the instruments (Donahue and Hodges, 1993).

Based on the detection of NH3, HCl, and H2O in the Venus atmosphere, along with the fact that there is a strong possibility of electrical discharge in the atmosphere as a result of thermal convective turbulence, Otroshchenko and Surkov (1974) proposed that organic compounds could be formed in the atmosphere. Their hypothesis was experimentally tested, finding CH4and other low-mass molecules. The studies of Otroshchenko and Surkov (1974) show that presence of organic compounds in the Venus atmosphere is a strong possibility.

 

2.2. Earth

CH4 levels in the atmosphere are currently around 1.6 – 1.8 ppmv, the enhanced greenhouse effect caused by a molecule of methane is about 8 times that of a molecule of CO2 (Houghton, 2005). CH4 is homogeneously mixed in the troposphere while in the upper atmosphere the highest concentrations are at the Ecuador (http://earthobservatory.nasa.gov). CH4 levels have changed over the history of the Earth, before the emergence of life, CH4sources were geological.

The emergence of life increased the levels of CH4 in an atmosphere without free oxygen, where CH4 could have lifetimes of 5000 – 10000 years and reach concentrations of 1000 ppmv (Kasting and Siefert, 2002). Then, when oxygenic photosynthesis increased O2 levels in the atmosphere, CH4 decreased because of a set of reactions that will be described at the end of this section. Numerical models show that, today, the thermodynamic equilibrium value for CH4 is > 10-35, in volume fraction, however its abundance is approximately 1.7×10-6 (Sagan et al., 1993). CH4 is almost totally produced by biological sources and the abiotic sources represent less than 10 % (Levine et al., 2010). The pristine ice cores store a record of CH4 concentrations of thousands of years. Analysis of these cores show that CH4 abundances ranged from 0.35 ppmv to 0.8 ppmv corresponding to glacial and interglacial periods (e.g., Legrand et al., 1988; Chappellaz et al., 1990; Raynaud et al., 1993; Brook et al., 1996; Petit et al., 1999; Spahni et al., 2005; Loulergue et al., 2008). CH4 has increased its atmospheric concentration since pre-industrial time to be relatively constant around 1.7 ppmv (Dlugokencky et al., 2003). Recently, CH4 is calling the attention of scientists studying climate change due to its capability as greenhouse gas. Today near to 50 % of CH4 global emissions are produced by human activity (mining, industry, farming, and ranching) causing an imbalance between their sources and sinks of 30 Tg year-1, approximately, contributing from 4 % to 9 % of greenhouse effect (Lelieveld et al., 1998; Wuebbles and Hayhoe, 2002; Houghton, 2005).

It is estimated that all CH4 sources produce 600 Tg yr-1, approximately. There are no chemical reactions forming CH4 in atmospheres such as Earth (Levine et al., 1985). Here, almost all CH4 is produced by methanogen microorganisms. Methanogens can form CH4 by two ways: 1) using CO2 in the reaction CO2 + 4H2 → CH4 + 2H2O (Thauer, 1998) or, 2) using organic molecules as electron terminal acceptors, for example acetic acid, methanol, or methylamine, in the reaction CH3COOH → CH4 + CO2 (Fukuzaki et al., 1990). Table 1 summarizes the CH4sources. The major biological sources of methane are wetlands, followed by digestion of animals such as ruminants and decomposition of biomass. An important source, linked to human activity, is the production of energy. Other minor sources are the animal activity such as arthropods and decomposition of sediments and bacterial activity in marine environments. While the only known abiotic source is the serpentinization process and contributes with 3 % of methane emissions.

Serpentinization takes place in hydrothermal systems similar to the Lost City, located in the middle of Atlantic Ocean. In these sites, it is commonly said that CH4 is formed by serpentinization but in fact, CH4 is byproduct of a Fischer–Tropsch type reaction after to serpentinization process. In the Fischer–Tropsch reaction, CO2 is reduced by H2 forming CH4: CO2 + 4H2→ CH4 + 2H2O. This reaction needs metal catalysts such as Fe, Co, and Ni, and temperatures and pressures in the range of 200 ºC to 350 ºC and 20 bars to 30 bars (Schulz, 1999). The H2 used in the Fischer–Tropsch reaction is a product of serpentinization. In serpentinization, hydrolysis of olivine minerals ((Mg,Fe)2SiO4) form serpentine (Mg3Si2O5(OH)4), brucite (Mg(OH)2), magnetite (Fe3O4), and H2:

3Fe2SiO4 + 2H2O → 3SiO2 + 2Fe3O4 + 2H2(ac)

3Mg2SiO4 + SiO2 + 4H2O → 2Mg3Si2O5(OH)4

2Mg2SiO4 + 3H2O → Mg3Si2O5(OH)4 + Mg(OH)2

Serpentinization reactions are possible from 1 bar to 5 kbars, temperatures from 0 ºC to 500 ºC, and Fe2+ abundances from 1% to 50% (Oze and Sharma, 2005).

In contrast to the numerous CH4 sources, there are only three sinks. Table 2 summarizes the sinks of CH4. The major of those occur in the troposphere where the reaction of oxidation of CH4 by hydroxyl radical (OH) leads mainly formaldehyde (CH2O); such reaction is responsible for removing almost 90 % of atmospheric CH4. OH radical is byproduct in photolysis of O3 by UV-B radiation (Rohrer y Berresheim, 2006). OH radical rapidly reacts with CH4removing it from the atmosphere:

O2 + hv(180 - 240 nm) → O + O

O2 + O → O3

O3 + hv (200 - 300 nm) → O(1D) + O2

O(1D) + H2O → 2OH

CH4 + OH → CH3 + H2O

Where hv is the energy of a photon with frequency v and h is the Panck constant. The remaining CH4 is removed trough soil oxidation, and transport to the stratosphere (Wuebbless and Hayhoe, 2002; Houweling et al., 2006; Anderson et al., 2010). After being produced, either by biological activity or serpentinization, methane may be stored in clathrates. Gas hydrates belong to a general class of inclusion compounds commonly known as clathrates. Clathrates owe their existence to the ability of H2O molecules to assemble via hydrogen bonding and form polyhedral cavities. Molecules like methane or carbon dioxide are of an appropriate size such that they fit within cavities formed by the host material (e.g., Kvenvolden, 1993). Methane hydrates are particularly important (Mahajan et al., 2007). Within clathrates there are no chemical bond involved between the water molecules and the gas molecules other than Van der Waals forces, but the presence of guest molecules inside the ice crystals makes the structure more stable. In fact, the guest molecules stabilize the structure enough for raising the melting point of the ice to several degrees above 0 °C (Miller, 1961). There are two different reservoirs for clathrates. They can be found both within and under permafrost in arctic regions and also within a few hundred meters of the seafloor on continental slopes and in deep seas and lakes (Hester and Brewer, 2008).The permafrost is soil, sediment, or rock that is continuously frozen (temperature < 0 °C) for at least two consecutive years (Anderson et al., 2010). Permafrost is the largest CH4 reservoir in Earth. Estimates of the global inventory of methane clathrate may be 3×1018 g of carbon (Buffett and Archer, 2004). Permafrost acts as an impermeable lid, preventing CH4 escape through the seabed. Moreover, sub-sea permafrost is potentially more vulnerable to thawing than terrestrial permafrost. A consequence of climate warming is the partial thawing and failure of sub-sea permafrost and thus an increased permeability for gases. Shakhova et al. (2010a) estimate the total amount of carbon preserved within permafrost, only in the East Siberian Arctic Shelf (ESAS), to be ~1.4×1015 g. Shakhova et al. (2010b) estimated the annual outgassing from the shallow ESAS of 7.98 Tg CH4. This amount is of the same magnitude as existing estimates of total methane emissions from the entire world ocean (e.g., Anderson et al., 2010).

Because methane is also a greenhouse gas, release of even a small percentage of total deposits could have a serious effect on Earth’s atmosphere. A conservative estimate by Boswell and Collett (2011) for the global gas hydrate inventory is ~1.8×1015 g C, corresponding to a CH4 volume of ~3.0×1015 m3 if CH4 density is considered to be 0.717 kg m-3. In the unlikely event that 0.1 % (1.8 Tg C) of this CH4 were instantaneously released to the atmosphere, CH4concentrations would increase to ~2900 ppb from the 2005 value of ~1774 ppb (IPCC, 2007).

Table 1. CH4 sources on Earth.

 

Table 2. CH4 sinks on Earth.

Sinks reported by (a) Houweling et al., 2006, (b) Anderson et al., 2010, (c) Wuebbless and Hayhoe, 2002.
Sources reported by (a) Houweling et al., 2006, (b) Anderson et al., 2010.

 

2.3. Mars

Mars is an especial case. Thermodynamic calculations predict CH4 should not exist in its atmosphere (Levine et al., 2010), however a CH4 signal was discovered by Krasnopolsky et al. (1997) using the Fourier Transform Spectrometer of the Kitt Peak National Observatory (Arizona, USA). The authors estimated 0.07 ppm of atmospheric CH4. Later, in 2004, two groups (Krasnopolsky et al., 2004; Formisano et al., 2004) reported abundances of 0.01 ppm using the instruments on board of the Mars Express. Zahnle et al. (2011) doubt the detection of CH4 in Mars, arguing that CH4 abundances estimated by Krasnopolsky et al. (2004) and Formisano et al. (2004) were supported on tenuous signals slightly distinguishable from the noise, however Mumma et al. (2009) reported a clear signal of CH4 and his calculations confirm CH4abundances of 0.01 ppm.

In 2010, Fonti and Marzo made distribution map of methane on the Martian surface. They identify three localized sources on the Martian surface, related to probable underground water reservoirs. Their analyses suggest that CH4abundances vary throughout seasonal cycles.

There are some hypotheses about the sources and sinks of CH4 in Mars. For example, Krasnopolsky et al. (2004) considered that degassing from the interior of the planet is unlikely due to the lack of geologic activity. Bar-Nun and Dimitrov (2007) proposed that photolysis of H2O in the presence of CO can generate CH4, however Krasnopolsky (2007) argues that it is not possible due to the kinetic chemistry of Mars. Serpentinization has also been proposed (e.g. Oze and Sharma, 2005; Lyons et al., 2005; Szponar et al., 2013; Etiope et al., 2013), this hypothesis is supported by the spatial correlation of underground water reservoirs and volcanoes where serpentinization may be possible. The origin of CH4 on Mars is still not clear, some authors have proposed biogenic sources such as methanogenesis via metabolic pathways (e.g. Weiss et al., 2000; Chapelle et al., 2002; Jakosky et al., 2003; Varnes et al., 2003; Buford, 2010). CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by its sources (Krasnopolsky et al., 2004). It was thought that the main sink of CH4 was its direct photolysis around 80 km from the surface. Other sink is the reaction between CH4 and Martian soil, but theoretical studies calculate the collision probability between CH4 y O of 2×10-11. Therefore, this reaction is negligible versus its direct photolysis (Krasnopolsky et al., 2004).

 

3. Outer planets (Jupiter, Saturn, Uranus and Neptune)

3.1. Jupiter and Saturn

They are giant planets with atmospheres mainly constituted by H2 (> 80 %) and He as the second more important constituent. Their composition and chemistry are relatively similar in those planets. Jupiter is the largest planet in the Solar System with 318 M. Methane is the most abundant species in the upper Jovian troposphere after hydrogen and helium, accounting for approximately 0.2 % of the molecular abundance (Taylor et al., 2005). Different calculations estimate that CH4/H2 ratio is from 1.9×10-3 to 2.3×10-3 (Hanel et al., 1979; Gautier et al., 1982; Wong et al., 2004). Methane does not condense at the temperatures found on Jupiter, and is chemically stable except in the upper atmosphere (P < 1 mbar), where it is dissociated by solar ultraviolet radiation. Higher hydrocarbons are produced from methane by photochemical processes in the upper atmosphere of Jupiter (Taylor et al., 2005). Photolysis of CH4 is the only sink (Moses et al., 2000), but it is not an effective way to destroy it in the Jupiter’s atmosphere because the large excess of H2 that suggests that radicals like CH3, byproducts of the CH4 photolysis, react with the H radical reforming CH4 (McNesby, 1969). Saturn is the second largest planet in our solar system. Observations from the Cassini spacecraft suggest mole fractions of CH4 of 4.7×10-3 (Fletcher et al., 2009). The chemistry of CH4in Saturn is similar to Jupiter.

 

3.2. Uranus and Neptune

The only known photochemically active volatile in the atmosphere of Uranus is methane. From observations of the Ultraviolet Spectrometer in the Voyager spacecraft, the calculated abundance for CH4 is 10-4 near 0.1 mbar. Other species normally present in the atmospheres of Jupiter and Saturn are not likely to be gaseous in the photolytic regime of the upper troposphere and stratosphere of Uranus due to the low tropopause temperature (Atreya et al., 1991). The stratospheric CH4 is photolyzed forming acetylene, methyl-acetylene, ethane, and ethylene (Orton et al., 1987; Bézard et al., 1991; Schulz et al., 1999; Meadows et al., 2008). However, CH4 photolysis is relatively inefficient on Uranus. Only 10 to 15 % of CH4 molecules, which absorb ultraviolet photons, produce higher hydrocarbons resulting in a loss rate of 6×106 CH4 molecules cm-2 s-1 at the equator. For comparison, the loss rate on Jupiter is 30 % (Atreya et al., 1991).

In Neptune, the mixing ratios of methane suggested by photochemical models is ~2 % at pressures > 0.1 bars (e.g., Baines et al., 1995), but there is evidence from remote observations that its abundance may be up to 4 % at P > 3.3 bars (Karkoschka and Tomasko, 2011). At lower pressures, methane is not homogenously distributed at all latitudes. The expected mixing ratio at the mean temperature of Neptune’s tropopause (~52 K) is ~5×10-5 but values of (1.5 ± 0.2)×10-3 have been derived from Herschel-PACS observations (Lellouch et al., 2010). This is consistent with the hypothesis that CH4 leaking through the warm south polar tropopause (62 – 66 K) is globally redistributed by stratospheric motion (Fletcher et al., 2010). Voyager 2 observed Neptune’s atmosphere. Their images show that Neptune contains clouds of methane ice (Smith et al., 1989). Similar to Uranus, CH4 is photolyzed in the stratosphere, producing hydrocarbons like acetylene and ethane (Romani and Atreya, 1989; Romani et al., 1993).

 

4. Methane in small bodies

4.1. Pluto

Pluto’s atmosphere is the result of the sublimation of superficial ices, in consequence, it is expected that the atmosphere is in vapor-pressure equilibrium with the surface (e.g., Young et al., 1997). Owen et al. (1993) estimated that the surface contains 1.5 % of solid CH4. Later, Young et al. (1997) detected gaseous methane in Pluto for the first time, calculating a partial pressure of 0.072 µbar. In 2008 and 2012 this body was observed using the CRIRES instrument in the Very Large Telescope (VLT) to constrain the spatial and vertical distribution of methane in Pluto’s atmosphere (Lellouch et al., 2015). From these observations, the calculated methane-mixing ratio is 0.44 % with negligible longitudinal variations. Because Pluto has not yet been observed with any spacecraft, all its parameters have been inferred using instruments on the ground. In 2015, the mission New Horizons will be able to characterize the surface and atmosphere of Pluto and its satellite, Charon.

 

4.2. Triton

The Voyager 2 spacecraft observed Triton (Neptune's largest moon) in 1989 and it has been later studied using instruments on Earth’s surface and the Hubble Space Telescope (Buratti et al., 2011 and references therein). Similar to Pluto, its atmosphere is the result of the sublimation of the more volatile ices on its surface. The surface of Triton contains approximately 0.05 % CH4 in ices (Tyler et al., 1989; Cruikshank et al., 1993) and its atmospheric mixing ratio was calculated to be 10-4 from the Voyager observations (Tyler et al., 1989) and confirmed by the VLT/CRIRES instrument (Lellouch et al., 2011).

 

4.3. Titan

Titan is the largest moon of Saturn. Its bulk composition has nearly equal mass fractions of silicates and ices (Grasset et al., 2000). Titan’s atmosphere is mainly composed by N2, with 5 % of CH4 near to surface (Tobie et al., 2006). Methane was likely to be present in the materials that built Titan and is possible that cometary impacts were a significant source in the far past (e.g. Tobie et al., 2006; Mousis et al., 2009). Present abundances of CH4 have not been possible to explain, because it is photochemically active in the atmosphere and requires a constant replenishment over geologic time scales (Davies et al., 2013). Liquid filled basins in the polar regions of Titan (Stofan et al., 2007; Turtle et al., 2009) composed by methane mixed with ethane (Brown et al., 2008) and a number of other organic species (Cordier et al., 2010) were identified using Cassini spacecraft observations.

In 2005, the Huygens spacecraft descended to the surface of Titan measuring in situ the CH4 mole fraction when it descended. Huygens found that the CH4 mole fraction is relatively constant in the stratosphere; it increases between 32 and 8 km, and remains constant near the surface (Atreya et al., 2006). Titan has pressures and temperatures near to the methane triple-point, for this reason the CH4 can evaporate from the surface to atmosphere, where it can condense and rain, forming a CH4cycle similar to water on Earth (Roe, 2009; Lunine, 2012).

Mathematical models based on the Voyager’s measurements suggest that the lifetime of CH4 is from 10 to 100 millions of years (e.g. Yung et al., 1984; Lara et al., 1996; Lebonnois et al., 2001; Wilson and Atreya, 2004). In the stratosphere CH4 is photolized to CH3, CH2 or CH, forming ethane, propane, and benzene (Strobel, 1974). There are not reactions to generate CH4 in the Titan's atmosphere, so it is proposed that CH4 may come from clathrates formed in the subnebula that originated the satellite (Mousis et al., 2002, Davies et al., 2013). Other authors proposed the activity of bacteria as a likely CH4 source (e.g. McKay and Smith, 2005; Schulze-Makuch and Grinspoon, 2005), nevertheless there is not evidence about it (Atreya et al., 2006). Another possibility is the serpentinization (Niemann et al., 2005) but according to Mousis et al. (2009) this source of methane is not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere.

 

4.4. Comets

These icy bodies have been studied with flyby missions and ground infrared and radio observations. Methane is a primary volatile in comets, this means that it is stored as ice in the cometary nucleus and released as gas into the coma. This compound has been detected in eleven comets and its abundance relative to water ranges from ~0.4 % to 2 % (Allen et al., 1988; Drapatz et al., 1987; Mumma et al., 1996; Bockelée-Morvan et al., 2000; Gibb et al., 2003; Mumma and Charnley, 2011).

 

5. Final comments

The study of methane is relevant to understand the process of synthesis and distribution of organic molecules during the formation of the Solar System. On potentially habitable planets around other stars its presence maybe the result of geological or biological activity. The bodies of our Solar System, especially Earth, serve as benchmarks for understanding the origin, sources and reservoirs of this compound to identify possible inhabitable worlds around other stars.

 

Acknowledgements

We acknowledge the support of the project PAPIIT IN119709-3.

 

References

Allen, M., Delitsky, M., Huntress, W., Yung, Y., Ip, W.H., 1988, Evidence for methane and ammonia in the coma of comet P/Halley: Astronomy and Astrophysics, 187, 502–512.

Anderson, B., Bartlett, K., Frolking, S., Hayhoe, K., Jenkins, J., Salas, W., 2010, Methane and Nitrous Oxide Emissions from Natural Sources: Washington, D.C., United States Environmental Protection Agency (EPA), EPA 430-R-10-001, 194 p.

Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006, Titan's methane cycle: Planetary and Space Science, 54, 1177–1187.

Atreya, S.K., Sandel, B.R., Romani, P.N., 1991, Photochemistry and Vertical Mixing, in Bergstralh, J. (Ed.), Uranus, University of Arizona Press, Tucson, Arizona, 110–146.

Baines, K.H., Mickelson, M.E., Larson, L.E., Ferguson, D.W., 1995, The abundances of methane and ortho/para hydrogen on Uranus and Neptune: Implications of New Laboratory 4-0 H2quadrupole line parameters: Icarus, 114, 328–340.

Bar-Nun, A., Dimitrov, V., 2007, Methane on Mars: A product of H2O photolysis in the presence of CO: Icarus, 188, 543–545.

Bézard, B., Romani, P.N., Conrath, B.J., Maguire, W.C., 1991, Hydrocarbons in Neptune's stratosphere from Voyager infrared observations: Journal of Geophysical Research, 96, 18961–18975.

Bockelée-Morvan, D., Lis, D.C., Wink, J.E., Despois, D., Crovisier, J., Bachiller, R., Benford, D. J., Biver, N., Colom, P., Davies, J. K., Gérard, E., Germain, B., Houde, M., Mehringer, D., Moreno, R., Paubert, G., Phillips, T. G., Rauer, H, 2000, New molecules found in comet C/1995 O1 (Hale-Bopp), Investigating the link between cometary and interstellar material: Astronomy and Astrophysics, 353, 1101–1114.

Boswell, R., Collett, T.S., 2011, Current perspectives on gas hydrate resources: Energy and Environmental Science, 4, 1206–1215.

Broadfoot, A.L., Kumar, S., Belton, M.J.S., McElroy, M.B., 1974, Mercury's Atmosphere from Mariner 10: Preliminary Results: Science, 185, 166–169.

Brook, E., Sowers, T., Orchardo, J., 1996, Rapid variations in atmospheric methane concentration during the past 110000 years: Science, 273, 1087–1091.

Brown, R.H., Soderblom, L.A., Soderblom, J.M., Clark, R.N., Jaumann, R., Barnes, J.W., Sotin, C., Buratti, B., Baines, K.H., Nicholson, P.D., 2008, The identification of liquid ethane in Titan's Ontario Lacus: Nature, 454, 607–610.

Buffett, B., Archer, D., 2004, Global inventory of methane clathrate: sensitivity to changes in the deep ocean: Earth and Planetary Science Letters 227, 185–199.

Buford, P.P, 2010, Microbial life in Martian ice: A biotic origin of methane on Mars?: Planetary and Space Science, 58, 1199–1206.

Buratti, B.J., Bauer, J.M., Hicks, M.D., Hillier, J.K., Verbiscer, A., Hammel, H., Schmidt, B., Cobb, B., Herbert, B., Garsky, M., Ward, J., Foust, J., 2011, Photometry of Triton 1992–2004: Surface volatile transport and discovery of a remarkable opposition surge: Icarus, 212, 835–846.

Chapelle, F.H., O'Neill, K., Bradley, P.M., Methé, B.A., Ciufo, S.A., Knobel, L.L., Lovley, D.R., 2002, A hydrogen-based subsurface microbial community dominated by methanogens: Nature, 415, 312–315.

Chappellaz, J., Barnola, J., Raynaud, D., Korotkevich, Y., Lorius, C., 1990, Ice-core record of atmospheric methane over the past 160000 years: Nature, 345, 127–131.

Cloutier, P.A., 2007, Comparative planetology: History of water in the inner solar system: The Leading Edge, 26, 1308–1311.

Cordier, D., Mousis, O., Lunine, J.I., Lebonnois, S., Lavvas, P., Lobo, L.Q., Ferreira, A.G.M., 2010, About the Possible Role of Hydrocarbon Lakes in the Origin of Titan's Noble Gas Atmospheric Depletion: The Astrophysical Journal Letters, 721, L117–L120.

Cruikshank, D.P., Roush, T.L., Owen, T.C., Geballe, T.R., de Bergh, C., Schmitt, B., Brown, R. H., Bartholomew, M.J., 1993, Ices on the Surface of Triton: Science, 261, 742–745.

Davies, A.G., Sotin, C., Choukroun, M., Matson, D.L., Johnson, T.V., 2013, Methane Clathrate Destabilisation by Heat from Lava Flows: Implications for Supplying Titan's Atmospheric Methane in 44th Lunar and Planetary Science Conference: The Woodlands, Texas, LPI Contribution No. 1719, 1681 p.

Dlugokencky, E.J., Houweling, S., Bruhwiler, L., Masarie, K.A., Lang, P.M., Miller, J.B., Tans, P. P., 2003, Atmospheric methane levels off: Temporary pause or a new steady-state?: Geophysical Research Letters, 30, 1992, doi:10.1029/2003GL018126.

Donahue, T.M., Hodges, R.R., 1993, Venus methane and water: Geophysical Research Letters, 20, 591–594.

Drapatz, S., Larson, H.P., Davis, D.S., 1987, Search for Methane in Comet Halley: Astronomy and Astrophysics, 187, 497–501.

Etiope, G., Ehlmann, B.L., Schoell, M., 2013, Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars: Icarus, 224, 276–285.

Fletcher, L.N., Drossart, P., Burgdorf, M., Orton, G.S., Encrenaz, T., 2010, Neptune's atmospheric composition from AKARI infrared spectroscopy: Astronomy and Astrophysics, 514, A17, doi: 10.1051/0004-6361/200913358.

Fletcher, L.N., Orton, G.S., Teanby, N.A., Irwin, P.G.J., Bjoraker, G.L., 2009, Methane and its isotopologues on Saturn from Cassini/CIRS observations: Icarus, 199, 351–367.

Fonti, S., Marzo, G.A., 2010, Mapping the methane on Mars: Astronomy and Astrophysics, 512, A51, doi: 10.1051/0004-6361/200913178.

Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., 2004, Detection of Methane in the Atmosphere of Mars: Science, 306, 1758–1761.

Fukuzaki, S., Nishio, N., Nagai, S., 1990, Kinetics of the methanogenic fermentation of acetate: Applied and Environmental Microbiology, 56 (10), 3158–3163.

Gautier, D., Bezard, B., Marten, A., Baluteau, J.P., Scott, N., Chedin, A., Kunde, V., Hanel, R., 1982, The C/H ratio in Jupiter from the Voyager infrared investigation: Astrophysical Journal, 257, 901–912.

Gibb, E.L., Mumma, M.J., dello Russo, N., DiSanti, M.A., Magee-Sauer, K., 2003, Methane in Oort cloud comets: Icarus, 165, 391–406.

Gibson, E.K. Jr., 1977, Production of simple molecules on the surface of Mercury: Physics of the Earth and Planetary Interiors, 15, 303–312.

Grasset, O., Sotin, C., Deschamps, F., 2000, On the internal structure and dynamics of Titan: Planetary and Space Science, 48, 617–636.

Hanel, R., Conrath, B., Flasar, M., Kunde, V., Lowman, P., Maguire, W., Pearl, J., Pirraglia, J., Samuelson, R., Gautier, D., Gierasch, P., Kumar, S., Ponnamperuma, C., 1979, Infrared observations of the Jovian system from Voyager 1: Science, 204, 972–976.

Hester, K.C., Brewer, P.G., 2008, Clathrate Hydrates in Nature: The Annual Review of Marine Science, 1, 303–327.

Houghton, J., 2005, Global warming: Reports on Progress in Physics, 68, 1343–1403.

Houweling, S., Röckmann, T., Aben, I., Keppler, F., Krol, M., Meirink, J.F., Dlugokencky, E.J., Frankenberg, C., 2006, Atmospheric constraints on global emissions of methane from plants: Geophysical Research Letters, 33, L15821, doi:10.1029/2006GL026162.

Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Change 2007: The Physical Science Basis: New York, NY, Cambridge University Press, 1009 p.

Jakosky, B.M., Nealson, K.H., Bakermans, C., Ley, R.E., Mellon, M.T., 2003, Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions: Astrobiology, 3, 343–350.

Karkoschka, E., Tomasko, M.G., 2011, The haze and methane distributions on Neptune from HST–STIS spectroscopy: Icarus, 211, 780–797.

Kasting, J.F., Siefert, J.L., 2002, Life and the evolution of Earth’s atmosphere: Science, 296, 1066–1068.

Krasnopolsky, V.A., 2007, Comment on “Methane on Mars: A product of H2O photolysis in the presence of CO” by A. Bar-Nun and V. Dimitrov: Icarus, 188, 540–542.

Krasnopolsky, V.A., Bjoraker, G.L., Mumma, M.J., Jennings, D.E., 1997, High-resolution spectroscopy of Mars at 3.7 and 8 μm: a sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO: Journal of Geophysical Research, 102, 6525–6534.

Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004, Detection of methane in the Martian atmosphere: evidence for life? Icarus, 172, 537–547.

Kvenvolden, K.A., 1993, Gas hydrates-geological perspective and global change: Reviews of Geophysics, 31, 173–188.

Lara, L.M., Lellouch, E., Lopez-Moreno, J., Rodrigo, R., 1996, Vertical distribution of Titan’s atmospheric neutral constituents: Journal of Geophysical Research, 101, 23261–23283.

Lebonnois, S., Toublanc, D., Hourdin, F., Rannou, P., 2001, Seasonal variations of Titan’s atmospheric composition: Icarus 152, 384–406.

Legrand, M., Lorius, C., Barkov, N., Petrov, V., 1988, Vostok Ant-arctic ice core: atmospheric chemistry changes over the last climatic cycle (160000 years): Atmospheric Environment, 22, 317–331.

Lelieveld, J., Crutzen, P.J., Dentener, F.J., 1998, Changing concentration, lifetimes and climate forcing of atmospheric methane: Tellus B, 50, 128–150.

Lellouch, E., de Bergh, C., Sicardy, B., Forget, F., Vangvichith, M., Käufl, H.-U., 2015, Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere: Icarus, 246, 268–278.

Lellouch, E., de Bergh, C., Sicardy, B., Käufl, H.-U., Smette, A., 2011, The Tenuous Atmospheres of Pluto and Triton Explored by CRIRES on the VLT: The Messenger, 145, 20–23.

Lellouch, E., Hartogh, P., Feuchtgruber, H., Vandenbussche, B., de Graauw, T., Moreno, R., Jarchow, C., Cavalié, T., Orton, G., Banaszkiewicz, M., Blecka, M.I., Bockelée-Morvan, D., Crovisier, J., Encrenaz, T., Fulton, T., Küppers, M., Lara, L.M., Lis, D.C., Medvedev, A.S., Rengel, M., Sagawa, H., Swinyard, B., Szutowicz, S., Bensch, F., Bergin, E., Billebaud, F., Biver, N., Blake, G.A., Blommaert, J.A.D.L., Cernicharo, J., Courtin, R., Davis, G.R., Decin, L., Encrenaz, P., Gonzalez, A., Jehin, E., Kidger, M., Naylor, D., Portyankina, G., Schieder, R., Sidher, S., Thomas, N., de Val-Borro, M., Verdugo, E., Waelkens, C., Walker, H., Aarts, H., Comito, C., Kawamura, J.H., Maestrini, A., Peacocke, T., Teipen, R., Tils, T., Wildeman, K., 2010, First results of Herschel-PACS observations of Neptune: Astronomy and Astrophysics, 518, L152, doi: 10.1051/0004-6361/201014600.

Levine, J.S., Rinsland, C.P., Tennille, G.M., 1985, The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985: Nature, 318, 254–257.

Levine, J.S., Summers, M.E., Ewell, M., 2010, Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations. Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, Contribution No. 1538, 5267 p.

Loulergue, L., Schilt, A., Spahni, R., Masson-Del-Motte, V., Blunier, T., Lemieux, B., Barnola, J. M., Raynaud, D., Stocker, T., Chappellaz, J., 2008, Orbital and millennial-scale features of atmospheric CH4over the past 800000 years: Nature, 453, 383–386.

Lunine, J.I., 2012, The hydrologic cycle on Saturn's moon, Titan: Memorie della Societa Astronomica Italiana Supplement, 19, 75–80.

Lyons, J.R., Manning, C., Nimmo, F., 2005, Formation of methane on Mars by fluid-rock interaction in the crust: Geophysical Research Letters, 32, L13201, doi: 10.1029/2004GL022161.

Mahajan, D., Taylor, C.E., Mansoori, G.A., 2007, An introduction to natural gas hydrate/clathrate: The major organic carbon reserve of the Earth: Journal of Petroleum Science and Engineering, 56, 1–8.

McKay, C.P., Smith, H.D., 2005, Possibilities for methanogenic life in liquid methane on the surface of Titan: Icarus 178, 274–276.

McNesby, J.R., 1969, The photochemistry of Jupiter above 1000 Å: Journal of the Atmospheric Sciences, 26, 594–599.

Meadows, V., Orton, G., Liang, M.C., Yung, Y., van Cleve, J., Burgdorf, M., Crisp, D., Houck, J., 2008, First Spitzer observations of Neptune: Detection of new hydrocarbons: Icarus, 197, 585–589.

Miller, S.L., 1961, The occurrence of gas hydrates in the Solar System: Proceedings of the National Academy of Sciences, 47, 1798–1808.

Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M., 2000, Photochemistry of Saturn's Atmosphere. I. Hydrocarbon Chemistry and Comparisons with ISO Observations: Icarus, 143, 244–298.

Mousis, O., Gautier, D., Bockelee-Morvan, D., 2002, Turbulent model of the Saturn subnebula: implications for the origin of methane in Titan’s atmosphere: Icarus, 156, 162–175.

Mousis, O., Lunine, J.I.; Pasek, M., Cordier, D., Waite, J.H., Mandt, K.E.; Lewis, W.S., Nguyen, M.-J., 2009, A primordial origin for the atmospheric methane of Saturn’s moon Titan: Icarus, 204, 749–751.

Mumma, M.J., Charnley, S.B., 2011, The chemical composition of comets—Emerging taxonomies and natal heritage: Astronomy and Astrophysics, 49 (1), 471–524.

Mumma, M.J., Disanti, M.A., dello Russo, N., Fomenkova, M., Magee-Sauer, K., Kaminski, C.D., Xie, D.X., 1996, Detection of Abundant Ethane and Methane, Along with Carbon Monoxide and Water, in Comet C/1996 B2 Hyakutake: Evidence for Interstellar Origin, Science, 272, 1310–1314.

Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M., Smith, M.D., 2009, Strong Release of Methane on Mars in Norhtern Summer 2003: Science, 323, 1041–1045.

Neumann, G.A., Cavanaugh, J.F., Sun, X., Mazarico, E.M., Smith, D.E., Zuber, M.T., Mao, D., Paige, D.A., Solomon, S.C., Ernst, C.M., Barnouin, O.S., 2013, Bright and Dark Polar Deposits on Mercury: Evidence for Surface Volatiles: Science, 339, 296–300.

Niemann, H.B., Kasprzak, W.T., Hedin, A.E., Hunten, D.M., Spencer, N.W., 1980, Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus: Journal of Geophysical Research: Space Physics, 85 (A13), 7817–7827.

Niemann, H.B., Atreya, S.K., Bauer, S.J., Carignan, G.R., Demick, J.E., Frost, R.L., Gautier, D., Haberman, J.A., Harpold, D.N., Hunten, D.M., Israel, G., Lunine, J.I., Kasprzak, W.T., Owen, T.C., Paulkovich, M., Raulin, F., Raaen, E., Way, S.H., 2005, The abundances of constituents of Titan’s atmosphere from the GCMS on the Huygens probe: Nature, 438, 779–784.

Orton, G.S., Aitken, D.K., Smith, C., Roche, P.F., Caldwell, J., Snyder, R., 1987, The spectra of Uranus and Neptune at 8-14 and 17-23 microns: Icarus, 70, 1–12.

Otroshchenko, V.A., Surkov, Y.A., 1974, The possibility of organic molecule formation in the Venus atmosphere: Origins of Life, 5, 487–490.

Owen, T.C., Roush, T.L., Cruikshank, D.P., Elliot, J.L., Young, L.A., de Bergh, C., Schmitt, B., Geballe, T.R., Brown, R.H., Bartholomew, M.J., 1993, Surface ices and the atmospheric composition of Pluto: Science, 261, 745–748.

Oyama, V.I., Carle, G.C., Woeller, F., Pollack, J.B., Reynolds, R.T., Craig, R.A., 1980, Pioneer Venus Gas Chromatography of the Lower Atmosphere of Venus: Journal of Geophysical Research, 85, 7891–7902.

Oze, C., Sharma, M., 2005, Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars: Geophysical Research Letters, 32, L10203, doi: 10.1029/2005GL022691.

Paige, D.A., Siegler, M.A., Harmon, J.K., Neumann, G.A., Mazarico, E.M., Smith, D.E., Zuber, M.T., Harju, E., Delitsky, M.L., Solomon, S.C., 2013, Thermal Stability of Volatiles in the North Polar Region of Mercury: Science, 339, 300–303.

Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Del-Motte, M., Kotlyakov, V., Legrand, M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999, Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica: Nature, 399, 429–436.

Potter, A., Morgan, T., 1985, Discovery of sodium in the atmosphere of Mercury: Science, 229, 651–653.

Potter, A., Morgan, T., 1986, Potassium in the atmosphere of Mercury: Icarus, 67, 336–340.

Raynaud, D., Jouzel, J., Barnola, J., Chapellaz, J., Delmas, R., Lorius, C., 1993, The ice record of greenhouse gases: Science, 259, 926–934.

Roe, H.G., 2009, Titan's Methane Weather: Annual Review of Earth and Planetary Sciences, 40, 355–382.

Rohrer, F., Berresheim, H., 2006, Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation: Nature, 442, 184–187.

Romani, P.N., Atreya, S.K., 1989, Stratospheric aerosols from CH4 photochemistry on Neptune: Geophysical Research Letters, 16, 941–944.

Romani, P.N., Bishop, J., Bezard, B., Atreya, S., 1993, Methane photochemistry on Neptune - Ethane and acetylene mixing ratios and haze production: Icarus, 106, 442–463.

Sagan, C., Thompson, W.R., Carlson, R., Gurnett, D., Hord, C., 1993, A search for life on Earth from the Galileo spacecraft: Nature, 365, 715–721.

Schulz, B., Encrenaz, Th., Bézard, B., Romani, P.N., Lellouch, E., Atreya, S.K., 1999, Detection of C2H4in Neptune from ISO/PHT-S observations: Astronomy and Astrophysics, 350, L13–L17.

Schulz, H., 1999, Short history and present trends of Fischer–Tropsch synthesis: Applied Catalysis A. General, 186 (1–2), 3–12.

Schulze-Makuch, D., Grinspoon, D.H., 2005, Biologically enhanced energy and carbon cycling on Titan?: Astrobiology, 5, 560–567.

Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., Kosmach, D., 2010a, Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf: Journal of Geophysical Research, 115, C08007, doi:10.1029/2009JC005602.

Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Yusupov, V., Kosmach, D., Gustafsson, O., 2010b, Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf: Science, 327, 1246–1250.

Smith, B.A., Soderblom, L.A., Banfield, D., Barnet, C., Beebe, R.F., Bazilevskii, A.T., Bollinger, K., Boyce, J.M., Briggs, G.A., Brahic, A., 1989, Voyager 2 at Neptune - Imaging science results: Science, 246, 1422–1449.

Spahni, R., Chappellaz, J., Stocker, T.F., Loulergue, L., Hausammann, G., Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., Masson-Del-Motte, V., Jouzel, J., 2005, Atmospheric methane and nitrous oxide of the Late Pleistocene from Antarctic ice cores: Science, 310, 1317–1321.

Stofan, E.R., Elachi, C., Lunine, J.I., Lorenz, R.D., Stiles, B., Mitchell, K.L., Ostro, S., Soderblom, L., Wood, C., Zebker, H., Wall, S., Janssen, M., Kirk, R., Lopes, R., Paganelli, F., Radebaugh, J., Wye, L., Anderson, Y., Allison, M., Boehmer, R., Callahan, P., Encrenaz, P., Flamini, E., Francescetti, G., Gim, Y., Hamilton, G., Hensley, S., Johnson, W.T.K., Kelleher, K., Muhleman, D., Paillou, P., Picardi, G., Posa, F., Roth, L., Seu, R., Shaffer, S., Vetrella, S., West, R., 2007, The lakes of Titan: Nature, 445, 61–64.

Strobel, D.F., 1974, The photochemistry in the atmosphere of Titan: Icarus, 21, 466–470.

Szponar, N., Brazelton, W.J., Schrenk, M.O., Bower, D.M., Steele, A., Morrill, P.L., 2013, Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue: Icarus, 224, 286–296.

Taylor, F.W., Atreya, S.K., Encrenaz, Th., Hunten, D.M., Irwin, P.G.J., Owen, T.C., 2005, The Composition of the Atmosphere of Jupiter, in Bagenal, F., (ed.), Jupiter: Cambridge University Press, Cambridge, 59–78.

Thauer, R.K., 1998, Biochemistry of Methanogenesis: a Tribute to Marjory Stephenson: Microbiology, 144, 2377–2406.

Thompson, W. Reid., Murray, B.G.J.P T., Khare, B.N., Sagan, C., 1987, Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system: Journal of Geophysical Research, 92, 14933–14947.

Tobie, G., Lunine, J.I., Sotin, C., 2006, Episodic outgassing as the origin of atmospheric methane on Titan: Nature, 440, 61–64.

Turtle, E.P., Perry, J.E., McEwen, A.S., Del Genio, A.D., Barbara, J., West, R.A., Dawson, D.D., Porco, C.C., 2009, Cassini imaging of Titan's high-latitude lakes, clouds, and south-polar surface changes: Geophysical Research Letters, 36, L02204, doi:10.1029/2008GL036186.

Tyler, G.L., Sweetnam, D.N., Anderson, J.D., Borutzki, S.E., Campbell, J.K., Kursinski, E.R., Levy, G.S., Lindal, G.F., Lyons, J.R., Wood, G.E., 1989, Voyager radio science observations of Neptune and Triton: Science, 246, 1466–1473.

Varnes, E.S., Jakosky, B.M., McCollom, T.M., 2003, Biological potential of Martian hydrothermal systems: Astrobiology, 3, 407–414.

Weiss, B.P., Yung, Y.L., Nealson, K.H., 2000, Atmospheric energy for subsurface life on Mars?: Proceedings of the National Academy of Sciences, USA, 97, 1395–1399.

Wilson, E.H., Atreya, S.K., 2004, Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere: Journal of Geophysical Research, 109, E06002, doi:10.1029/2003JE002181.

Wong, M.H., Mahaffy, P.R., Atreya, S.K., Niemann, H.B., Owen, T.C., 2004, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter: Icarus, 171, 153–170.

Wuebbles, D.J., Hayhoe, K., 2002, Atmospheric methane and global change: Earth-Science Reviews, 57, 177–210.

Young, L.A., Elliot, J.L., Tokunaga, A., de Bergh, C., Owen, T., 1997, Detection of Gaseous Methane on Pluto: Icarus, 127, 258–262.

Yung, Y.L., Allen, M., Pinto, J.P., 1984, Photochemistry of the atmosphere of Titan comparison between model and observations: Astrophysical Journal Supplement Series, 55, 465–506.

Zahnle, K., Freedman, R.S., Catling, D.C., 2011, Is there methane on Mars?: Icarus, 212, 493–503.

Zhang, J.A., Paige, D.A., 2009, Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins: Geophysical Research Letters, 36, L16203, doi:10.1029/2009GL038614.

Manuscript received: April 30, 2014.

Corrected manuscript received: February 9, 2015.

Manuscript accepted: February 12, 2015.

 

 

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 367-375

http://dx.doi.org/10.18268/BSGM2015v67n3a1

Growth of Bacillus pumilus and Halomonas haloduransin sulfates: prospects for life on Europa

Rocío E. Avendaño1, Lilia Montoya1, Jesús Olmos1, Sandra I. Ramírez1,*

1 Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad #1001 Col. Chamilpa, 62209, Cuernavaca, Morelos, México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

The growth of Bacillus pumilus and Halomonas halodurans under different concentrations of NaCl, MgCl2, Na2SO4 and MgSO4was investigated. The objective was to demonstrate whether these cultures have the ability to grow, not only in media enriched with sodium chloride, but also with other salts of astrobiological interest. The importance of this monitoring was to evaluate the fitness of these strains to the hypothetical salt content and composition of extraterrestrial sites, such as the ocean of Europa, one of the satellites of Jupiter.

The mechanism of fitness used by these bacteria was investigated by characterizing the compatible solutes accumulated by each strain. Bacillus pumilus was cultivated at 0.23 M and 0.33 M NaCl (aw of 0.995 and 0.990, respectively) while Halomonas halodurans was cultivated at 0.44 M and 0.89 M NaCl (aw of 0.985 and 0.965, respectively). B. pumilus seems to accumulate principally betaine while H. haloduransaccumulates betaine and glutamate, depending on the salt content of its environment. These results are discussed in the context of the salinity and salt composition of Europa’s ocean and under their implications for the habitability of this Jovian satellite.

Keywords: Water activity, Europa’s habitability, icy satellites, halophiles, compatible solutes.

 

Resumen

Se presentan los resultados correspondientes al crecimiento de Bacillus pumilus y Halomonas halodurans en distintas concentraciones de NaCl, MgCl2, Na2SO4 y MgSO4 para demostrar que estas bacterias tienen la capacidad de desarrollarse en medios enriquecidos, no sólo con cloruro de sodio, sino también con otras sales de interés astrobiológico. La importancia de este estudio radica en evaluar las posibilidades de adecuación de estas bacterias en un escenario hipotético cuyo contenido salino y composición sean parecidos al del océano de Europa, uno de los satélites de Júpiter.

Una manera de evidenciar el mecanismo de adecuación utilizado por estas bacterias es a través de la caracterización química, mediante resonancia magnética nuclear (RMN), de los solutos compatibles acumulados en distintas condiciones de salinidad. Bacillus pumilus se hizo crecer en medios modificados con 0.23 M y 0.33 M de NaCl (aw = 0.995 y 0.990, respectivamente) mientras que Halomonas halodurans se hizo crecer en medios modificados con 0.44 M y 0.89 M de NaCl (aw = 0.985 y 0.965, respectivamente). La caracterización de los solutos compatibles demostró que B. pumilus acumula principalmente betaína mientras que H. haloduransacumula betaína y glutamato, según sea la concentración salina de su medio. Se comenta la relevancia de estos resultados en el contexto de la composición salina del océano de Europa y bajo la perspectiva de la potencial habitabilidad de este satélite joviano.

Palabras clave: Actividad de agua, habitabilidad de Europa, satélites helados, bacterias halófilas, solutos compatibles.

 

1. Introduction

The search for life beyond Earth is focused on the finding of liquid water as the main factor that qualifies a habitable planet or satellite. In this sense, the discovery of geological evidence pointing to the possibility of water running on ancient Mars (Squyres et al., 2004), or the emissions detected on Enceladus as evidence for the existence of internal water pockets (Iess et al., 2014), place some of the objects in the Solar System as important targets for astrobiological studies. One of the most significant results of the Galileo orbiter mission was the discovery of geological features on the surface of Europa (Pappalardo et al., 1999), the smallest of the four Galilean satellites that suggested the existence of an aqueous layer beneath an icy water crust. These observations were supported by magnetometer studies (Khurana et al., 1998). Such evidence raised the question of whether Europa’s interior harbors an ocean favorable for life (Pappalardo et al., 1999; Kargel et al., 2000; Marion et al., 2003; Hand and Chyba, 2007).

Spectral evidence from the Near Infrared Mapping Spectrometer (NIMS) has demonstrated that some regions of Europa’s surface are incompatible with pure-H2O ice material (McCord et al., 1998). Moreover, Hand and Chyba (2007) constrained limits on the salinity of Europa’s ocean based on Galileo magnetometer measurements combined with radio Doppler data-derived interior models and laboratory conductivity versus concentration data; such constraints ranged from “freshwater” (i.e. less than 3 g of salt per kg of H2O) to near-saturation (around 300 g of salt per kg of H2O), though their data best fit with a very salty ocean.

The chemical nature of the salt proposed to exist in Europa’s ocean is quite different from the most abundant salt in terrestrial oceans. While sodium chloride (NaCl) and other chlorides are common in bodies of water on Earth, the spectral evidence shows that sulfates either of magnesium or sodium (MgSO4 or Na2SO4) are present on the deep ocean of Europa. The reason can be found after an examination of the material that formed each of these planetary bodies. If Europa was formed from materials similar to a carbonaceous chondrite then models show that the most abundant cations must be Na+ and Mg2+ (Kargel et al., 2000).

In contrast, sodium (Na+) and chloride (Cl-) are the main ions in seawater on Earth indicating a different origin and evolution: chloride was initially outgassed as HCl along with water in the early time of Earth’s history. On the other hand, Na+was leached from rocks to make an initial ocean rich in dissolved NaCl (Knauth, 1999).

The organisms capable of surviving at high levels of salinity could be halotolerant or halophilic. As the average salt content on terrestrial oceans is around 3.5 % NaCl, all organisms thriving at higher salt concentrations are considered halophiles. However, the stress imposed by salts different from sodium chloride is not necessarily the same. In an experimental study on epsotolerance, Crisler et al. (2012) report the growth of bacterial isolates in culture media with MgSO4·7H2O, and argue a favorable implication for Mars habitability, because sulfates are also present in this planet (Crisler et al., 2012). The adaptive strategies for tolerance at high MgSO4 concentrations were not explored, but the authors noticed some unexplained differences in the growth rate and stationary-phase maximum densities when their isolates were exposed to different sulfate salts. There are some reports about the substitution of NaCl with other salts (Oren et al., 2014), but very few in the context of exploring the possibilities of survival of terrestrial microorganisms in an Europan scenario.

One adaptive strategy to osmotic pressure used by halophilic organisms is the synthesis and/or accumulation of organic molecules of low molecular weight and high water solubility. These molecules are known as compatible solutes as they do not interfere with the metabolism of the organism that incorporates them. Compatible solutes aid in the stabilization of some enzymes, the maintenance of cell volume and in providing protection from extreme parameters, such as high salinity, high or low temperature, or desiccation. Identified compatible solutes may be classified as amino acids, sugars or polyols, and their derivatives (González-Hernández and Peña, 2002; Roberts, 2005).

In this paper, we present data on two microorganisms growing under different salt conditions. We compare the growth rate (μ) and the duplication time (td) of Bacillus pumilus and Halomonas halodurans when exposed to media exhibiting different water activities (aw) determined by the presence of distinct contents of NaCl, MgCl2, Na2SO4, or MgSO4. We characterize the compatible solutes, by 1H and 13C Nuclear Magnetic Resonance (NMR), accumulated by B. pumilus and H. haloduranswhen submitted to low water activities defined by NaCl in liquid cultures. Our results are discussed in the context of the habitability of Europa’s ocean.

 

2. Experimental

2.1. Strains.

The non-halophilic Bacillus pumilus isolate H3 (GenBank accession number FJ867397) was obtained from a petroleum reservoir production brine located in Ixhuatlán del Sureste (Veracruz, Mexico) and identified by molecular biology techniques (Terrazas, 2009; Terrazas et al., 2009). The halotolerant Halomonas haloduransDSM 5160 has been isolated from the Great Bay Estuary in New Hampshire, USA (Rosenberg, 1983), and was acquired from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Germany).

 

2.2. Determination of water activity in culture media.

Bacillus pumilus isolate H3 grown in basal medium containing (g/L): 5 peptone, and 3 yeast extract. Halomonas halodurans DSM 5160 grown in basal medium containing (g/L): 5.9 MgCl2·6H2O, 1.8 CaCl2·2H2O, 1 KCl, 5 peptone, 0.1 Fe (III) citrate, 3.24 Na2SO4, 0.16 Na2CO3, 0.08 KBr, 0.034 SrCl2, 0.022 H3BO3, 0.0024 NaF, 0.0016 (NH4)NO3 and 0.008 Na2HPO4. Basal media were supplemented with the corresponding molar concentration of the salts under study (NaCl, MgCl2, Na2SO4 or MgSO4) to achieve a particular water activity value (aw) as shown in Table 1. The resulting culture media have defined values of aw to facilitate the comparison of the bacterial growth rate (μ) displayed in each case. The awvalues were determined with an AquaLab water activity meter (AquaLab series 3, Decagon, Devices, Inc.).

Table 1. Concentration of NaCl, MgCl2, Na2SO4 and MgSO4 added to the basal medium of Bacillus pumilus H3 and Halomonas halodurans and its equivalence to water activity (aw).

 

2.3. Strain culture conditions.

The culture media were inoculated to have an initial optical density of 0.1 at 630 nm (OD630) in a 50-mL volume. Incubation was performed under constant temperature and agitation (37 ºC, 200 rpm). Bacterial growth was monitored as changes in the OD630 at regular time intervals using a microplate reader (Stat Fax 2100) until the stationary phase was reached. Specific growth rates (μ) were calculated by performing a linear regression analysis to the linear section of the logarithmic growth curves (R2 values between 88 and 100 % were found). The calculated µ values and the corresponding duplication time (td) for each experimental condition are shown in Table 2. All incubations and measurements were done by triplicate.

Table 2. Growth rate (μ) and duplication time (td) for Bacillus pumilus H3 and Halomonas halodurans in culture media modified with different water activities (aw) as a function of salt concentration.

 

2.4. Chemicals and reagents.

Betaine and ectoine standards, as well as deuterium oxide (99.9 % D-atom) were obtained from Sigma-Aldrich (MO, USA).

 

2.5. Apparatus.

All nuclear magnetic resonance (NMR) experiments were carried out on a VARIAN Mercury 400 MHz.

 

2.6. Extraction of compatible solutes.

Liquid cultures of B. pumilus were prepared at 0.23 M and 0.33 M NaCl. For H. halodurans the concentrations of 0.44 M and 0.89 M were used. Cultures without NaCl were used as controls. The compatible solute extraction process was based on the work reported by Roberts (2006). Cultures of one-liter were grown until the exponential phase was reached. This means an OD630 value of 0.330 for B. pumilus and an OD630 value of 0.785 for H. halodurans. The biomass was separated from the liquid medium by centrifugation at 2486 xg for 20 min. The sediment was washed twice with a NaCl isotonic solution. The sample was dissolved in NaCl isotonic solution and centrifuged again for 15 min. The biomass was suspended in 10 mL of 80 % v/v ethanol (CH3CH2OH) and vortexed for 30 min. The mixture was stored for 20 h at 4 °C. After this time, it was centrifuged for 30 min at 3147 xg. The ethanolic supernatant was separated and the ethanol was evaporated using a vacuum chamber. The residue was suspended in 0.5 mL of D2O and 1H and 13C spectra were obtained. Resultant spectra are identified as the sample spectra. On the other hand, the spectra of betaine and ectoine were obtained from solutions prepared in D2O. These were labeled as the standard spectra. The identification of the compatible solutes accumulated by the bacteria was performed by comparing the chemical shift of the signals present on each of the standard spectrum with those present on the sample spectra.

 

3. Results and Discussion

3.1. Growth of bacteria in different salts.

Bacillus pumilus grows optimally in nutritive medium depleted of salts where the water activity (aw) is 1.0. The cells of this species were also able to grow when the basal media was modified with different quantities of NaCl, MgCl2, Na2SO4 and MgSO4 as shown in Figure 1. Interestingly, B. pumilus has growth rates (µ) slightly higher when cultured in Na2SO4 than in NaCl, within all the interval of aw values tested. This response has not been reported before probably because halotolerant and halophilic strains are firstly described in terms of their NaCl tolerance. Only when aw values are higher than 0.994 bigger growth rates are displayed in MgSO4 than in NaCl. On the other hand, when the culture media was added with MgCl2, the grow rates drastically decrease until the value of 0.985, when the bacterium is not able to cope with the presence of this salt and no growth is observed (Figure 1). These results are noteworthy in different ways. First, it is notable that B. pumilus, a non-halophilic bacterium, has the ability to effectively deal with the presence of different salts. Then, this strain apparently prefers the culture media enriched with Na2SO4 above any other of the tested salts, particularly MgCl2. The highest salt concentrations endured by B. pumilus are 0.53 M NaCl, 0.26 M MgCl2, 0.57 M Na2SO4, and 0.85 M MgSO4 (Table 1).

The case for Halomonas halodurans, a moderate halophilic bacterium, is quite different. This strain was also able to grow in all the essayed salts, and again, it seems that the growth rates in Na2SO4 are higher when compared with NaCl, MgCl2 and MgSO4 within the interval of aw values tested. Surprisingly, the growth rates in MgCl2, even when they are slightly lower than in Na2SO4, are better than in NaCl and in MgSO4. This is particularly true for aw values below 0.982. The lowest μ values are displayed in MgSO4. The situation at aw = 0.99 is interesting because it seems that H. halodurans prefers NaCl to any of the other salts. There appears to be salt concentrations that display an optimal growth rate, 0.57 M for Na2SO4 and 0.38 M for MgCl2. The highest salt concentrations endured by H. halodurans were 1.12 M NaCl, 0.56 M MgCl2, 1.28 M Na2SO4, and 1.83 M MgSO4 (Table 1).

Figure 1. Specific growth rate (μ) of a) Bacillus pumilus H3 and b) Halomonas halodurans. Different water activities (aw) due to the presence of NaCl (triangle), MgCl2 (circle), Na2SO4 (square), and MgSO4 (asterisk) were tested. Conditions: 50 mL of modified culture medium, incubated at 37 ºC with shaking. Changes in turbidity were measured at 630 nm. Data points are mean values of three replicates.

 

3.2. Compatible solutes identification.

The NMR spectra corresponding to betaine and ectoine, used as reference materials for the compatible solutes, are shown in Figure 2. The chemical shift, expressed in parts per million (ppm), and the multiplicity of each signal were used as the identification parameters. This information is detailed in Tables 3a and 3b. The NMR spectrum of B. pumilus grown in a medium without NaCl is also shown in Figure 2. The 1H spectrum shows some signals between 1.0 and 4.0 ppm. However, none of them displayed the specific chemical shift of the signals observed on the betaine and the ectoine spectra (Tables 3a and 3b). It can be concluded that there is no presence of any of these compatible solutes in this B. pumilus culture. Likewise, the 13C spectrum showed no signals in the range used by the reference materials. B. pumilusis a non-halophilic bacterium; consequently, no accumulation of compatible solutes was expected in the absence of salt stress.

The situation is of course different in the cultures modified with NaCl. The 1H NMR spectrum obtained at a concentration of 0.23 M NaCl (aw = 0.995) showed the two intense signals corresponding to betaine, verified with the help of the reference spectrum (Table 3a). Some other small signals were visible, but due to their low intensity, were difficult to assign. Betaine was also evident in the 13C NMR spectrum, where its three strong signals were visible and could be corroborated likewise with the reference spectrum (Table 3a, and Figure 3). When the NaCl concentration was increased to 0.33 M (aw = 0.990), the intensity of the signals on the 1H and 13C spectra increased. This was a favorable situation for the identification of the solutes. The spectra of 1H and 13C NMR for B. pumilus at 0.33 M NaCl (aw = 0.990) are shown in Figure 3. A broad comparison was done, based on the integrated area of the main signal for each identified compatible solute. Thus, it was possible to advance differences in the type of compatible solute accumulated by each bacterium as a function of the concentration of NaCl (Table 4). Additional signals were also present on the 13C NMR spectra and were assigned on the basis of the chemical shifts reported by Roberts (2006) who presented the spectroscopic parameters of some of the most common compatible solutes accumulated by halotolerant and halophilic organisms. In this sense, we find chemical shifts that could be assigned to glutamate. However, these identifications need to be taken cautiously because they must be confirmed through the acquisition and comparison of the spectra of a glutamate standard. Nevertheless, the approach used here can help in the recognition of the compatible solutes used by B. pumilus.

Table 3a. Chemical shifts (ppm) and multiplicities of the structural fragments identified in the 1H and 13C NMR spectra corresponding to the compatible solutes present in extracts of Bacillus pumilus H3 grown at different NaCl concentrations.

a Roberts, 2006.
ND = no detected signal.

Table 3b. Chemical shifts (ppm) and multiplicities of the structural fragments identified in the 1H and 13C NMR spectra corresponding to the compatible solutes present in extracts of Halomonas halodurans grown at different NaCl concentrations.

a Roberts, 2006.
ND = no detected signal.

 

Table 4. Compatible solutes accumulated by Bacillus pumilus H3 and Halomonas halodurans at different NaCl concentrations.

 

The symbols (+) represent a qualitative appreciation of the quantity of compound identified.
a Requires confirmation by comparison with the appropriate standard.

 

The identification of the compatible solutes in the extracts from H. halodurans grown in NaCl was a major challenge. The 1H and 13C NMR spectra corresponding to 0.44 M NaCl (aw= 0.985) showed a larger number of signals. Luckily, some of them could be assigned to the presence of betaine and glutamate, as was shown when compared with the reference spectra and the spectroscopic parameters reported by Roberts (2006) as previously explained.

When the NaCl concentration was increased to 0.89 M (aw= 0.965), the main signals were attributed to the same solutes. These results are shown in Figure 4. The comparison of the compatible solutes accumulated as a function of NaCl concentration is shown on Table 4.

As far as we know, there is no previous identification of compatible solutes accumulated or synthesized by Bacillus pumilus or by Halomonas halodurans in NaCl. Different reports corresponding to organisms phylogenetically related have been identified. For example, Kuhlmann and Bremer (2001) mentioned that the Bacillus genus, without specifying which species, principally synthesize de novo glutamate, ectoine and proline. We found glutamate in our experiments. When the salt concentration is increased, betaine seemed to be preferably accumulated. On the other hand, Cánovas et al. (1996) reported that the main compatible solute synthesized de novo by Halomonas elongata was ectoine, and in less quantity, also hydroxyectoine. Our results showed that H. halodurans accumulates betaine in the two different NaCl concentrations tested, and the presence of glutamate can be suspected at higher NaCl concentrations. Saum and Müller (2008) reported that Halobacillus halophilusproduces glutamine and glutamate as compatible solutes when exposed to 1.0 – 1.5 M NaCl, but if the salinity increases to 2.0 – 3.0 M, besides the above solutes, ectoine and proline are also synthesized during culture development. If only the chemical identity of the solutes is considered, we find a better correspondence between our results and those of Saum and Müller (2008). Unfortunately, these authors did not report any qualitative or quantitative estimation. It should be noted that the presence of glutamate requires confirmation by acquiring its standard spectra as previously mentioned.

 

a)

b)

c)

Figure 2. Nuclear magnetic resonance spectra of (a) betaine, (b) ectoine and (c) a B. pumilusH3 extract obtained from a culture without NaCl.


Figure 3. Nuclear magnetic resonance spectra obtained from a B. pumilusH3 culture with 0.33 M NaCl. Signals corresponding to the chemical shifts of betaine (red circles), and glutamate (blue diamonds) are identified.


Figure 4. Nuclear magnetic resonance spectra obtained from a H. halodurans culture with 0.89 M NaCl. Signals corresponding to the chemical shifts of betaine (red circles), and glutamate (blue diamonds) are identified.

 

 

 

3.3. Implications for the habitability of Europa’s ocean.

The search for life in the solar system centers on the search for liquid water mainly due to the fact that life on Earth is defined by three basic requirements: the presence of a sustained source of liquid water, the availability of certain chemical elements to build biomolecules and a source of energy suitable to be used by life. An extensive number of studies, related to the environment of Europa, has pointed to this satellite as a world with the highest potential as a modern habitat for microbial life (Pappalardo et al., 1999; Kargel et al., 2000; Marion et al., 2003; Hand and Chyba, 2007; Priscu and Hand, 2012) due mainly to the existence of an extensive global ocean that can be geochemically suitable for this kind of life. The temperature of the water in this ocean can be on the order of 253 K, not far from the limit of biological activity on Earth (Neidhardt et al., 1990). Due to the composition of the primordial material proposed for the satellite, sulfur chemistry is important (Priscu and Hand, 2012) as the ocean is probably enriched with sulfates. Dissolved salts prevent the freezing of the ocean on Europa. Despite the Europan ocean's depth, which could be about 100 km, the pressure in its bottom is not that great because the gravitational acceleration is less than one-seventh of the acceleration on Earth (Priscu and Hand, 2012). It is most likely that if life exists or existed on Europa it would be from the halotolerant, psychrophilic, or barophilic type, or a combination of them (i.e. polyextremophile). Here, we have demonstrated that the mesophilic bacterium Bacillus pumilus can adapt to saline stress through strategies such as compatible solute accumulation when its media is modified with NaCl. Moreover, this bacterium can be considered a halotolerant species due to the fact that it was able to grow on NaCl concentrations higher than those found as average on terrestrial water bodies. Besides, B. pumilus was also able to cope with the presence of NaCl, MgCl2, Na2SO4 and MgSO4. We have also found that Halomonas halodurans, a halophilic bacterium, was able to grow not only on cultures modified with NaCl, but also on the presence of MgCl2, Na2SO4 and MgSO4. Further studies are needed, in order to determine if a similar strategy, of accumulating compatible solutes, is used when this halophile has to deal with these chemically different salts.

There are no specific values for the salinity on the ocean of Europa. However, empirical constraints have been proposed on the basis of the Galileo data that allow values from 1.1 to 96.8 g of MgSO4 per kg of water (Hand and Chyba, 2007). Extrapolating the salt concentration used in our experiments we have covered an interval of 2.4 to 220.3 g of MgSO4 per kg of water. This implies that Bacillus pumilus and Halomonas halodurans are perfectly capable of surviving in the actual Europan ocean, if just the salinity value is considered. Of course, we have to keep in mind that other constraints should be considered including temperature, pH of the ocean, availability of oxygen, or radiation (Marion et al., 2003). The availability of free-energy is also a critical aspect. In this regard, it has been proposed that metabolisms such as sulfate-reduction, iron reduction, methanogenesis and others that are active in anoxic environments on Earth, might exist on Europa (Gaidos et al., 1999; Priscu and Hand, 2012).

 

4. Conclusions

We have demonstrated that Bacillus pumilus, a non halophilic bacterium, and Halomonas halodurans, a moderate halophilic bacterium, were able to adapt to culture media modified with different concentrations of NaCl, MgCl2, Na2SO4 and MgSO4 within an interval of water activity (aw) between 1.0 and 0.98. Information about the strategy used by these bacteria to cope with the stress imposed by the different levels of salinity was inferred by the identification of some compatible solutes by NMR.

The adaptive strategies used by microorganisms on Earth reveal that most of the physiological stress can be overcome as long as the environment contains liquid water (Ball, 2005). According to the available information of the physical and geochemical parameters for Europa’s ocean, and based on our results on the survival of two different bacterial strains at salinity concentrations within the range of the estimated salinity for the Europan ocean, we can infer that this could be a suitable scenario for the presence and persistence of certain forms of terrestrial life.

Detailed studies to define the survival of halophilic bacteria at higher salinity concentrations, as well as the identifications and quantitative estimations on the chemical nature of compatible solutes accumulated on the presence of salts different to NaCl are needed. A mission devoted to perform a detailed analysis of the surface and ocean of Europa to determine the concentration of the salts dissolved in the ocean, and to determine if there are energy sources available for the development of any of the metabolisms known for terrestrial organisms is also needed.

 

Acknowledgements

This research was supported by grant number 249086, from the AEM-CONACyT program. REAS acknowledges a grant (253845) from CONACyT to complete her M. Sc. degree. JJOE acknowledges a CONACyT Posdoctoral schoolarship (205404).

 

References

Ball, P., 2005, Seeking the solution: Nature, 436, 1084-1085.

Cánovas, D., Vargas, C., Csonka, L., Ventosa, A., Nieto, J., 1996, Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway: Journal of Bacteriology, 178, 7221-7226.

Crisler, J.D., Newville, T.M., Chen, F., Clark, B.C., Schneegurt, M.A., 2012, Bacterial growth at the high concentrations of magnesium sulfate found in martian soils: Astrobiology, 12, 98-106.

Gaidos, E.J., Nealson, K.H., Kirschrink, J.L., 1999, Life in Ice-covered oceans: Science, 284, 1631-1633.

González-Hernández, J., Peña, A., 2002, Estrategias de adaptación de microorganismos halófilos y Debaryomyces hansenii (levadura halófila): Revista Latinoamericana de Microbiología, 44, 137-156.

Hand, K.P., Chyba, C.F., 2007, Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell: Icarus, 189, 424-438.

Iess, L., Stevenson, D.J., Parisi, M., Hemingway, A., Jacobson, R.A., Lunine, J.I., Nimmo, F., Armstrong, J.W., Asmar, S.W., Ducci, M., Tortora, P., 2014, The gravity field and interior structure of Enceladus: Science, 344, 78-80.

Kargel, J.S., Kaye, J.Z., Head, J.W.I., Marion, G.M., Sassen, R., Vrowley, J.K., Prieto Ballesteros, O., Grant, S.A., Hogenboom, D.L., 2000, Europa's crust and ocean: origin, composition, and the prospects for life: Icarus, 148, 226-265.

Khurana, K.K., Kivelson, M.G., Stevenson, D.J., Schubert, G., Russell, C.T., Walker, R.J., Polanskey, C., 1998, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto: Nature, 395, 777-780.

Knauth, L.P., 1999, Salinity history of seawater, in Proceedings 9th annual V.M. Goldschmidt Conference, Harvard, MA, Harvard University.

Kuhlmann, A., Bremer, E., 2001, Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillusspp.: Applied and Environmental Microbiology, 68, 772-783.

Marion, G.M., Fritsen, C.H., Eicken, H., Payne, M.C., 2003, The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues: Astrobiology, 3, 785-811.

McCord, T.B., Hansen, G.B., Fanale, F.P., Carlson, R.W., Matson, D.L., Johnson, T.V., Smythe, W.D., Crowley, J.K., Martin, P.D., Ocampo, A., Hibbitts, C.A., Granahan, J.C., 1998, Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team: Science, 280, 1242-1245.

Neidhardt, F.C., Ingraham, J.L., Schaechter, M., 1990, Physiology of the bacterial cell: a molecular approach, Sunderland, MA, Sinauer Associates, 507.

Oren, A., Bardavid, R.E., Mana, L., 2014, Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars: Extremophiles, 18, 75-80.

Pappalardo, R.T., Belton, M.J.S., Breneman, H.H., Carr, M.H., Chapman, C.R., Collins, G.C., Denk, T., Fagents, S., Geissler, P.E., Giese, B., Greeley, R., Greenberg, R., Head, J.W., Helfenstein, P., Hoppa, G., Kadel, S.D., Klaasen, K.P., Klemaszewski, J.E., Magee, K., McEwen, A.S., Moore, J.M., Moore, W.B., Neukum, G., Phillips, C.B., Prockter, L.M., Schubert, G., Senske, D.A., Sullivan, R.J., Tufts, B.R., Turtle, E.P., Wagner, R., Williams, K.K., 1999, Does Europa have a subsurface ocean? Evaluation of the geological evidence: Journal of Geophysical Research, 104, 24015-24055.

Priscu, J.C., Hand, K.P., 2012, Microbial habitability of icy worlds: Microbe, 7, 167-172.

Roberts, M., 2005, Organic compatible solutes of halotolerant and halophillic microorganisms: Saline Systems, 1, 1-30.

Roberts, M., 2006, Characterization of organic compatible solutes of halotolerant and halophilic microorganisms: Methods in Microbiology, 35, 615-647.

Rosenberg, A., 1983, Pseudomonas haloduranssp. nov., a halotolerant bacterium: Archives of Microbiology, 136, 117-123.

Saum, S., Müller, V., 2008, Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies: Saline Systems, 4, 1-15.

Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell III, J.F., Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., Klingelhöfer, G., Knoll, A.H., McLennan, S.M., McSween Jr., H.Y., Morris, R.V., Rice Jr., J.W., Rieder, R., Soderblom, L.A., 2004, In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars: Science, 306, 1709.

Terrazas, H., 2009, Estudio de la capacidad de supervivencia de bacterias halotolerantes bajo condiciones in vitro del satélite Europa. Tesis de Licenciatura: Universidad Autónoma del Estado de Morelos.

Terrazas, H., Ramírez, S.I., Sánchez, E., 2009, Adaptability of halotolerant-bacteria to Europa's environment: Origins of Life and Evolution of Biospheres, 39, 213-214.


 

Manuscript received: May 5, 2014
Corrected manuscript received: January 30, 2015
Manuscript accepted: February 12, 2015

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 387-400

http://dx.doi.org/10.18268/BSGM2015v67n3a3

Tapetes microbianos recientes en el Manantial hidrotermal de Baño San Ignacio, Linares, Nuevo León

Elizabeth Chacon-Baca1,*, Leticia Alba-Aldave2, Sonia Angeles2, César Cantú-Ayala3

1 Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, (UANL), Carretera Cerro Prieto Km 8, Linares, Nuevo León, México 67700, México.
2 Instituto de Geología, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, 04510, México, D.F. México.
3 Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, (UANL), Carretera Nacional 85, Km 145, Linares, N.L. 67700, México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

Resumen

El manantial de Baño de San Ignacio, localizado en Linares, Nuevo León, en el noreste de México, representa un área natural protegida que alberga no solamente flora y fauna endémica, sino una abundante vida microbiana. Este sistema hidrotermal está ligado a la evolución geotectónica de aguas continentales subterráneas atrapadas en un sistema cerrado estándar. Las comunidades microbianas en el Baño de San Ignacio (de aquí en adelante referido como BSI) pueden encontrarse como tapetes gelatinosos esferoidales o bien, como tapetes bentónicos estratiformes asociados a terrazas de travertino a lo largo del canal principal. Los tapetes microbianos en el BSI exhiben una textura con apariencia de hongo y una laminación macroscópica bien definida. La diagnosis textural de los tapetes microbianos del BSI, caracterizada mediante microscopía óptica y micrografía electrónica, muestra que la matriz extracelular está organizada como una red tridimensional con abundantes fibras orgánicas donde diversas partículas sedimentarias pueden quedar atrapadas o unidas. Por otra parte, la precipitación de calcita se observó sólo en áreas muy puntuales de la matriz y a lo largo de algunos filamentos similares a Phormidium sp. La infraestructura del tapete muestra un arreglo de capas alternadas de cianobacterias, diatomeas y cristales de calcita de diferentes tamaños. Aunque cada capa tiene un grosor variable, los primeros tres centímetros verticales del tapete corresponden a cianobacterias filamentosas Oscillatoriales, mientras que entre las bacilariofitas se encuentran diatomeas pennadas principalmente de los géneros Amphora y Nitzschia. Al igual que en muchos otros manantiales hidrotermales, los microorganismos eucariontes son escasos en número respecto a los procariontes y existe una amplia gama de bacterias sin determinar. A nivel de microestructura, las diatomeas pueden estar jugando un papel mucho más significativo en la estabilización y estructura del tapete que el que tradicionalmente se reconoce. Existen zonas mineralizadas en el interior del tapete debido a que diversos sedimentos influenciados biológicamente se adhieren a las fibras poliméricas de la matriz (algunas de ellas secretadas por diatomeas); otras fibras poliméricas inclusive forman puentes orgánicos favoreciendo las interacciones microbio-mineral. La descripción de microtexturas provenientes de ambientes continentales neutros como el BSI tiene un gran potencial astrobiológico para la identificación y detección de biosignaturas microbianas sedimentarias.

Palabras clave: Baño San Ignacio, biosedimentos, tapetes microbianos, cianobacterias, diatomeas.

 

Abstract

The Baño San Ignacio spring, located in Linares, Nuevo Leon, northeastern Mexico, represents a natural protected area that harbors not only endemic flora and fauna, but also a rich microbial life. This hydrothermal system is linked to the geotectonic evolution of underground continental waters trapped into a closed standard circuit. Microbial communities at Baño San Ignacio (hereafter BSI), may be found either as gelatinous spheroidal mats, or as benthic stratiform mats associated with travertine terraces along the main channel. Microbial mats exhibit a marked fungal-like appearance and a well-defined macroscopic lamination. The textural diagnosis in BSI mats, characterized by optical microscopy and electronic scanning, shows that the extracellular matrix is organized as a three-dimensional network with abundant organic fibers where sediments may be trapped or bound. On the other hand, carbonate precipitation was observed only in small localized areas of the matrix and along some Phormidium-like filaments. The internal mat structure is organized as alternating layers of cyanobacteria, diatoms and variable-sized calcite. Although mat thickness is variable, the first centimeters of each mat correspond to Oscillatoriales belonging to the filamentous cyanobacteria, while pennate diatoms correspond to Amphora sp. and Nitzschia sp. As in many other hydrothermal springs mats, eukaryotic microorganisms are relatively scarce and many other bacteria have yet to be identified. At the microstructural level, diatoms may be playing a more significant role in mat structure and stability than traditionally acknowledged. The internal mat structure shows mineralized patches because diverse biologically-influenced sediments attach to polymeric fibers (some of them secreted by diatoms) from the EPS matrix; other polymeric fibers may even form organic bridges favoring microbial-mineral interactions. The description of microtextures from neutral environments in continental settings such as BSI holds a great astrobiological potential for the identification and detection of microbial signatures.

Keywords: Baño San Ignacio, biosediments, microbial mats, travertine, cyanobacteria, diatoms.

 

1. Introducción

Los tapetes microbianos están formados por diversas comunidades bentónicas organizadas en capas de acuerdo a sus capacidades metabólicas (Stal y Caumette, 1994; Stolz, 2000). Además del gradiente geoquímico establecido como resultado de la diversidad microbiana de estas complejas comunidades, existen fluctuaciones en las concentraciones de solutos, gases y metabolitos (van Gemerden, 1993), aunadas a las variaciones diurnas derivadas de las tasas fotosintéticas, de respiración y/o reducción (Cohen y Rosenberg, 1989). Por su gran versatilidad metabólica y su capacidad para proliferar en diversos ambientes sedimentarios, los tapetes microbianos han persistido temporal y espacialmente a través de la historia geológica. De hecho, muchos tapetes microbianos están asociados a la precipitación de carbonatos, por lo que han jugado un papel fundamental en el ciclo biogeoquímico del carbono (Schidlowski y Aharon, 1992; Des Marais, 2003). Incluso se ha propuesto que la formación de tapetes microbianos en ambientes carbonatados representó una reserva importante dentro del ciclo global del carbono y un aumento en la productividad biológica desde el Precámbrico (Hoehler et al., 2001). Los tapetes microbianos más antiguos se han preservado tanto en forma de estromatolitos como de depósitos extensos en rocas siliciclásticas (Noffke et al., 2006), si bien los estromatolitos constituyen la evidencia paleontológica más antigua de vida en el planeta, con una edad aproximada de 3460 Ma (Lowe, 1980; Allwood et al., 2006). Otras localidades precámbricas casi tan antiguas como los estromatolitos también muestran evidencias de tapetes microbianos fosilizados (Westall et al., 2006; Noffke y Paterson, 2008), por lo que probablemente durante el Arqueano las interacciones microbio-mineral se manifestaban en forma de consorcios microbianos de diversas morfologías y en una gran diversidad de ambientes sedimentarios.

Desde las primeras descripciones sobre tapetes microbianos hace más de 100 años, se hizo evidente la naturaleza biosedimentaria de estas comunidades microbianas; por ejemplo, Fenchel et al. (1998) reportan que de manera independiente Hofman y Ørsted describieron los extensos y coloridos sedimentos del Mar Wadden en Alemania (Fenchel et al., 1998); adicionalmente cuando Black (1933) describió los carbonatos estromatolíticos de las Bahamas, los interpretó como resultado de los cambios anuales en las tasas de sedimentación y de la zona de intermareas, apreciando su naturaleza biogénica. Hoy se sabe que los tapetes microbianos se componen de diversas y variadas comunidades de microorganismos que proliferan bajo condiciones ambientales que abarcan un amplio espectro de sustratos, pH, temperatura y/o salinidad (Stal et al., 1995; Costerton et al., 1995; Stolz, 2000). Los tapetes ostentan característicamente una estratificación milimétrica que es interpretada como la consecuencia estructural del crecimiento y de un intercambio dinámico de nutrientes y material que difunde tanto horizontal como verticalmente (van Gemerden, 1993; Stal, 1995; van der Meer et al., 2005). Además de ésta estratificación física y biogeoquímica, los tapetes microbianos también se caracterizan por contener partículas sedimentarias y minerales, principalmente carbonato de calcio, incluidos dentro de la estructura tridimensional del tapete. A su vez, la matriz extracelular conformada por material polimérico conocido por sus siglas en inglés como EPS (extracelular polymeric substances), promueve la estabilización de sedimentos (Gerdes et al., 1993), su litificación (Reid et al., 2000) y su eventual incorporación en el registro fósil. Dicha incorporación se ha preservado en forma de microbialitas, que son depósitos organosedimentarios fósiles y recientes construidos por comunidades microbianas bentónicas (Burne y Moore, 1987). Es decir, los precursores de las microbialitas se van formando por el establecimiento de tapetes microbianos, principalmente cianobacterias (Awramik y Margulis, 1977), que unen, atrapan y precipitan partículas sedimentarias. En ambientes modernos las cianobacterias son los componentes volumétricamente importantes y los más estudiados. Aunque actualmente la ocurrencia de microbialitas es más frecuente en ambientes continentales (Gischler et al., 2008), la formación de tapetes microbianos es igualmente activa tanto en ambientes continentales como marinos, especialmente en aquellos ambientes donde prevalecen condiciones extremas o especiales. Por consiguiente, los tapetes microbianos constituyen excelentes análogos modernos de las microbialitas primitivas. Aún más, muchas de las interacciones microbio-mineral que ocurren apenas en unas cuantas micras del tapete microbiano pueden quedar preservadas a nivel morfológico, mineral, molecular y químico, por lo que los tapetes microbianos constituyen una auténtica fuente de biosignaturas microbianas (Chacon et al., 2010).

Un buen ejemplo de tapetes microbianos constituidos por cianobacterias y otros microorganismos que proliferan bajo condiciones ambientales mesófilas es el manantial sulfuroso conocido como Baño San Ignacio (BSI), situado en el municipio de Linares, Nuevo León. Esta localidad es un área natural protegida que además de albergar especies de flora y fauna endémicas, alberga diversas comunidades de microorganismos en forma de tapetes microbianos asociados a la precipitación de carbonato y cuyas aguas geotermales tienen pH neutros. Además de servir como una localidad para explorar interacciones ecológicas microbianas, el BSI constituye también un sitio con un alto potencial astrobiológico en cuanto a la preservación de biosignaturas. Este trabajo describe por vez primera las características biosedimentológicas más generales de los tapetes microbianos del BSI.

 

2. Localidad de estudio

El BSI es un manantial montañoso (24º51’51’’N, 99º20’05’’W), localizado 23 km al este de la ciudad de Linares, Nuevo León, en el noreste de México (Figura 1 A). Aunque el BSI sólo cubre una pequeña área de la superficie vegetal terrestre, su contribución a la biodiversidad regional es significativa. Los pantanos del BSI contienen una flora y fauna dependientes de estas aguas subterráneas. Esta región comprende 4225.4 ha, incluyendo un manantial hidrotermal de aguas azufrosas que sirve de hábitat por lo menos a 5 especies de peces endémicos. Dicho manantial se encuentra enclavado en un pantano de aproximadamente 450 ha, cuyas condiciones de alta humedad en el suelo han permitido el desarrollo de un pastizal natural. Asimismo, en los márgenes meridionales del pantano, se desarrolla una comunidad de matorral espinoso tamaulipeco en buen estado de conservación (Cantú et al., 2001). Desde el año 2000 el Baño de San Ignacio fue declarado como una zona protegida por parte del Gobierno del Estado de Nuevo León (SEDUOP/FCF-UANL, 2000), y decretada oficialmente como una zona sujeta a conservación ecológica el 24 de noviembre de 2000 (POENL, 2000). Posteriormente, en 2009 fue declarado por sus características excepcionales, como un humedal de categoría RAMSAR (SEMARNAT, 2010), es decir, como un ecosistema de humedal de gran relevancia internacional para la conservación de la biodiversidad y bienestar de la comunidad humana, de acuerdo a la descripción dada por la comisión nacional de áreas naturales protegidas.

El BSI se ubica dentro de un área cuya superficie es de ~ 5 km2 aproximadamente (Figura 1 B) y pertenece a un tipo de manantial denominado manantial de montículo, definido como un cuerpo central de agua, con un margen externo de canales y vegetación, un canal de flujo y capas sucesivas de carbonatos (Blinn et al., 1994; Mudd, 2000). En este caso, el agua subterránea alcanza la superficie elevándose a través de una fractura natural, en lugar de hacerlo a través de un agujero producido artificialmente. Este tipo de manantiales se forma por evaporación de aguas mineralizadas de manantiales artesianos, en los que ocasionalmente pueden ocurrir adiciones de material transportado por el viento en regiones áridas y semiáridas (Mudd, 2000). El montículo de manantial del BSI se localiza dentro de lo que constituye la Planicie Costera del Golfo de México (GMCP), que se extiende aproximadamente unos 1450 km a lo largo del Golfo de México, desde el estado de Tamaulipas (sobre la frontera de Texas) hasta los estados de Veracruz y Tabasco hasta la Península de Yucatán (De Cserna, 1989); dicha planicie está flanqueada en su sector occidental por la Sierra Madre Oriental (SMO), un cinturón de falla y cabalgadura de cinturón sedimentario (Goldhammer, 1999; Chávez-Cabello et al., 2004), y hacia el sector este por la Sierra de San Carlos relacionada al magmatismo (Treviño-Cázares et al., 2005). El manantial hidrotermal BSI tiene forma de una laguna semicircular (Anderson, 1984) y ocupa una superficie de aproximadamente 2500 m2, exhibiendo una profundidad máxima de 7.5 m en forma de cono invertido y truncado, conformado por limos y carbonatos en suspensión (condición de fluidez) por la presión del agua saliente de los poros. Las unidades sedimentarias de basamento expuestas en la superficie del área estudiada pertenecen a sedimentos de las formaciones San Felipe y Méndez y corresponden al Cretácico Superior de la Sierra Madre Oriental. La Formación San Felipe (Turoniano-Coniciano) consiste de 110 a 150 m de estratificación delgada laminar con calizas de color gris pálido, interestratificadas con lutitas, porcelanitas (carbonatos silicificados), y con capas de ceniza volcánica alterada (Seibertz, 1998; Sohl et al., 1991; Garza-Castillo, 2006). La Formación Méndez (Campaniano-Maastrichtiano), constituida por lutitas frágiles oscuras, con coloraciones verdosas a negras e intercalaciones menores, descansa concordantemente a la Formación San Felipe y está bien expuesta en el área bajo estudio. Aunque López-Ramos (1982) reporta un diámetro máximo de ~ 1500 m para esta unidad, en el área del BSI aparece como un estrato plegado de estratificación delgada. Adicionalmente la localidad BSI está rodeada por sedimentos recientes de aluvión y travertino que derivan de la formación San Felipe.

La geología regional del BSI incluye las planicies del Golfo de México (GMCP), característicamente cubierta por largos surcos de terrazas fluviales y lacustres del Terciario-Cuaternario originadas en la boca de los cañones de la SMO, con sistemas tributarios de grava provenientes de la Sierra San Carlos (SSC) (Ruiz-Martínez y Werner, 1997). Los sedimentos fluviales consisten de una secuencia de, por lo menos, cinco terrazas arriba del nivel reciente del río causado por los cambios periódicos y/o cíclicos, inducidos climáticamente entre la acumulación y la erosión durante los eventos de un levantamiento más o menos constante (Ruiz, 1990). Hidrogeológicamente el montículo de BSI se localiza en el sector noreste de la subcuenca de Camacho (cuya área aproximada es de ~ 1529 km2) con una precipitación anual promedio de ~ 70 x 106 m3 (Secretaría de Programación y Presupuesto, 1993). Los trabajos realizados por Barbarín et al. (1988), Hoffmann et al. (1992), Benítez González (1997) y por Garza-Castillo (2006) reportaron un pH neutro (~ 7.5), temperaturas entre 36 ºC y 38 ºC, y un alto grado de mineralización (entre los 4300 – 4900 mg/l; y una conductividad aproximada de ~ 6.4 µS/cm). La composición química está dominada por sulfatos (SO4-2 = 900 – 1300 mg/l), cloruros (Cl- = 1400 – 1700 mg/l), sodio (Na+ = 300 – 900 mg/l), y calcio (CaCO3 = 700 – 1000 mg/l). De acuerdo al modelo conceptual de facies hidrogeoquímicas para aguas subterráneas de la subcuenca de Camacho (Garza-Castillo, 2006) y al modelo de flujo de gravedad regional propuesto por Toth (1999), el manantial de montículo de BSI podría representar la manifestación de un flujo regional de aguas subterráneas, caracterizado por un pH cercano a la neutralidad, un potencial redox positivo y un sistema altamente mineralizado con una química tipo Na+-Ca+2-Cl--SO4-2. Anderson y Aguilera (1986) han sugerido que la temperatura en el depósito de montículo de BSI está asociada al efecto de gradiente geotérmico regional (Γ ~ 25ºC/km), mientras que la mineralización puede ser el resultado de la interacción agua-roca con las rocas sedimentarias mesozoicas de la SMO (Goldhammer, 1999).


Figura 1. Localización del Baño San Ignacio en Linares, Nuevo León, México. (A) Coordenadas geográficas de la localidad bajo estudio: BSI = Baño San Ignacio; SMO = Sierra Madre Oriental; SSC = Sierra San Carlos; PCG = Planicie Costera del Golfo (B) Geomorfología general de la localidad BSI bajo estudio (modificada a partir de Google Earth).

 

3. Metodología

El área de estudio está constituida por una fuente somera pero sumergida que fluye a lo largo de una distancia de 30 m aproximadamente. Existe un gradiente de temperatura que se angosta hacia un canal lineal principal (Figura 2 A). Las observaciones de campo incluyen un muestreo estacional en invierno y verano de 2009 a 2012 siguiendo el desarrollo de tapetes microbianos a lo largo del gradiente en los que se determinó el pH con papel pH-metro, así como la temperatura y las dimensiones de los tapetes. El material identificado incluye muestras representativas de los tapetes microbianos bentónicos adheridos a la roca calcárea. Dichas muestras de tapetes fueron tomadas como rebanadas completas (con un tamaño aproximado de 10 cm de ancho por 7 cm de largo) que inmediatamente fueron guardadas en refrigeración a 4 ºC hasta su análisis en el laboratorio. La gran mayoría de muestras fueron analizadas sin aditivos ni fijadores químicos. Otro lote de muestras fue liofilizado y guardado para futuros análisis, mientras que un tercer lote se conservó en formaldehído al 4 % como reserva. Se prepararon láminas delgadas del contenido biológico de los tapetes microbianos previa disección bajo el microscopio. La identificación del material fue basada únicamente en caracteres morfológicos y de acuerdo a los manuales tradicionales de ficología (Geitler, 1932; Anagnostidis y Komárek, 1988; Komárek y Anagnostidis, 1999; Komárek y Golubic, 2005). Las observaciones se llevaron a cabo en un microscopio Olympus BX51 equipado con una unidad de cámara de contraste diferencial interferencial DIC y una cámara digital (Facultad de Ciencias, UNAM). También se prepararon muestras petrográficas del travertino asociado, algunas de las cuales también se observaron al SEM en un microscopio de emisión de campo SEM-Hitachi 4700-II, con un voltaje de 1.5 – 15 kV, como servicio externo. Algunas de las muestras analizadas por microscopía electrónica de barrido (SEM) se cubrieron con oro y fueron observadas en un equipo JEOL 6301F; otras veces se analizaron muestras refrigeradas después de secarse a temperatura ambiente y sin baño de oro. Se utilizó la Microsonda Electrónica de Barrido JEOL 8900R WD/ED en el Instituto de Geofísica, UNAM. Las imágenes de autofluorescencia se obtuvieron mediante un Microscopio Confocal FV10 (FluoView FV10i, Olympus) en el Instituto de Fisiología Celular, UNAM (servicio externo).


Figura 2. Croquis del manantial de BSI. Los numerales romanos señalan los sitios de muestreo: I = zona de eflujo; II: facies proximales y área de muestreo para este análisis; III: facies distales. (B) Travertinos (trv) asociados a los tapetes microbianos del BSI. (C) Muestra de mano de travertino y su composición detectada por EDS.

 

4. Resultados

El BSI representa un manantial sulfuroso con fluctuaciones de pH entre 7 y 7.6, y con temperaturas alrededor de LOS 36.4 ºC en verano y alrededor de 31 ºC en invierno. Aunque la temperatura es aproximadamente constante a lo largo del canal principal, existe un gradiente muy tenue desde la fuente del manantial, con temperaturas alrededor de los 37.5 °C hasta los 35 °C en las facies distales (Figura 2 A). Los resultados obtenidos a lo largo de este estudio muestran que el desarrollo de tapetes microbianos en los márgenes del manantial de BSI es constante a lo largo de los diferentes periodos estacionales, mientras que las terrazas que bordean el canal están formadas mayoritariamente por travertino asociado (Figuras 2 B y C). Los travertinos exhiben diferentes grados de calcificación superficial, y en algunos casos, ésta es correlacionable con el desarrollo de tapetes microbianos, los cuales pueden encontrarse como tapetes estratiformes o como tapetes flotantes. La persistencia de tapetes microbianos se ha monitoreado por varios años y en las diferentes estaciones del año, por lo que podría decirse que son perennes o se forman continuamente en cada punto del transecto.

 

4.1. Geoquímica

El Baño San Ignacio es una manifestación de agua termal en cuya parte norte y noroeste posee un vertedero natural que alimenta al pantano de la zona marginal. El sistema, en su conjunto, puede ser considerado como un manantial de montículo (mound spring), ya que incluye un cuerpo central de agua, un borde de juncos y vegetación, un canal de flujo y capas sucesivas de carbonatos, yeso y halita (Blinn et al., 1994; Mudd, 2000). Las especies iónicas predominantes en las aguas del BSI son SO3, CaO y SO3, y en cantidades mucho menores MnO, Na2O y Fe2O3. Los análisis hidrológicos publicados (Barbarín et al., 1988; Hoffmann et al., 1992; Garza-Castillo, 2006) indican que el BSI presenta una hidrogeoquímica muy particular, caracterizada por un pH neutro a ligeramente alcalino (7.0 – 8.0), una relativa alta temperatura (T = 33 – 35 ºC) y altas conductividades (6300 – 7940 μS/cm) como un reflejo de los altos contenidos de sólidos disueltos (4300 – 4900 mg/l). El análisis geoquímico para el BSI derivado de éste y de previos estudios resulta en la distribución geoquímica ilustrada en el Diagrama de Durov (Hem, 1985), que muestra una comparación con la química observada en el agua superficial y subterránea de las zonas aledañas (Figura 3), como son la Presa Cerro Prieto (PCP) y la cuenca del Río Pablillo (CRP). A diferencia del BSI, la hidrogeoquímica en estos otros sitios se caracteriza por ser de dominio Ca-HCO3 y Ca-HCO3-SO4, con un pH neutro a ligeramente ácido (6.5 – 7.0), así como temperaturas (16 – 26 ºC) y conductividades (470 – 790 μS/cm) relativamente bajas (Rodríguez de Barbarín y Barbarín, 1993).


Figura 3. Clasificación del agua hidrotermal de acuerdo al diagrama de Durov (Hem, 1985) utilizando datos geoquímicos derivados del BSI. Nótese la química del agua en BSI en contraste con la química observada en el agua superficial y subterránea de las zonas aledañas en la Presa Cerro Prieto (PCP) y en la cuenca del Río Pablillo (CRP).

 

4.2. Tapetes microbianos

Los tapetes microbianos en el BSI exhiben dos morfologías principales: tapetes flotantes subesféricos de coloración anaranjada (con espesores de 3.5 cm y diámetros entre 10 y 30 cm), y tapetes estratiformes adheridos al sustrato, de aproximadamente 50 cm de longitud distribuidos linealmente sobre un sustrato calcáreo de travertino y con un espesor constante de 5 cm (Figuras 4 A y B). Mientras que en la parte central del manantial los tapetes flotantes son concéntricos y bien laminados, en las partes distales los tapetes tienden a ser más pegajosos y menos coloridos. En este trabajo se reportan los análisis de los tapetes adheridos al sustrato rocoso, por ser tapetes bentónicos y los más persistentes en invierno y primavera. Además, el travertino asociado muestra una calcificación intensa en la interfase donde se forman los tapetes adheridos al sustrato. Inclusive en la interfase agua-sedimento de las zonas más distales del manantial también se observa la formación de tapetes estratificados sin forma definida con un perfil verdoso en la parte superior y con bordes tenues color naranja (Figura 5A). Dentro de la estratificación macroscópica del tapete se identificaron cuatro zonas principales cuyas texturas están representadas en la secuencia vertical de la Figura 5: (Zona I) la capa superior corresponde a una capa irregular relativamente gruesa y oscura (de espesor y texturas lateralmente variables), seguida por una zona verdosa bien definida de más de 0.5 cm de espesor (Zona II), donde abundan poblaciones filamentosas de cianobacterias y material particulado en contacto con una subcapa color rojizo a café; posteriormente hay una tercera zona central de aproximadamente 2 cm de espesor (Zona III) caracterizada por una laminación regular y homogénea de coloraciones claras, cafés y verdosas donde abundan diatomeas y cianobacterias. Dicha zona está organizada en laminaciones finas y claras de 100 a 500 μm de espesor que alternan con laminaciones oscuras de 300 a 500 μm de espesor y con una cierta convexidad, siendo más pronunciada mientras más fina es la laminación. También se observa la presencia de inclusiones cristalinas relativamente gruesas en la laminación y de cristales pequeños y uniformes que se ordenan entre los estratos cafés de la parte central e inferior del tapete. La parte inferior de los tapetes (Zona IV) muestra una microcapa más oscura de textura aterciopelada que limita con una capa de grano grueso sin estructura. Las zonas del tapete detectadas por fluorescencia (Figura 5B) muestran las diferencias en la distribución y abundancia relativa en la microbiota a lo largo del tapete, siendo la Zona II la que tiene un mayor contenido de microorganismos y la Zona III la que tiene mayor contenido de calcita. Cabe mencionar que estos tapetes mostraron tener una alta fluorescencia natural en cualquier punto del transecto. Aunque los tapetes microbianos del BSI ostentan un aspecto y textura aparente de hongo, los microorganismos identificados en los tres primeros centímetros del tapete corresponden a morfotipos de cianobacterias, a diatomeas pennadas (en particular de los géneros Amphora y Nitzschia), y en una menor proporción a clorofitas y otras eubacterias no identificadas.


Figura 4. Forma y dimensiones de los tapetes microbianos in situ que caracterizan la zona somera del manantial en BSI. (A) Zona somera del manantial de la localidad BSI. (B) Tapetes circulares que muestran precipitación de CaCO3, principalmente en el centro del tapete. (C) Tapetes estratiformes a lo largo del canal de flujo en BSI.


Figura 5. (A) Corte transversal de un tapete microbiano representativo del BSI irregularmente laminado en bandas verdes y blancas, y mineralizaciones irregulares en zonas discretas (flechas). (B) Fotomicrografía de la autofluorescencia natural del perfil vertical del tapete que muestra una zonación macroscópica. La presencia de bacterias sulfato-reductoras es sólo inferida. Escala en B = 100 μm.

 

4.3. Biosedimentos y microorganismos asociados

La zona analizada del tapete a nivel microscópico se muestra en la Figura 6. La parte más densa del tapete corresponde a la interfase entre la zona 1 y 2 del perfil vertical del tapete. Dicha zona está compuesta por una malla filamentosa constituida por cianobacterias aparentemente del mismo morfotipo y sedimentos subredondeados relativamente grandes y aislados (Figuras 6 A-C); menos frecuente es la ocurrencia de calcita euhedral (de 20 μm de espesor) en asociación con morfotipos cocoides y frústulas de diatomeas, principalmente del género Amphora y Nitzschia (Figura 6D), alineadas subparalelamente a sedimentos redondeados de tamaños variables y asociadas al material polimérico (Figuras 6 E y F). En la región central del tapete se identificaron poblaciones abundantes de clorofitas, entre las cuales también es posible distinguir algunas diatomeas (Figura 6G) y filamentos uniseriados de cianobacterias pertenecientes a Oscillatoriales (Figura 6H). Incluso se observan capas paralelas conformadas por la alineación horizontal de materia orgánica y peloides (Figura 6I) en alternancia con capas claras. En el caso particular de algunos morfotipos filamentosos similares a Phormidium, la precipitación de calcita se observó ya sea como un recubrimiento uniforme a todo lo largo de un filamento, o bien, en forma de cristales aciculares asociados a materia orgánica (Figura 6J). También se detectó la presencia de abundantes filamentos cortos y pequeños (de aproximadamente 2 μm de diámetro y más de 100 μm de longitud) asociados a las cianobacterias filamentosas y hormogonios que podrían corresponder a microorganismos de bacterias azufrosas o inclusive a hifas derivadas de hongos (Figura 6K).

4.4. Matriz Extracelular

El tapete microbiano está estructurado por una malla orgánica irregular a la que se adhieren partículas sedimentarias y material polimérico, por lo que se presume la naturaleza cohesiva de la matriz extracelular (Figura 7A). Además de la alta porosidad en el interior de los tapetes del BSI, en otras regiones de la infraestructura orgánica se observa una textura microgranular heterogénea asociada a cianobacterias filamentosas y cocoides, así como a agregados subesféricos (Figura 7B). El área más estructurada del tapete corresponde a las zonas finamente laminadas, cuyas micrografías SEM exhiben una alineación paralela de fibras orgánicas a las que se adhieren precipitados de calcita y material orgánico más fino (Figura 7C). Los agregados subesferoidales (Figuras 7 B y D), las delicadas estructuras orgánicas rodeadas por calcita euhedral (Figura 7E) y la presencia de largas fibras poliméricas que unen diferentes tipos de precipitados (Figura 7F) se encuentran entre los biosedimentos más característicos de los tapetes microbianos del BSI. Existen fibras orgánicas extensas que muestran una asociación estrecha con diatomeas en áreas con gran cantidad de biofilm (Figura 7G), y donde es posible observar fibras que se proyectan a partir de la parte apical de una diatomea y están asociadas a material polimérico extracelular (EPS) y precipitados amorfos.

Figura 6. Biosedimentos y microbiota representada en el BSI. (A-C) Malla de poblaciones filamentosas, principalmente cianobacterias asociadas a materia orgánica (mo), donde se identificaron partículas sedimentarias (calcita, cal) de diferentes tamaños (flechas). (D-F) Las diatomeas (flechas) se alinean entre sedimentos subredondeados, materia orgánica e inclusiones peloidales. (G-H) Las partes centrales del tapete muestran poblaciones de clorofitas y poblaciones filamentosas de cianobacterias. (I) Las laminaciones claras alternan con peloides (pel) y micropeloides alineados. (J) En algunos filamentos se observó la precipitación lineal de calcita euhedral. (K) Otras poblaciones de filamentos pequeños, cortos y delgados asociados a los filamentos uniseriados son comunes.


Figura 7. Estructura interna de un tapete microbiano de BSI. (A-C) La red tridimensional de la matriz extracelular (mtz) contiene diversos filamentos (fil) y cocoides cianobacterianos (flecha en B), frústulas penadas de diatomeas (dt), así como esférulas (esf) como biosedimentos más comunes asociados a la matriz orgánica (flechas). (D) Típica estructura tridimensional del tapete del BSI que muestra el EPS formado por abundantes fibras poliméricas dispuestas verticalmente que aglutinan biosedimentos subesferoidales, así como pequeños puentes orgánicos horizontales (flechas). (E) Algunos biosedimentos característicos son las microestructuras de colapso de la célula apical (flecha) rodeada por calcita (cal) dispuesta radialmente. (F) Vista lateral de una frústula de diatomea adherida a largas fibras poliméricas (fb) del EPS en el interior del tapete microbiano. (G) Mineralización parcial del EPS (min) sobre biofilm asociado a diatomeas, filamentos y fibras poliméricas.

 

5. Discusión

A diferencia de muchos tapetes microbianos que se forman en ambientes sedimentarios de condiciones extremas, los tapetes microbianos del BSI pertenecen a un ambiente moderado y de condiciones ambientales muy neutras. Es notable que aunque los tapetes del BSI ostenten una apariencia similar en textura, coloración y consistencia a tapetes derivados de ambientes extremos, como los tapetes microbianos de Guerrero Negro, Baja California (Hoehler et al., 2001), los tapetes microbianos de la laguna costera de Lagoa Vermelha en Brasil (Spadafora et al., 2010) o los tapetes hipersalinos del atolón Kiritimati (Schneider et al., 2013), los valores de pH y temperatura reflejan condiciones más bien mesófilas; esto sugiere que dichos parámetros ambientales no son determinantes en el aspecto y la estructura de los tapetes del BSI. Probablemente, más que el pH y la temperatura, el alto grado de mineralización de las aguas del BSI, ricas en iones, sean las que ejerzan una influencia más directa en el gradiente geoquímico y por consiguiente, en la diferenciación textural de los tapetes a nivel de microescala. Es decir, la geoquímica ambiental impacta en la actividad microbiana en estos ambientes, sobre todo considerando las distancias relativamente cortas (en metros) respecto al centro de eflujo y una turbulencia relativamente baja en el manantial del BSI. Estos resultados contrastan con algunos ejemplos de manantiales con un mayor nivel de energía y turbulencia, y frecuentemente de alta salinidad, donde se forman tapetes morfológicamente similares a los del BSI en textura y coloración (Esteve et al., 1992; Spadafora et al., 2010), pero diferentes en el número y espesor de las capas. De acuerdo a la composición de las aguas superficiales (Figura 3), deberían de encontrarse muchos más minerales en la matriz extracelular de los tapetes, ya que la composición de las aguas superficiales indica una alta mineralización (Garza-Castillo, 2006); no obstante, la calcita asociada al biofilm es el único precipitado observado en los tapetes microbianos (Figuras 6 y 7). Al respecto se ha propuesto que el carbonato de calcio es promovido por la actividad metabólica de las comunidades microbianas que favorecen la precipitación (Dupraz y Visscher, 2005; Visscher y Stolz, 2005; Dupraz et al., 2009). La mineralización más abundante ocurre en la zona central del manantial y procede de forma gradual a lo largo del flujo, donde los tapetes muestran mayor grado de calcificación, y la presencia de calcita euhedral como cementante en espacios porosos. A nivel de la infraestructura microscópica, los tapetes muestran una calcificación diferencial, principalmente en zonas donde se detecta la presencia de diatomeas y donde la cantidad de fibras poliméricas es mayor.

En tapetes microbianos recientes se ha documentado la calcificación diferencial del EPS como una consecuencia termodinámica del gradiente de alcalinidad y de la cantidad del EPS producido por fotosíntesis y por la oxidación anaeróbica del sulfuro (Arp et al., 1999, Visscher et al., 2000; Dupraz y Visscher, 2005), ya que la desecación va concentrando los iones adsorbidos en el EPS (Arp et al., 1999; Braissant et al., 2003). En el caso del BSI no hay periodos marcados de inundación/desecación, sino un flujo constante de aguas mineralizadas. Además de cierto grado de calcificación externa e interna del tapete, algunas de las texturas presentes en los tapete de BSI también son similares a texturas y biosedimentos de microbialitas fósiles y recientes, como la malla tridimensional extendida (Figura 7A), las esférulas minerales de tamaño diverso (Figuras 7 A y D), las estructuras apicales de colapso (Figura 7E) y la precipitación puntual de aragonita sobre el EPS (Figura 7E).

Aunque los tapetes del BSI muestreados a lo largo del canal exhiben una precipitación heterogénea en la superficie (Figura 4), a nivel de estructura interna las texturas son homogéneas, aún en zonas donde la turbulencia es mínima (Figura 2, sitio III), pero a nivel individual la mineralización es extensa en las partes centrales de los tapetes. De acuerdo a Pentecost (2005) un factor determinante que promueve la precipitación de carbonatos es precisamente la turbulencia y la remoción fotosintética del CO2, si bien la precipitación de carbonatos es mayoritariamente abiogénica (Pentecost, 2003). Adicionalmente, en aguas saturadas con respecto al CaCO3, la constante evaporación promueve depósitos carbonatados mientras tiene lugar la bioprecipitación de carbonatos (Golubic, 1983, Pentecost et al., 2003; Della Porta, 2015).

Los resultados encontrados en el BSI indican que la mineralización del tapete microbiano es influenciada biológicamente y ocurre a través del atrapamiento y la unión cohesiva de partículas de carbonato. Es probable también que la precipitación puntual de calcita sea inducida biológicamente por el metabolismo microbiano, como en el caso de algunos filamentos de Oscillatoriales. En el caso de filamentos similares a Phormidium sp., se aprecia una distribución regular en la precipitación lineal de calcita (uniforme y del mismo tamaño) a lo largo del filamento (Figura 6K); inclusive la influencia del mucílago en la estabilización y unión de la calcita precipitada es evidente. Es decir, la mayoría de biosedimentos del BSI observados en la matriz orgánica de los tapetes precipitan por las condiciones termodinámicas del microambiente, mientras que la influencia biológica está determinada por la cantidad de biofilm que sirve como sitio de nucleación de calcita y/o de los iones de calcio adsorbidos al biofilm contribuyendo eventualmente a la precipitación (Braissant et al., 2003). La naturaleza cohesiva de las envolturas mucilaginosas de cianobacterias también es un factor esencial durante la acreción de éste tipo de comunidades bentónicas (Stoodley et al., 2002; Dillon y Castenholz, 1999), ya que el mucílago puede actuar como pegamento sedimentario que ayuda a la estabilización del tapete en contra de la erosión, lo que a su vez incrementa su potencial de preservación en el registro fósil (Noffke y Paterson, 2008). Aunque la ubicuidad de cianobacterias en travertinos se ha reconocido desde hace varios años (Pentecost, 1990; Chafetz y Buczynski, 1992, Jones y Renaut, 1996), su relación con microtexturas y biosedimentos en carbonatos está siendo investigada con mayor resolución sólo muy recientemente, sobre todo en ambientes de condiciones ambientales muy extremas; por tanto, localidades de condiciones intermedias y poco turbulentas como las que imperan en BSI podrían ser utilizados como referentes. En los tapetes asociados a travertinos del BSI, las cianobacterias son contribuyentes importantes de la matriz orgánica a la que se adhieren los sedimentos; aunque se reconoce que las cianobacterias tienen una influencia mínima en la precipitación de carbonatos (Pentecost, 2005; Golubic et al., 2008). En general, la infraestructura o textura de los carbonatos es impactada de manera significativa por procesos biológicos a diferentes escalas.

El hecho de encontrar gran cantidad de cianobacterias es común, ya que además de llevar a cabo la producción primaria por medio de la fotosíntesis, son pioneras colonizando sustratos. Muy probablemente existen componentes heterotróficos y microaerofílicos de otras poblaciones bacterianas no detectadas que seguramente también forman parte importante del gradiente biogeoquímico en los tapetes del BSI. El hecho de que las diatomeas se encuentren alineadas en cada capa de los tres centímetros superiores del tapete, y en asociación directa tanto con otras poblaciones microbianas (filamentos y clorofitas), así como con sedimentos del mismo tamaño (Figuras 6 E, F, G, y J) puede ser relevante a nivel estructural del tapete. Además, las diatomeas alternan espacialmente con calcita y con cianobacterias en la zona central del tapete, la cual corresponde también a la zona más estructurada. Las diatomeas forman asociaciones con cianobacterias y con otras bacterias (Figura 6K), incluyendo filamentos cortos no identificados así como muchas otras poblaciones bacterianas, entre ellas bacterias sulfatoreductoras que deben identificarse por métodos moleculares. Asociadas a las diatomeas abundan fibras de mucopolisacáridos como agentes cohesivos de la matriz extracelular; dichas fibras poliméricas contienen sedimentos así como frústulas y esférulas orgánicas de diferentes diámetros, como se ilustra en la Figura 7. Las diatomeas tienen también una relación estrecha con la materia orgánica, al menos de manera superficial; aunque no es claro que influyan en la precipitación de calcita, es probable que en el proceso de atrapamiento y unión mineral, sí. Estas fibras orgánicas presentan un arreglo muy estructurado que pudiera ser importante en la laminación del tapete microbiano y en su resistencia a la disrupción física. Por su abundancia, su distribución y por los biosedimentos asociados a ellas, las diatomeas son importantes tanto a nivel estructural como en el aporte de material polimérico del tapete. Inclusive las diatomeas se reportan continuamente en la gran mayoría de microbialitas modernas asociadas a la precipitación de carbonato de calcio (Winsborough y Golubic, 1987; Winsborough, 2000; Chacon et al., 2011; Della Porta, 2015). Pero aun cuando la presencia de diatomeas en tapetes microbianos es común, sobre todo en microbialitas de ambientes modernos (Awramik y Riding, 1988; Winsborough et al., 1994; Winsborough, 2000; Gischler et al., 2008; Chacon et al., 2011; Della Porta, 2015) su papel en los procesos de atrapamiento, precipitación y/o estabilización de sedimentos continúa siendo poco reconocido. Finalmente, como organismos fotosintéticos, las diatomeas son componentes clave en la caracterización de tapetes microbianos, pues además de su papel en la estabilización y estructura del tapete, se pueden utilizar como indicadores batimétricos de la productividad y en la reconstrucción de paleoclimas (Bonny y Jones, 2008).

 

6. Conclusiones

Aunque el BSI es un ambiente mesófilo con un pH y temperaturas moderadas, las características especiales respecto a la hidrogeoquímica del BSI son críticas para el desarrollo del pantano y de las especies que en él habitan, incluyendo la vida microbiana. Si bien los precipitados minerales en BSI muestran una distribución heterogénea en la matriz extracelular, la mayoría se concentra en la parte central de los tapetes en una zona donde la laminación es más uniforme y fina. En estos tapetes se observó que la calcificación no está asociada directamente a la influencia de un sólo tipo de filamentos, y que la cantidad de biofilm y la concentración de poblaciones filamentosas influye más en procesos de unión y atrapamiento de precipitados carbonatados.

La caracterización de tapetes microbianos derivados de ambientes continentales es importante para identificar los factores ecológicos determinantes en la distribución y estructura de comunidades microbianas, así como, para reconocer microtexturas biosedimentarias y patrones de biomineralización relacionada con el ambiente de aguas circundantes. Los aspectos biosedimentológicos caracterizados en BSI también tienen relevancia astrobiológica para la búsqueda de biosignaturas como una herramienta que permite analizar comunidades y comparar microscópicamente sedimentos fósiles y recientes derivados de una gran diversidad de ambientes sedimentarios. Debido a que son fácilmente reconocibles, aislables y sujetos a una gran variedad de técnicas y análisis, los tapetes microbianos de cianobacterias representan ya en sí mismos un gran cúmulo de biosignaturas relevantes en astrobiología (Chacon, 2010), al mismo tiempo que sirven también como análogos modernos de estromatolitos o de microbialitas porque reflejan una complejidad de factores y variaciones diurnas bien marcadas a lo largo de la verticalidad del tapete. Aunque probablemente los tapetes de cianobacterias no sean relictos o análogos modernos de los primeros estromatolitos, si constituyen microecosistemas que proporcionan modelos para identificar mecanismos de acreción de estas estructuras organosedimentarias; además su análisis provee sin duda otra vía para estudiar interacciones microbio-mineral dentro de una matriz orgánica tan compleja como el EPS. Estas características, además de vincularlos con los estromatolitos, hacen que los tapetes sean reservorios dinámicos de una gran cantidad de biosignaturas microbianas útiles en paleontología y astrobiología.

 

Agradecimientos

El presente proyecto ha sido apoyado gracias al financiamiento del proyecto de investigación financiado por PROMEP-103-5/08/2523 (SEP), por CONACyT-P2-83500-CB y por el proyecto PAICyT-CT 1381-12 de la Universidad Autónoma de Nuevo León (UANL). Agradecemos de manera muy especial la amable invitación e iniciativa de los Editores, las atinadas sugerencias de los árbitros, y el profesional y paciente trabajo del equipo de revisión técnica del Boletín de la Sociedad Geológica Mexicana en cada paso del proceso.

 

Referencias

Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W., 2006, Stromatolite reef from the Early Archaean era of Australia: Nature, 441, 714-718.

Anagnostidis, K., Komárek, J., 1988, Modern approach to the classification system of cyanophytes 3 – Oscillatoriales: Archiv für Hydrobiologie, 80 (Algological Studies 50-53), 327-472.

Anderson, B.D., 1984, El manantial hidrotermal Baño de San Ignacio en Linares, N.L., México: Linares, N.L., Facultad de Ciencias de la Tierra, UANL, Reporte Técnico-FCT, 19 p.

Anderson, B.B., Aguilera, V.M., 1986, Push faults, a conceptual model for groundwater exploration in the Sierra Madre Oriental foreland: Zentralblatt für Geologie und Paläontologie 9-10, 1149-1160.

Arp, G., Reimer, A. and Reitner, J., 1999, Calcification in cyanobacterial biofilms of alkaline salt lakes: European Journal of Phycology, 34, 393-403.

Awramik, S.M., Margulis, L., 1977, Paleobiology of Stromatolites, en Ponnamperuma, C. (ed.), Chemical evolution of the Early Precambrian: New York, Academic Press, 111-131.

Awramik, S.M., Riding, R., 1988, Role Of Algal Eukaryotes In Subtidal Columnar Stromatolite Formation: Proceedings Of The National Academy Of Sciences Of The United States Of America, 85, 1327-1329.

Barbarín, J.M., Hubberten, H.W., Meiburg, P., Rodríguez de Barbarín, C.O., 1988, Hidrogeoquímica de las aguas termales del Baño San Ignacio, Linares, Nuevo León, México: Linares, N.L., Facultad de Ciencias de la Tierra, UANL, Actas de la FCT, UANL 3, 99 p.

Benítez González, M.C., 1997, Contribución a la caracterización ecológica y socio-económica de la región Baño San Ignacio, Linares, Nuevo León, México: Linares, N.L., Facultad de Ciencias Forestales, UANL, Tesis de Maestría, 137 p.

Black, M., 1933, The algal sediments of Andros Island, Bahamas: Royal Society of London Philosophical Transactions Serie B, 122, 165-192.

Blinn, D.W., Hevly, R.H., Davis, O.K., 1994, Continuous Holocene record of diatom stratigraphy, paleohydrology, and anthropogenic activity in a spring-mound in Southwestern United States: Quaternary Research, 42, 197-205.

Bonny, S., Jones, B., 2008, Experimental precipitation of barite (BaSO4) among streamers of sulfur-oxidizing bacteria: Journal of Sedimentary Research, 78, 357-365.

Braissant, O., Cailleau, G., Dupraz, C., Verrecchia, A. P., 2003, Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids: Journal of Sedimentary Research, 73, 485-490.

Burne, R.V., Moore, L.S., 1987, Microbialites: organosedimentary deposits of benthic microbial communities: Palaios, 2, 241-254.

Cantú, C., Guerra, R., González, F., Rocha, L., 2001, Programa de Manejo del área Natural Protegida Baño de San Ignacio, Nuevo León, México: Monterrey, Subsecretaría de Ecología, SEDUOP, Gobierno del Estado de Nuevo León, México, 125 p.

Chacon, E., 2010, Microbial Mats as a Source of Biosignatures, en Seckback, J., Oren, A. (eds.), Microbial Mats: Heidelberg, Springer, 151-181.

Chacon, E., Berrendero-Gomez, E., Montejano, G., Malda-Barrera, J., Sanchez-Ramos, M.A., 2011, Are Cyanobacterial Mats the precursors of stromatolites?, enSeckback, J., Tewari, V. (eds), Stromatolites: Interactions of Microbes with Sediments: Heidelberg, Springer 313-341.

Chafetz, H.S., Buczynski, C., 1992, Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscocity on mineralogy: Journal of Sedimentary Petrology, 61, 226-231.

Chávez-Cabello, G., Cossío-Torres, T., Peterson-Rodríguez, R., 2004, Change of the maximum principal stress during the Laramide Orogeny in the Monterrey Salient, northeast Mexico, enSussman, A.J., Weil, A.B. (eds.), Orogenic curvature; integrating palomagnetic and structural analyses: Geological Society of America, Special Paper 383, 145-160.

Cohen, Y., Rosenberg, E., 1989, Microbial Mats: Physiological Ecology of Benthic Microbial Communities: Washington, D.C., American Society of Microbiology, 494 p.

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M., 1995, Microbial biofilms: Annual Review of Microbiology, 49, 711-745.

De Cserna, Z., 1989, An outline of the geology of Mexico, en Bally, A.W., Palmer, A.R. (eds.), Decade of North American Geology, Volume A: The Geology of North America – An overview, Boulder, Geological Society of America, 233-264.

Della Porta, G., 2015, Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature, en Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T., Vining, B.A. (eds), Microbial Carbonates in Space and Time: Geological Society of America, Special Publication, 418, 16-68.

Des Marais, D. J., 2003, Biogeochemistry of Hypersaline Microbial Mats: Biological Bulletin, 204, 160-167.

Dillon, J.G., Castenholz, R.W., 1999, Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: Implications for early photosynthetic life: Journal of Phycology, 35, 673-681.

Dupraz, C., Visscher, P.T., 2005, Microbial lithification in marine stromatolites and hypersaline mats: Trends Microbiology, 13, 429-438.

Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., Visscher, P.T., 2009, Processes of carbonate precipitation in modern microbial mats: Earth Science Reviews, 96, 141-162.

Esteve, I., Martínez-Alonso, M., Mir, J., Guerrero, R., 1992, Distribution, Typology and Structure of Microbial Mat Communities in Spain: a preliminary study: Limnetica, 8, 185-195.

Fenchel, T., King, G.M., Blackburn, T.H., 1998, Bacterial Biogeochemistry: London, Academic Press, 307 p.

Garza-Castillo, A.M., 2006, Caracterización hidrogeoquímica de las aguas termales del Baño San Ignacio, Linares, Nuevo León, México: Linares, N.L., Facultad de Ciencias de la Tierra, UANL, Bs. Tesis, 96 p.

Geitler, L., 1932, Cyanophyceae. Rabenhorst´s Kryptogamen Flora 14, Leipzig, Akademische Verlagsgesellschaft, 1196 p.

Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, W.E., Reineck, H.E., 1993, Contribution of microbial mats to sedimentary surface structures: Facies, 29, 61-74.

Gischler, E., Gibson, M.A., Oschmann, W., 2008, Giant Holocene Freshwater Microbialites, Laguna Bacalar, Quintana Roo, Mexico: Sedimentology, 55, 1293-1309.

Goldhammer, R.K., 1999, Mesozoic sequence stratigraphy and paleogeographic evolution, Northeast Mexico, en Bartolini, C., Wilson, J.L., Lawton, T.F. (eds.), Mesozoic Sedimentary and Tectonic History of North-Central Mexico, Geological Society of America, Special Paper 340, 1-58.

Golubic, S., 1983, Stromatolites, fossil and recent, a case history, enWestbroek, P., De Jong, E.W. (eds), Biomineralization and Biological Metal Accumulation: Dordrecht, D. Reidel Publishing Company, 313-326.

Golubic, S., Violante, C., Plenkovic, A., Grgasovic, T., 2008, Travertines and calcareous tufa deposits: an insight into diagenesis: Geologia Croatica, 61, 363-378.

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: USA, U. S. Geological Survey, Water Supply Paper 2254.

Hoehler, T.M., Bebout, B.M., Des Marais, D.J., 2001, The role of microbial mats in the production of reduced gases on the early Earth: Nature, 412, 324-327.

Hoffmann, M., Rodríguez de Barbarín, C.O., Werner, J., 1992, Investigaciones geológicas e hidrogeológicas en el área del Baño San Ignacio, Linares, N.L., México: Linares, N.L., Facultad de Ciencias de la Tierra, UANL, Actas de la Facultad de Ciencias de la Tierra, UANL Linares 7, 171-176.

Jones, B., Renaut, R.W., 1996, Morphology and growth of aragonite crystals in hot-spring travertines at Lake Bogoria, Kenya Rift Valley: Sedimentology, 43, 323-340.

Komárek, J., Anagnostidis, K., 1999, Cyanoprokaryota Teil 1: Chroococcales, en Ettl, H., Gärtner, G., Heynig, G., Mollenhauer, D. (eds.), Süßwasserflora von Mitteleuropa: Band 19/1, Spektrum Akadamischer Verlag, Heidelberg, 548 p.

Komárek, J., Golubic, S., 2005, Proposal for unified nomenclatural rules for Cyanobacteria vs. Cyanophytes: “Cyano-Guide”, enHoffmann, L. (ed.), Nomenclature of Cyanophyta/Cyanobacteria: roundtable on the unification of the nomenclature under the Botanical and Bacteriological Codes: Archives of Hydrobiology/Algological Studies-(Cyanobacterial Res. 6), 117, 17-18.

López-Ramos, E., 1982, Geología de México. Tomo II: México, D. F., Consejo Nacional de Ciencia y Tecnología, 454 p.

Lowe, D.R., 1980, Stromatolites 3400-Myr old from the Archean of Western Australia: Nature, 284, 441-443.

Mudd, G.M., 2000, Mound springs of the Great Artesian Basin in South Australia: a case study from Olympic Dam: Environmental Geology, 39, 463-476.

Noffke, N., Eriksson, K.A., Hazen, R.M., Simpson, E.L., 2006, A new window into Early Archean life: Microbial mats in Earth´s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa): Geology, 34(4), 253-256.

Noffke, N., Paterson, D., 2008, Microbial interactions with physical sediment dynamics, and their significance for the interpretation of Earth's biological history: Geobiology, 6, 1-4.

Pentecost, A., 1990, The formation of travertine shrubs: Mammoth Hot Springs, Wyoming: Geological Magazin, 127, 159-168.

Pentecost, A., 2003, Cyanobacteria associated with hot spring travertines: Canadian Journal of Earth Sciences, 40, 1447-1457.

Pentecost, A., 2005, Travertine. Berlin-Heidelberg-New York, Springer, 445 p.

Pentecost, A., Jones, B., Renaut, R.W., 2003, What is hot spring?: Canadian Journal of Earth Sciences, 40,1443-1146.

Periódico Oficial del Gobierno de Nuevo León (POENL), 2000, Tomo CXXXVII, Monterrey, N.L., viernes 24 de noviembre de 2000. No. 141. p. 94.

Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C.P., Macintyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F., DesMarais, D.J., 2000, The role of microbes in accretion, lamination and early lithification of modern marine stromatolites: Nature, 406, 989-992.

Rodríguez de Barbarín, C.O., Barbarín, J.M., 1993, Influencia de la geología regional, los ciclos estacionales y los asentamientos humanos en la caracterización de las aguas superficiales de la cuenca de Linares-Cerro Prieto, N.L., México: Geofísica Internacional 32, 221-235.

Ruiz, M.A., 1990, Zur Gliederung, Verbreitung und oekologischen Bewertung der Boeden in der Region von Linares, N.L., Mexiko: Gottinger Beitraeger zur Land- und Forstwirstschaft in den Tropen und Subtropen, 56, 81-96.

Ruiz-Martinez, M.A., Werner J., 1997, Research into the Quaternary sediments and climatic variations in NE Mexico: Quaternary International, 43/44, 145-151.

Schidlowski, M., Aharon, P., 1992, Carbon cycle and carbon isotope record: Geochemical impact of life over 3.5 Ga of Earth history, en Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds), Early Organic Evolution: Implications for Mineral and Energy Resources: Berlin, Springer, 147-175.

Schneider, D., Arp, G., Reimer, A., Reitner, J., Daniel, R., 2013, Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific: Public Library of Science PLoS ONE, 8(6), 1-14.

Secretaría de Programación y Presupuesto, 1993, Carta Hidrológica de Aguas Superficiales G14-11, escala: 1:250,000.

SEDUOP/FCF-UANL, 2000, Programa de manejo del área natural protegida Baño San Ignacio. Gobierno del Estado de Nuevo León, Monterrey, N.L. 76 p.

Seibertz, E., 1998, Evolution of the Mid-Cretaceous in Northern Mexico under paleoceanographic aspects: Revista Mexicana de Ciencias Geológicas, 15, 87-90.

Secretaría de Ecosistemas Medio Ambiente Recursos Naturales (SEMARNAT), 2010, Estrategia Mexicana de Comunicación, Educación, Concienciación y Participación (CECOP) en Humedales 2010-2015, Primera Edición: SEMARNAT, México. 37 p.

Sohl, N.F, Martínez, R.E., Salmerón-Ureña, P., Soto-Jaramillo, F., 1991, Upper Cretaceous, en Salvador, A. (ed.), The Gulf of Mexico Basin: Boulder, Colorado, Geological Society of America, The Geology of North America, Volume J, 205-215.

Spadafora, A., Perri, E., McKenzie, J.A., Vasconcelos, C., 2010, Microbial biomineralization processes forming modern Ca:Mg-carbonate stromatolite, Sedimentology, 57, 27-40

Stal, L.J., Caumette, P., 1994, Microbial Mats; Structure, Development and Environmental Significance. NATO ASI Series: Springer-Verlag, Berlin. 463 p.

Stal, L.J., 1995, Physiological ecology of cyanobacteria in microbial mats and other communities: New Phytologist, 131, 1-32.

Stolz, J.F., 2000, Structures of microbial mats and biofilms, en Riding, R.E., Awramik, S.M. (eds.), Microbial Sediments: Springer-Verlag, Berlin, 1-8.

Stoodley, P., Sauer, K., Davies, D.G., Costerton, J.W., 2002, Biofilms as complex differentiated communities: Annual Reviews in Microbiology, 56, 187-209.

Toth, J., 1999, Groundwater as a geologic agent: An overview of the causes, processes, and manifestations: Hydrogeology Journal, 7, 1-14.

Treviño-Cázares, A., Ramírez-Fernández, J.A., Velasco-Tapia, F., Rodríguez-Saavedra, P., 2005, Mantle-xenoliths and their host magmas in the Eastern Alkaline Province: International Geology Review, 47, 1270-1286.

van der Meer, M.T. J., Schouten, S., Bateson, M.M., Nubel, U., Wieland, A., Kuhl, M., de Leeuw, J. W., Sinninghe Damste, J.S., Ward, D.M., 2005, Diel Variations in Carbon Metabolism by Green Nonsulfur-Like Bacteria in Alkaline Siliceous Hot Spring Microbial Mats from Yellowstone National Park: Applied Environmental Microbiology, 71, 3978-3986.

Van Gemerden, H., 1993, Microbial mats: a joint venture: Marine Geology, 113, 3-25.

Visscher, P.T., Stolz, J. F., 2005, Microbial mats as bioreactors, populations, processes, and products: Palaeogeography, Palaeoclimatology and Palaeoecology, 219, 87-100.

Visscher, P.T., Reid, R.P., Bebout, B.M., 2000, Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites: Geology, 28, 919-922.

Westall, F., De Ronde, C.E.J., Southam, G., Grassineau, N., Colas, M., Cockell, C., Lammer, H., 2006, Implications of a 3.472-3.333 Ga-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth: Philosophycal Transactions of the Royal Society of London, 361, 1857-1875.

Winsborough, B.M., 2000, Diatoms and benthic microbial carbonates, en Riding, R.E., Awramik, S.M. (eds.), Microbial Sediments: Springer-Verlag, Berlin, 76-83.

Winsborough, B. M., Golubic, S., 1987, The role of diatoms in stromatolite growth: two examples from modern freshwater settings: Journal of Phycology, 23, 195-201

Winsborough, B.M., Seeler, J-S, Golubić, S., Folk, R.L., Maquire, B., 1994, Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from Northeastern Mexico, enBertand-Sarfati, J., Monty, C. (eds.), Phanerozoic Stromatolites II. Kluwer Academic Publishers, Amsterdam, 71-100.


 

Manuscrito recibido: Junio 16, 2014
Manuscrito corregido recibido: Enero 6, 2015
Manuscrito aceptado: Febrero 13, 2015

 

Boletín de la Sociedad Geológica Mexicana

Volumen 67, núm. 3, 2015, p. 433-446

http://dx.doi.org/10.18268/BSGM2015v67n3a7

Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes

Milton Villacís-García1, Mariana Ugalde-Arzate1, Katherine Vaca-Escobar1, Mario Villalobos1,*, Rodolfo Zanella2, Nadia Martínez-Villegas3

1 Environmental Bio-Geochemistry Group, Earth Sciences Graduate Program, Geochemistry Department, Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad Universitaria, México 04510, D.F.
2 Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad Universitaria, México 04510, D.F.
3 IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José No. 2055, Col. Lomas 4a Secc., 78216 San Luis Potosí, SLP, México.

* This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Abstract

Iron oxyhydroxides, such as goethite and ferrihydrite, are highly abundant and ubiquitous minerals in geochemical environments. Because of their small particle sizes, their surface reactivity is high towards adsorption of anions and cations of environmental relevance. For this reason these minerals are extensively studied in environmental geochemistry, and also are very important for environmental and industrial applications. In the present work, we report the synthesis and characterization of goethite and ferrihydrite of controlled particle sizes. It has been shown that surface reactivity of these minerals is highly dependent on crystal sizes, even after normalizing by specific surface area. In order to investigate the reasons for this changing reactivity it is necessary to work with reproducible particle sizes of these minerals. We investigated here the experimental conditions to synthesize goethite samples of four different specific surface areas: ca. 40, 60, 80 and 100 m2 g-1, through the controlled speed of hydroxide addition during hydrolysis of acid Fe(III) solutions. In the case of 2-line ferrihydrite, samples with two different particle sizes were prepared by changing the aging time under the pH conditions of synthesis (pH = 7.5). The synthesized minerals were identified and characterized by: X-ray diffraction, N2adsorption BET specific surface area, transmission electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and maximum Cr(VI) adsorption.

Keywords: synthesis, iron oxides, specific surface area, goethite, ferrihydrite, particle size.

 

Resumen

Los oxihidróxidos de hierro, como la goetita y ferrihidrita, son minerales altamente abundantes y ubicuos en ambientes geoquímicos. Su reactividad superficial es alta hacia la adsorción de aniones y cationes de relevancia ambiental dados sus pequeños tamaños de partícula. Por esta razón estos minerales son estudiados extensamente en geoquímica ambiental, y también son muy importantes en aplicaciones ambientales e industriales. En el presente trabajo reportamos la síntesis y caracterización de goetitas y ferrihidritas de tamaño de partícula controlado dado que se ha demostrado que su reactividad superficial es altamente dependiente de sus tamaños cristalinos, aún después de normalizar por su área superficial específica. Para investigar las razones de estos cambios de reactividad es necesario trabajar con tamaños de partícula reproducibles de estos minerales. Aquí presentamos las condiciones experimentales para sintetizar muestras de goetita de cuatro diferentes áreas superficiales específicas: ca. 40, 60, 80 y 100 m2 g-1, a través de la velocidad controlada de adición de hidróxido durante la hidrólisis de soluciones ácidas de Fe(III). En el caso de ferrihidrita de 2 líneas, se prepararon muestras con dos tamaños diferentes de partícula cambiando el tiempo de añejamiento bajo las condiciones de pH de síntesis (pH=7.5). Los minerales sintetizados se identificaron y caracterizaron por: difracción de rayos X, área superficial específica por adsorción de N2 BET, microscopía de transmisión electrónica, espectroscopía de infrarrojo de transformada de Fourier con reflectancia total atenuada, y adsorción de Cr(VI) máxima.

Palabras clave: síntesis, óxidos de hierro, área superficial específica, goetita, ferrihidrita, tamaño de partícula.

 

1. Introduction

Iron oxides, oxyhydroxides and hydroxides (henceforth referred to as “iron oxides” for simplicity) are widely distributed in soils, rocks, lakes, rivers, on the seafloor, air and in organisms (Adegoke et al., 2013). Because of their abundance and reactivity, these minerals play an important role and are extensively studied in numerous disciplines, including environmental science, geochemistry, geology, engineering and health sciences (Schwertmann and Cornell, 2007), in an attempt to understand their different physical, chemical and mineralogical properties. According to Guo and Barnard (2013) there are 14 species of iron oxides, ten of which occur in nature, the most abundant being goethite (α-FeOOH), hematite (α-Fe2O3) and magnetite (Fe3O4), followed by ferrihydrite [Fe10O14(OH)2] (Michel et al., 2007), maghemite (γ-Fe2O3) and lepidocrocite (γ-FeOOH). These iron oxides are responsible for the mobility and fate of numerous chemical species in soils and aquatic environments through adsorption processes, particularly onto goethite and ferrihydrite (Maji et al., 2008; Swedlund et al., 2009; Villalobos and Antelo, 2011) or through adsorption followed by reduction mechanisms as is the case of susceptible species on magnetite (Villacís-García et al., 2015).

The present work reports the laboratory procedures required for the synthesis of goethite and ferrihydrite of controlled particle sizes, and their essential characterization, especially focusing on their surface properties. This is important because both minerals have shown considerable changes in surface reactivity as a function of their particle size, often following trends that are non-intuitive or not easily predictable. Therefore, working with samples of controlled particle sizes is essential to ultimately understand the relationship between particle size and reactivity as a function of morphological and surface structural changes.

Goethite is an abundant constituent of terrestrial soils, sediments and oolitic iron ores, being a major weathering product of all rock types. It is predominant in younger sedimentary deposits, giving the rocks a yellow color (Prasad et al., 2006). Goethite particles show high specific surface areas and strong affinities for surface binding of oxyanions and heavy metals (Fendorf et al., 1997; Villalobos and Leckie, 2001; Antelo et al., 2005; Granados-Correa et al., 2011; Perelomov et al., 2011).

Synthetic goethite nanoparticles are acicular and often aggregated into bundles or rafts of oriented crystallites (Varanda et al., 2002). The precipitation technique is probably the simplest and most efficient chemical pathway to obtain iron oxide particles. Iron oxides (goethite, magnetite or maghemite) are usually prepared by addition of alkali to iron salt solutions and keeping the precipitated solids in suspension for aging (Guyodo et al., 2003; Jaiswal et al., 2013).

In recent years, important differences in the reactivity of goethite have been found in an inverse relationship with its specific surface area (SSA). There appears to be two categories of goethite: ideal crystals with high specific surface area (> 80 m2 g-1) that behave equally when adsorption data are normalized by SSA; and goethites of low specific surface area (< 80 m2 g-1), which show progressively higher surface reactivity as SSA decreases (Villalobos and Perez-Gallegos, 2008). The controlled synthesis of goethites of desired SSAs is therefore useful to investigate this anomalous geochemical behavior, which is apparently caused by changes in the distribution of the goethite crystal faces exposed because some faces are considerably more reactive than others (Villalobos et al., 2009; Salazar-Camacho and Villalobos, 2010).

One of the most popular procedures for goethite preparation in the laboratory is the precipitation method proposed by Atkinson et al. (1967) and variations from it. The mechanisms of goethite formation involves deprotonation and hydrolysis of Fe(III) in solution, followed by nucleation and crystallization (Kosmulski et al., 2004). The length/width ratio of the crystals varies widely as a result of changes in precipitation conditions; for example, the crystal size of goethite decreased as the temperature fell from 70 to 4 °C, increasing the specific surface area (SSA) by an order of magnitude (Schwertmann et al., 1985; Montes-Hernandez et al., 2011). Conversely, stirring conditions can promote the growth of goethite crystals (Schwertmann and Stanjek, 1998). More recently, the use of surfactants and other organic compounds for goethite synthesis has also been applied to control its size and shape (Zamiri et al., 2014).

However, it is clear that even small changes in one chosen method, such as the Atkinson et al. (1967) method, may have important repercussions on the resulting particle sizes, as evaluated by specific surface area (SSA). Table 1 shows a compilation of such changes with resulting SSA values varying from 8 to 105 m2 g-1. In the present work, we adopted the Atkinson et al.(1967) method and investigated the effect of base addition rate on the resulting goethite SSA at fixed volumes, concentrations and other synthetic conditions; evaluating in tandem the reproducibility of the results.

In the case of ferrihydrite (FH), this nanomineral is precursor to the other prevalent Fe(III) oxide minerals, goethite and hematite (Schwertmann et al., 2004; Cudennec and Lecerf, 2006), which form by aggregated, oriented crystal growth of ferrihydrite nanoparticles (Burrows et al., 2013). However, ferrihydrite itself is widespread as suspended material in the aqueous fraction of soils and weathered rocks, in precipitates around cold and hot springs, especially those supporting iron-metabolizing bacteria, and in acid mine effluents, especially as they neutralize (Childs, 1992; Fortin and Langley, 2005).

In the goethite synthesis, ferrihydrite is the initial precipitate that results from the rapid hydrolysis of Fe(III) solutions, before aging to goethite at higher temperature. The crystal size and order of ferrihydrite are usually lower than those of any other Fe oxide except feroxyhyte and schwertmannite, and it is considered a nanomineral because its particle sizes range only from 2 to 9 nm (Hiemstra, 2013). For this reason ferrihydrite shows very broad and few X-ray diffraction (XRD) bands, and the two particular varieties of this mineral are named according to the number of XRD bands they show: 6-line ferrihydrite shows 6 – 8 broad peaks and a higher crystallinity, and 2-line ferrihydrite shows only two very broad peaks and a lower crystallinity, but a higher reactivity. In natural environments all forms of ferrihydrite are widespread usually as young Fe oxides, and they play an important role as active adsorbents as a result of their very high SSA (Schwertmann and Cornell, 2007). Nevertheless, the actual reactive SSA is not known because upon drying for the experimental BET nitrogen adsorption determination, ferrihydrite nanoparticles aggregate considerably and thus yield values that are considerably lower than those found under aqueous suspension conditions. To date, no experimental method has been devised to determine the SSA of ferrihydrite under aqueous conditions.

Some of the conditions imposed in synthetic procedures to obtain ferrihydrite are compiled in Table 2, but systematic work has not been performed to determine resulting particle sizes or SSAs as a function of experimental conditions.

We limited the present research to the controlled synthesis of 2-line ferrihydrites because the reactivity of the more crystalline 6-line variety is expected to be very different. Given the difficulties for accurate determinations of particle sizes and SSAs of ferrihydrite in aqueous suspension, we complemented TEM observations with indirect parameters related to surface reactivity differences.

Table 1. Summary of conditions commonly employed in goethite syntheses.

aAs determined by the nitrogen-adsorption BET method.

Table 2. Summary of synthesis conditions reported for 2-line ferrihydrite synthesis.

aAs determined by the nitrogen-adsorption BET method.
bValue used for surface complexation modeling purposes, but is not the experimental BET value.

 

2. Materials and methods

2.1. Goethite synthesis.

Goethite was synthesized following the basic protocol of Atkinson et al. (1967), to yield 8 – 9 g of goethite: 50 g of Fe(NO3)3.9H2O (Sigma-Aldrich) were weighed and dissolved in 825 g of deionized water (Milli-Q). Water used for synthesis solutions was previously boiled and bubbled in N2 to eliminate CO2. Separately, 200 ml of a 2.5M NaOH (Sigma-Aldrich) CO2-free solution were prepared. This NaOH solution was poured over the Fe(III) solution under N2 flow, while continuously stirring. From the conditions compiled in Table 1 it was clear that similar pH, aging times and temperatures produced goethites with important differences in SSA. The small goethite particles synthesized by Hiemstra and van Riemsdijk (1996) by slow addition of base gave us a clue about the importance of the speed of NaOH addition in the hydrolysis of aqueous Fe(III) and the resulting particle sizes, so we focused on this parameter for the current investigation. The speed of base addition into the Fe(III) solution, was inversely proportional to the resulting goethite SSA (Table 3). For example, for the lowest SSA obtained through this control parameter, the complete NaOH solution was added at once in the reactor, and for the highest SSA values, the base addition rate was 1 mL min-1. After final NaOH addition (pH >12), the stirring was maintained for 30 min. The reactor was then placed in an oven at 60 ºC for 24 h, to allow the initial ferrihydrite precipitate to age to goethite. Goethite precipitates were repeatedly washed, shaken, and centrifuged. Dilute HNO3 was used to drop the pH to 7 for the initial washes. For the sequential washes, deionized water was used until a conductivity value of 0.1 μS cm-1was obtained.

Table 3. Rate of NaOH addition and stirring used to obtain goethites of varying SSA.

aNitrogen adsorption BET values from replicates of three to five independent syntheses.
b Stirring speed promotes particle disaggregation, and thus formation of small final particle sizes. 60 rpm is the minimum speed for the suspension to rotate as a whole at this total volume, and which helps to yield larger particles.

 

2.2. Ferrihydrite synthesis.

100 mL of a 0.2M FeCl3∙6H2O (Sigma-Aldrich) were prepared and placed in a 250 mL Nalgene flask. The solution was vigorously stirred while a 1M NaOH solution was added relatively quickly to bring the pH to 6.5; the NaOH addition was continued dropwise until the pH reached a value of 7.5 (Schwertmann and Cornell, 2007; Li et al., 2011).

The resulting suspension was divided into two batches that were named FFh and AFh, for fresh and aged ferrihydrites, respectively. The former was immediately and repeatedly washed, centrifuged and decanted until the conductivity was about 10 µS cm-1and freeze dried (dialysis was avoided in order to minimize further particle aging). The AFh batch was aged for 48 h at room temperature with continuous stirring, after which it was also washed and freeze-dried as above. Both products were stored as dry solids at room temperature.

 

2.3. X-ray Diffraction Identification

Goethite and ferrihydrite X-ray powder diffraction (XRD) analyses were performed using a Shimadzu - XRD-6000 diffractometer equipped with a copper tube and a graphite monochromator. Samples were disaggregated with an agate pestle and mortar, and were mounted in aluminum holders and placed in the diffractometer. XRD patterns were collected in an angular range of 2Ɵ from 4° to 70° with a rate of 1° min-1. Phase identification was made with a PDF database using Shimadzu software.

 

2.4. Attenuated Total Reflectance-Fourier Transform Infrared (ATF-FTIR) Measurements

The goethite and ferrrihidryte dried samples were characterized using an infrared spectrometer Nicolet-IS10, THERMO-SCIENTIFIC with a diamond GladiATR accessory from PIKE Technology, using the Omnic 9 software, which allows IR analysis in a wavelength range between 450 and 4000 cm-1. For each analysis, a background of the free diamond crystal was collected and used to correct for the presence of the internal reflection element and air. A small quantity of each dry sample was placed over the diamond surface.

 

2.5. Specific Surface Area (SSA) Determination.

The specific surface areas (SSAs) of goethite and ferrihydrite were calculated by the Brunauer-Emmett-Teller (BET) method on a Quantachrome Autosorb 1. Before nitrogen adsorption, 200 – 250 mg of the dry and (mortar-) dispersed solid powders were placed on a Quantrachrome 9 mm cell, and outgassed at 105 °C for 24 h to remove adsorbed water. Nitrogen adsorption isotherms were programmed with a 44 data point collection, of which the first 11 were used for SSA calculations by using a nonlinear least-squares regression method to fit the interval data in the experimental isotherms.

 

2.6. Transmission electron microscopy (TEM).

Transmission electron microscopy (TEM) images were obtained using a Tecnai G2 F30 S-Twin TEM instrument. The TEM operates at 300 kV using a field emission gun in Schottky mode as an electron source. The samples for TEM analysis were prepared by placing 3 mg of the dried (mortar-disaggregated) solid iron oxide in 10 mL of absolute ethanol, and ultrasonication for 45 min for goethite and 6 h for ferrihydrite. Four drops of the slurry were deposited on a holey-carbon-coated copper grid for analysis.

 

2.7. Cr(VI) adsorption maxima.

Maximum Cr(VI) adsorption was determined following the procedures reported by Mesuere and Fish (1992), Van Geen et al. (1994) and Villalobos and Pérez-Gallegos (2008). 50 mL of a 4 x 10-3 M Cr(VI) solution were prepared from K2Cr2O7 (JT Baker) and placed in a high density polypropylene reactor to which the iron oxide solid was added to yield a concentration of 1.8 g L-1 for goethite, and 0.3 g L-1 for ferrihydrite. The ionic strength was fixed to 0.1 M with NaClO4 (Sigma-Aldrich) and the pH was fixed to pH 4 with diluted HClO4 (Sigma-Aldrich). The suspension was immersed in an ultrasonic bath for approximately 1 min to ensure an adequate disaggregation and dispersion of the solid. The suspension was then placed in an orbital shaker for 72 h, but the pH of the suspension required frequent readjustments to pH 4. This procedure was made at least in triplicate, but for the extreme SSA goethites it was done in replicates of 10 to 15 because we are particularly interested to continue working with these goethites. Aqueous Cr(VI) concentrations at equilibrium were analyzed by UV-visible spectroscopy after filtering appropriate suspension aliquots through 0.05 μm nitrocellulose membranes. Using a standard curve of 5 – 70 mg Cr(VI) L-1 at pH 4 direct colorimetric measurements were made at λ= 348 nm (Akiyama et al., 2003) using a Jenna-Analytics SPECORD 210 PLUS Uv/Vis spectrophotometer (detection limit = 0.3 mg L-1). The difference from the total Cr(VI) added initially was assumed to be the maximum adsorbed Cr(VI) concentration.

 

3. Results and Discussion

3.1. Goethite synthesis

Figure 1 shows photographs of the experimental set-up (a) and products obtained (b-c) during goethite synthesis in which CO2exclusion was maintained throughout the high-pH stages of the aqueous suspensions. The initial precipitate formed was a dark red suspended ferrihydrite, which upon aging turned to an ochre color goethite suspension. The different goethites varied from darker color hues for the high-SSA samples to lighter hues for the low-SSA samples.


Figure 1. a) Experimental set-up for goethite synthesis showing fresh ferrihydrite precipitate after NaOH addition; b) Goethites obtained after aging: GOE50-labelled on the left corresponds to GOE43, and GOE94-labelled on the right to GOE101; c) clean and dried goethite (GOE43/GOE101) dispersed with mortar.

 

3.2. Goethite characterization.

3.2.1. Specific surface area (SSA)

SSA is used in this work as a proxy for particle size. Goethite particles are acicular, or recently described more accurately as blades or laths (Livi et al., 2013), and thus, an average size parameter is difficult to define and measure directly. However, we may use the log-linear relationship between SSA and the geometric average particle size [eq. (1)] as an alternative method to report changes in particle sizes for goethite, based solely on SSA:

Log SSA = Log (k/δ) – Log r (1)

 

Where k is a constant related to the particle shape, δ is the specific gravity of the solid, and r is an average size parameter (Parks, 1990). For highly symmetrical shapes, such as spheres or cubes, k = 3 and r is the sphere radius or the radius of the cube sides; but the k value for the goethite lath is unknown. Since both kand δ are expected to be approximately constant with goethite size changes, SSA changes are sufficient to indicate particle size differences in our samples, and no further efforts were devoted to calculate actual size values.

Table 3 shows the SSA values obtained for four different NaOH rate additions during goethite synthesis, ranging from 42 m2/g to 105 m2/g, as additions of 2.5 M NaOH were gradually slowed down from an instantaneous addition of the 200 mL to 1 mL min-1 (i.e., to 3.33 h to add the 200 mL), respectively. These values indicate that goethite particle laths are progressively smaller as the NaOH addition rate is decreased.

 

3.2.2. X-ray diffraction (XRD)

The XRD patterns of all samples synthesized correspond to pure goethite according to the JCPDS PDF database (JCPDS 29-713) used for phase identification, and no other Fe oxide phases were identified (Figure 2). The samples were analyzed under the same diffractometer conditions. Differences in their relative crystallinities may be observed from changes in the peak widths and heights. Sharper and taller peaks, denoting higher crystallinity, are observed as SSA decreases, except when going from the 101 to the 83 m2 g-1goethites, which seem to show very similar peak widths and heights.


Figure 2. XRD patterns of goethite samples of different SSAs.

 

3.2.3 Transmission electron microscopy (TEM)

TEM images are shown for the two extreme sizes of goethites synthesized: GOE101 and GOE43 (Figure 3). In both cases the typical goethite lath shapes may be identified. GOE101 shows small ideal nanocrystals of lengths between 100 and 200 nm and widths of approximately 50 nm (Figure 3a and b). GOE43 shows particles that seem to have grown in aggregated form, reaching 1μm lengths with widths of around 200 nm (Figure 3c and d).


Figure 3. TEM images of GOE101 a) and b), and GOE43 c) and d), at two different magnifications.

 

3.2.4. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy

The main ATR-FTIR spectra (Figure 4) are similar among all goethites. The peaks found at 621 – 632 cm-1 are associated to the FeO6 octahedral lattice (Ruan et al., 2001). The peaks at 786 – 791 cm-1, and at 886 – 897 cm-1 are assigned to Fe-O-H bending vibrations (Montes-Hernandez et al., 2011; Zamiri et al., 2014). There is a small peak around 1650 cm-1 that corresponds to bending modes of hydroxyl (Prasad et al., 2006). The broad peaks centered around 3101 – 3118 cm-1 correspond to the stretching of goethite hydroxyls and surface H2O molecules (Prasad et al., 2006). In the goethite sample with SSA of 43 m2 g-1 the presence of leftover NO3- from incomplete washing may be detected at around 1400 cm-1.

A close-up of the region between 1200 – 1700 cm-1 (Figure 5), shows the presence of adsorbed water bending vibrations at 1651 – 1654 cm-1, and of adsorbed carbonate with peaks of the asymmetric and symmetric O–C–O stretch vibrations at 1499 – 1509 cm-1 and 1307 – 1322 cm-1, respectively (Villalobos and Leckie, 2001). The adsorbed nitrate on GOE43 (Figure 5a) blocked the potential carbonate peaks on this sample.


Figure 4. ATR-FTIR goethite measurements (complete spectra).


Figure 5. ATR-FTIR spectra amplified in the range between 1200 and 1700cm-1for a) GOE 43, b) GOE 63, c) GOE 83, and d) GOE 101.

 

 

3.2.5. Cr(VI) adsorption

Maximum chromate adsorption was evaluated at pH 4 (Table 4). The results show that the goethite with the lowest SSA (GOE43) has the highest adsorption capacity (4.4 μmol m-2), while the other three goethites don’t show much differences in adsorption capacities, between 2.8 and 3.0 μmol m-2. These latter values are slightly larger than the Cr(VI) adsorption maximum reported previously for a 94 m2 g-1 goethite of 2.6 μmol m-2 under the same conditions (Villalobos and Perez-Gallegos, 2008). However the latter reported a considerably larger Cr(VI) adsorption maximum of 8.1 μmol m-2 for a 50 m2 g-1 goethite, suggesting that the increase in reactivity for the more reactive goethites may not be a sole function of SSA. The increase in surface reactivity of large goethites is related to a higher proportion of crystal faces that contain a larger value of reactive surface site density (Villalobos et al., 2009; Salazar-Camacho and Villalobos, 2010).

Table 4. Maximum Cr(VI) adsorption onto goethite. [Cr(VI)] initial = 4 x 10-3 M, I = 0.1 M NaClO4 at pH 4.

a The experimental error in the SSA determination by nitrogen adsorption BET measurements, for any individual goethite batch is 2 – 3 m2 g-1.

 

3.3. Ferrihydrite synthesis

The experimental set-up for ferrihydrite synthesis is very similar to that described in the goethite section. Samples of 2-line ferrihydrite were synthetized according to one variation of the method of Schwertmann and Cornell (2007), adding carefully 1 M NaOH to 100 mL of 0.2 M FeCl3 until pH 7.5with continuous stirring (Schwertmann and Cornell, 2007; Li, et al., 2011). To obtain different particle sizes the predominant experimental variable is pH, and higher values produce surface charges that bring on growth by oriented aggregation (Burrows et al., 2013). Therefore, the longer the product remains in its synthesis medium rich in OH- groups, the greater the resulting particle size.

After the synthesis, products were repeatedly centrifuged and washed to remove the remaining salts. In this step, indirect evidence of different resulting particle size was observed, as presumably larger AFh particles were easily separated from the solution, in contrast to FFh particles. Furthermore, the final products had slightly different colors, AFh being the darkest.

 

3.4. Ferrihydrite characterization

3.4.1 Specific Surface Area (SSA)

Experimental BET results showed that the fresh ferrihydrite (FFh) had a higher SSA (311 m2/g) than the aged ferrihydrite (AFh) (258 m2/g). The uncertainties for these determinations were ± 5 m2/g.

Nevertheless, it is widely believed that SSA determined from dry samples of ferrihydrite considerably underestimates the actual SSA under aqueous suspension conditions, because of the high aggregation expected upon drying from such small nanoparticles (Villalobos and Antelo, 2011). Therefore, the previous values are only indicative of SSA of dry Fh aggregates.

 

3.4.2. X-ray Diffraction (XRD)

The identity of the synthesis products was confirmed by XRD (Figure 6), showing almost identical patterns for both FFh and AFh, with the two bands characteristic of two-line ferrihydrite centered at 2θ of 35 and 63º (Schwartmann and Cornell, 2007). Perhaps the only difference observed is a slightly taller band at 35º for the aged sample. This would mean that the width of this peak at mid-height would be slightly lower, which is coincident with an expected larger crystal size of the aged sample. These differences, however, are too small to be analyzed quantitatively.


Figure 6. XRD patterns of AFh and FFh.

 

3.4.3. Particle Size

The TEM images for these samples show the extreme state of aggregation despite the attempts to disaggregate them using ultrasound for extended periods (6 h) (Figure 7). Close-ups of the border regions of aggregates show an important difference between both samples. For AFh (Figure 7a) particles of approximately 5 nm may be detected, in contrast to FFh (Figure 7b), where particle size seems to be around 2 nm.

Because of this extreme particle aggregation, direct and accurate particle size measurements in ferrihydrites are at best difficult and prone to high uncertainties. Therefore, we believe BET SSA measurements yield a more accurate average picture that relates directly to the sizes present, according to equation (1), and we may use these measurements to investigate more accurately the size difference between both synthesized samples. BET SSA values for our samples were 311 m2/g and 258 m2/g, for FFh and AFh, respectively, which strongly suggest a definitive size difference between the samples.

However, as stated before, the obtained BET SSA values are indicative of the exposed surface area of the dry aggregates, not of the individual particles, and do not reflect the SSA values expected under aqueous suspension. To approach the latter, we used the relationships reported by Wang et al.(2013) between particle size and phosphate adsorption capacity, and in turn between the latter and BET SSA of a series of ferrihydrites, to cross-calculate the relationship between particle size and BET SSA of our ferrihydrites. The linear relationship obtained is shown in Figure 8, and we may interpolate our BET SSA values, to obtain particle sizes of 3.4 and 4.2 nm for FFh and AFh, respectively.

A cautionary note should be mentioned that the data for the above linear relationship were reported together for FH samples of both 2 lines and 6 lines. If, from these size measurements, we back-calculate the SSA of the individual particles expected, using the specific mass gravity of 3.56 g/cm3 and a spherical shape (Villalobos and Antelo, 2011), we obtain values of 494 and 400 m2/g for individual particles of FFh and AFh, respectively.


Figure 7. TEM images of (a) AFh and (b) FFh.

 


Figure 8. Linear relationship between particle size and BETSSA, recalculated from data by Wang et al. (2013).

 

3.4.4. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy

Ferrihydrite identification was also attained by ATR- FTIR spectroscopy, which shows the characteristic bands for this material as reported previously by Hausner et al. (2009), and no major distinction between the FFh and AFh (Figure 9). Three predominant regions may be identified in the spectra: (i) near 3150 cm-1 the O-H stretching signals appear in a very broad band, related to structural hydroxide as well as adsorbed H2O; (ii) between 1650 and 1300 cm-1, deformation water bending vibrations appears near 1630 cm-1, and the asymmetric and symmetric stretching of C-O from adsorbed carbonate may be observed at 1465 and 1345 cm-1, respectively (Bargar et al., 2005; Hausner, et al., 2009); (iii) Fe-O lattice stretching modes appear at 705, 565, 480 and 420 cm-1. However, factors such as the degree of crystallinity and extent of particle aggregation have all been shown to influence the infrared spectrum of iron oxide minerals, and therefore for 2-line ferrihydrite those signals are not well defined (Hausner et al., 2009).


Figure 9. ATR-FTIR spectra of FFh and AFh.

 

3.4.5. Cr (VI) Adsorption

Maximum chromate adsorption was evaluated at pH 4. As with goethite, the solid concentrations were set to achieve similar aqueous concentrations of surface area between the two minerals. The results are shown in mmol of Cr(VI) adsorbed per gram of ferrihydrite (Table 5). Surprisingly, both yield very similar values of 0.97 – 1.05 mmol g-1. In this case, it is not accurate to normalize by experimental surface area because of the strong aggregation during the BET analysis. However, if we use the back-calculated SSAs from the linear relationship previously found (cf. section 3.4.3) (Wang et al., 2013), of 400 and 494 m2/g for AFh and FFh, respectively, we obtain values of 2.43 and 2.12 μmol m-2 for AFh and FFh, respectively. These values suggest that the surface of the aged sample is more reactive than that of the fresh sample, i.e., larger FH particle sizes are more reactive, which is an unexpected result, but shows a similar trend as for goethite. Nevertheless, this needs to be confirmed through other adsorption measurements, for example by acid-base titrations to obtain proton adsorption data.

Table 5. Maximum Cr(VI) adsorption onto ferrihydrite. [Cr(VI)] initial = 4 x 10-3 M, I = 0.1 M NaClO4 at pH 4.

 

4. Conclusions

The rate of OH- addition to the Fe(NO3)3 solution was the crucial factor to synthesize goethite of different particle sizes - the higher the rate, the larger the resulting particles. Under rate-controlled conditions we were able to synthesize goethite with specific surface areas (SSAs) ranging from ca. 40 m2 g-1 to 100 m2 g-1. We confirmed that as SSA decreases (i.e., particle size increases), the surface reactivity of the goethite particles increased, when adsorbed concentrations are reported per surface area. For ferrihydrite, we found that the aging time at the synthesis pH of 7.5 was the most important factor to control the final particle size. Indirect calculations yielded particle sizes obtained of 3.4 and 4.2 nm for freshly prepared and 48-h aged ferrihydrite, respectively.

 

Acknowledgements

The authors wish to thank Dr. Teresa Pi Puig at the Geology Institute – UNAM for the X-ray Diffraction measurements, Dr. Lucy Mora Palomino at the Geology Institute – UNAM for access to ultracentrifuge, freezer and lyophilizer equipment, and Dr. Jesús Ángel Arenas Alatorre, for his guidance in preliminary TEM images of ferrihydrite. We thank students and technicians from LABQA at the Chemistry School, UNAM for their help with handling the analytical equipment and techniques. M. V.-G. and K. V.-E. are grateful to the CONACyT and Senescyt for the Ph.D. student fellowships received. M. U.-A. thanks the CONACyt for the Master’s student fellowship received. This project was funded by UNAM-PAPIIT Project IT100912. Finally, we appreciate the comments from two anonymous reviewers who helped improve the manuscript for publication.

 

References

Adegoke, H.I., Adekola, F.A., Fatoki, O.S., Ximba, B.J., 2013, Sorptive Interaction of Oxyanions with Iron Oxides: A Review: Polish Journal of Environmental Studies, 22, 7-24.

Akiyama, E., Markworth, A.J., McCoy, J.K., Frankel, G.S., Xia, L., McCreery, R.L., 2003, Storage and release of soluble hexavalent chromium from chromate conversion coatings on Al alloys - Kinetics of release: Journal of the Electrochemical Society, 150, B83-B91.

Antelo, J., Avena, M., Fiol, S., Lopez, R., Arce, F., 2005, Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface: Journal of Colloid Interface Science, 285, 476-486.

Antelo, J., Fiol, S., Pérez, C., Mariño, S., Arce, F., Gondar, D., López, R., 2010, Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model: Journal of Colloid and Interface Science 347, 112-119.

Atkinson, R.J., Posner, A.M. and Quirk, J.P., 1967, Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface: The Journal of Physical Chemistry, 71, 550-559.

Bargar, J.R., Kubicki, J.D., Reitmeyer, R., Davi, J.A., 2005, ATR-FTIR characterization of inner-sphere and outer-sphere carbonate surface complexes on hematite: Geochimica et Cosmochimica Acta, 69, 1527-1542.

Burrows, N., Hale, C., Penn, L., 2013, Effect of pH on the kinetics of crystal growth by oriented aggregation: Crystal Growth and Design, 13, 3396-3403.

Childs, C.W., 1992, Ferrihydrite: A review of structure, properties and occurrence in relation to soils: Zeitschrift für Pflanzenernährung und Bodenkunde, 155, 441-448.

Cudennec, Y., Lecerf, A., 2006, The transformation of ferrihydrite into goethite or hematite, revisited: Journal of Solid State Chemistry, 179, 716-722.

Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., 1997, Arsenate and Chromate Retention Mechanisms on Goethite. 1: Surface Structure: Environmental Science & Technology, 31, 315-320.

Fortin, D., Langley, S., 2005, Formation and occurrence of biogenic iron-rich minerals: Earth-Science Reviews, 72, 1-19.

Granados-Correa, F., Corral-Capulin, N.G., Olguin, M.T., Acosta-Leon, C.E., 2011, Comparison of the Cd(II) adsorption processes between boehmite (gamma-AlOOH) and goethite (alpha-FeOOH): Chemical Engineering Journal, 171, 1027-1034.

Guo, H.B., Barnard, A.S., 2013, Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability: Journal of Materials Chemistry A, 1, 27-42.

Guyodo, Y., Mostrom, A., Penn, R.L., Banerjee, S.K., 2003, From Nanodots to Nanorods: Oriented aggregation and magnetic evolution of nanocrystalline goethite: Geophysical Research Letters, 30, 191-194.

Hausner, D.B., Bhandari, N., Pierre-Louis, A. M., Kubicki, J. D., Strongin, D. R., 2009, Ferrihydrite reactivity toward carbon dioxide: Journal of Colloid and Interface Science, 337, 492-500.

Hiemstra, T., 2013, Surface and mineral structure of ferrihydrite: Geochimica et Cosmochimica Acta, 105, 316-325.

Hiemstra, T., van Riemsdijk, W.H., 1996, A surface structural approach to ion adsorption: The charge distribution (CD) model: Journal of Colloid and Interface Science, 179, 488-508.

Hofmann, A., van Beinum, W., Meeussen, J.C.L., Kretzschmar, R., 2005, Sorption kinetics of strontium in porous hydrous ferric oxide aggregates II. Comparison of experimental results and model predictions: Journal of Colloid and Interface Science, 283, 29-40.

Jaiswal, A., Banerjee, S., Mani, R., Chattopadhyaya, M.C., 2013, Synthesis, characterization and application of goethite mineral as an adsorbent: Journal of Environmental Chemical Engineering, 1, 281-289.

Kosmulski, M., Durand-Vidal, S., Maczka, E., Rosenholm, J.B., 2004, Morphology of synthetic goethite particles: Journal of Colloid and Interface Science, 271, 261-269.

Li, Z., Zhang, T., Li, K., 2011, One- step synthesis of mesoporous two-line ferrihydrite for effective elimination of arsenic contaminants from natural water: Dalton Transactions, 40, 2062-2066.

Livi, K.J.T., Villalobos M., Varela M., Villacís-García M., Vaca-Escobar K., Sverjensky D.A., 2013, The relationship of goethite surface structure, habit and adsorption capacity (abstract), inGoldschmidt Conference 2013: Florence, Italy, Goldschmidt, 1.

Maji, S.K., Pal, A., Pal, T., 2008, Arsenic removal from real-life groundwater by adsorption on laterite soil: Journal of Hazardous Materials, 151(2-3), 811-820.

Michel, F.M., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., Parise, J.B., 2007, The structure of ferrihydrite, a nanocrystalline material: Science, 316(5832), 1726-1729.

Mesuere, K., Fish, W., 1992, Chromate and oxalate adsorption on goethite. 1. Calibration of surface complexation models: Environmental Science & Technology, 26, 2357-2364.

Montes-Hernandez, G., Beck, P., Renard, F., Quirico, E., Lanson, B., Chiriac, R., Findling, N., 2011, Fast precipitation of acicular goethite from ferric hydroxide gel under moderate temperature (30 and 70 degrees C): Crystal Growth & Design, 11, 2264-2272.

Parks, G.A., 1990, Surface energy and adsorption at mineral-water interfaces: An introduction, in Hochella, M.F.Jr., White, A.F. (eds.), Mineral-Water Interface Geochemistry: Chantilly – USA, Mineralogical Society of America, 23, 133-175.

Perelomov, L.V., Pinskiy, D.L., Violante, A., 2011, Effect of organic acids on the adsorption of copper, lead, and zinc by goethite: Eurasian Soil Science, 44, 22-28.

Prasad, P.S.R., Shiva Prasad, K., Krishna Chaitanya, V., Babu, E.V.S.S.K., Sreedhar, B., Ramana Murthy, S., 2006, In situ FTIR study on the dehydration of natural goethite: Journal of Asian Earth Sciences, 27, 503-511.

Rout, K., Mohapatra, M., Anand, S., 2012, 2-line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions: Dalton transactions, 41, 3302-3312.

Ruan, H.D., Frost, R.L., Kloprogge, J.T., 2001, The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite: Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 57, 2575-2586.

Salazar-Camacho, C., Villalobos, M., 2010, Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model: Geochimica et Cosmochimica Acta, 74, 2257-2280.

Schwertmann, U., Cambier, P., Murad, E., 1985, Properties of goethites of varying crystallinity: Clays and Clay Minerals, 33, 369-378.

Schwertmann, U., Cornell, R.M., 2007, Iron Oxides in the Laboratory: Preparation and characterization: Weinheim, Wiley-VCH Verlag GmbH., X p.

Schwertmann, U., Stanjek, H., 1998, Stirring effects on properties of Al goethite formed from ferrihydrite: Clays and Clay Minerals, 46, 317-321.

Schwertmann, U., Stanjek, H., Becher, H.-H., 2004, Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 °C: Clay Minerals, 39, 433-438.

Swedlund, P.J., Webster, J.G., Miskelly, G.M., 2009, Goethite adsorption of Cu (II), Pb (II), Cd (II), and Zn (II) in the presence of sulfate: Properties of the ternary complex: Geochimica et Cosmochimica Acta, 73, 1548-1562.

Van Geen, A., Robertson, A.P., Leckie, J.O., 1994, Complexation of carbonate species at the goethite surface - implications for adsorption of metal-ions in natural-waters: Geochimica et Cosmochimica Acta, 58, 2073-2086.

Varanda, L.C., Morales, M.P., Jafelicci, M., Serna, C.J., 2002, Monodispersed spindle-type goethite nanoparticles from Fe-III solutions: Journal of Materials Chemistry, 12, 3649-3653.

Villacís-García, M., Villalobos, M., Gutiérrez-Ruiz, M., 2015, Optimizing the use of natural and synthetic magnetites with very small amounts of coarse Fe(0) particles for reduction of aqueous Cr(VI): Journal of Hazardous Materials, 281, 77-86.

Villalobos, M., Antelo, J., 2011, A unified surface structural model for ferrihydrite: Proton charge, electrolyte binding, and arsenate adsorption: Revista Internacional de Contaminación Ambiental, 27, 139-151.

Villalobos, M., Cheney, M.A., Alcaraz-Cienfuegos, J., 2009, Goethite surface reactivity: II. A microscopic site-density model that describes its surface area-normalized variability: Journal of Colloid and Interface Science, 336, 412-422.

Villalobos, M., Leckie, J.O., 2001, Surface complexation modeling and FTIR study of carbonate adsorption to goethite: Journal of Colloid and Interface Science, 235, 15-32.

Villalobos, M., Perez-Gallegos, A., 2008, Goethite surface reactivity: A macroscopic investigation unifying proton, chromate, carbonate, and lead(II) adsorption: Journal of Colloid and Interface Science, 326, 307-323.

Wang, X., Li, W., Harrington, R., Liu, F., Parise, J.B., Feng, X., Sparks, D.L. 2013, Effect og ferrihydrite crystalite size on phosphate adsorption reactivity: Environmental Science and Technology, 47, 10322-10331.

Weidler, P.G., Schwinn, T., Gaub, H.E., 1996, Vicinal faces on synthetic goethite observed by atomic force microscopy: Clays and Clay Minerals, 44, 437-442.

Zamiri, R., Ahangar, H.A., Zakaria, A., Zamiri, G., Bahari, H.R., Drummen, G.P.C., 2014, Hydrothermal synthesis of goethite (alpha-FeOOH) nanorods in the presence of ethylenediamine:thiourea: Journal of Nanoparticle Research, 16, 2332-2342.

Zhang, J.S., Stanforth, R., 2005, Slow adsorption reaction between arsenic species and goethite (alpha-FeOOH): Diffusion or heterogeneous surface reaction control: Langmuir, 21, 2895-2901.


 

Manuscript received: November 18, 2014
Corrected manuscript received: March 9, 2015
Manuscript accepted: March 20, 2015